被动式直接甲醇燃料电池结构优化设计及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为燃料电池技术领域的重要分支,被动式自呼吸直接甲醇燃料电池(以下简称PAB-DMFC)由于具有最接近实用的操作特性及高能量密度,在便携式电源领域正吸引着广泛关注和研究。然而,由于PAB-DMFC完全自主运行,其操作条件很难达到最优,而且在被动工作模式下电池内部的质、热传递机制受到很大限制,因而其性能往往远低于主动式DMFC。在此背景下,从PAB-DMFC的结构着手进行优化成为改善电池性能的现实可行的方式。为此,本文以PAB-DMFC单池为研究对象,基于传统结构层面及新型多孔流场结构层面对电池进行优化设计并研究其作用机理,主要研究内容包括:
     1. PAB-DMFC的结构设计及其多孔流场板的制造与表征
     结合可视化设计方法及实验策略,详细讨论了传统电池组件(集电板/流场板、膜电极)的设计及制造方法,在此基础上提出集成多孔流场板的新型PAB-DMFC的设计思路。重点研究了基于多齿刀具切削金属纤维工艺及高温固相烧结工艺的多孔流场板制造方法,特别是基于Deform三维有限元模拟及SEM技术对金属纤维的成形过程及形貌进行详细表征。针对PAB-DMFC的特殊应用环境,对多孔流场板包括多尺度微观形貌、宏观结构特征、流体渗透性、亲/疏水性、导电性及耐腐蚀性等在内的关键物性参数进行系统表征及评估。
     2. PAB-DMFC的多结构参数耦合影响机制
     基于传统结构设计方案,在PAB-DMFC两极采用相同结构配置的情况下,对其在多结构耦合条件下的性能表现进行比较研究,结合电池内部的质、热传递机制(如反应物供给、产物排放、甲醇穿透等)对关键组件结构参数的影响机制进行定性分析,并通过正交方法对包括耦合因素在内的各结构参数对电池典型特性指标(最大功率密度、极限电流密度和开路电压)的影响权重进行定量描述,最终得到最优结构组合。在考察结构影响的同时,还研究了操作参数(甲醇浓度、操作时间、强迫空气对流、换液操作等)对PAB-DMFC性能的影响机制以及电池的动态特性。
     3. PAB-DMFC的两极结构差异化影响机制
     进一步研究PAB-DMFC两极采用不同结构配置时的结构因素对电池性能的影响机制,重点考察了质子交换膜、碳纤维扩散介质(碳纸型和碳布型)以及集电板(不同形式及开孔率)对电池性能及开路特性的影响。通过比较电池在包含和取消阴极扩散层情况下的性能详细评估了阴极扩散层在氧气传输和水热管理方面的功能特性。在两极结构差异化条件下,深入研究了甲醇浓度、操作方位、阴极强迫空气对流及环境温度等操作参数对电池性能的影响,同时利用数字成像法及红外热像分析法对阳极的气泡行为以及阴极的温度特性进行定性分析。
     4.多孔流场板在PAB-DMFC中的性能研究
     通过与采用传统结构的PAB-DMFC进行比较,详细分析了多孔流场板在传质方面的功能特性及其结构参数(孔隙率和厚度)对电池性能的影响机制。同时考察了多孔流场板装配方式及集电板参数对电池性能的影响。针对采用多孔流场板的PAB-DMFC,系统考察了其在不同操作条件(甲醇浓度、操作方位、环境温度、阴极强迫空气对流)下的性能,并对其动态特性进行了定性描述。
     本文研究结果表明,对PAB-DMFC的结构进行优化须考虑关键组件结构的耦合影响以及两极结构的差异化影响。优化准则的核心在于衡量不同组件结构参数及其组合是否有利于电池内部的质、热传递机制,特别是在反应物传递、产物排放以及甲醇穿透抑制方面是否能够实现较好的平衡。当PAB-DMFC阳极采用多孔流场结构后,电池的性能得到明显改善,不仅提高了电池的能量密度和功率密度,还延长了电池的工作时间。
As a branch of fuel cell technology, the passive air-breathing direct methanol fuel cell(PAB-DMFC) is increasingly attracting concerns from the field of portable power sources dueto its high energy density and practical properties. However, since the PAB-DMFC mainlyoperates under a self-regulating condition, the operational parameters are not always optimaland the mass and heat transfer mechanisms are inevitably limited. As a result, its performanceis mostly lower than the active DMFC system. In this situation, it is quite possible to improvethe cell performance by optimizing the fuel cell structures. To this end, this thesis focuses onstructural optimization and corresponding mechanism analysis of a single PAB-DMFC witheither a traditional flow distributor or a PMFSFD. The main contents of this thesis include:
     1. Structural design of PAB-DMFC&Manufacture and characterization of PMFSFD
     Based on visualization design and experimental strategy, this chapter provides a detaileddescription about the design and manufacturing process of the traditional PAB-DMFCcomponents including the current collector/flow distributor and membrane electrodeassembly. A design concept of incorporating newly-developed porous flow distributor namedPMFSFD is also presented. Particularly, the manufacturing process of the PMFSFD based onmetal-fiber multi-tooth cutting and high-temperature solid-phase sintering is comprehensivelyreported. The forming process and morphology of the metal fiber are characterized by usingDeform-based FEM simulation and SEM method. According to the special applicationenvironment of the PAB-DMFC, a series of important physical parameters are systematicallycharacterized and evaluated, namely the multi-scale microscopic morphology, macroscopicstructural features, fluid flow permeability, hydrophilicity and hydrophobicity, electricalconductivity and corrosion behaviors.
     2. Mechanisms of the coupling effects of multiple structures in a PAB-DMFC
     This chapter mainly focuses on the coupling effects of multiple structures in a traditionalPAB-DMFC with the same structural configuration on both sides. A qualitative analysis isconducted by relating the cell performance to the internal mass and heat transfer mechanisms(e.g. reactant delivery, product removal and methanol crossover), while a quantitativeanalysis is also included by using the orthogonal array method to identify the dominant factors affecting the typical target variables (e.g. maximum power density, limiting currentdensity and open circuit voltage).The optimal structural combination can be finally obtained.The effects of operational parameters (e.g. methanol concentration, operating time, forced airconvection and refueling) and the dynamic characteristics of the PAB-DMFC are analyzed.
     3. Mechanisms of the effects of structural discrepancy on both sides of a PAB-DMFC
     This chapter mainly reveals the PAB-DMFC performance with different configurations onboth sides. Especially, the effects of the membrane, carbon-fiber diffusion mediums andcurrent collectors with different patterns and open ratios are investigated. The function of thecathodic diffusion layer is reported by comparing the performances of the PAB-DMFC withand without the c-GDL. The effects of methanol concentration, operating orientation, forcedair convection and the environmental temperature are further discussed when structuraldifference is considered. In addition, the anodic bubble behaviors and cathodic self-heatingbehaviors are analyzed with the digital imaging and infrared imaging techniques.
     4. Performance validation of the PAB-DMFC with a PMFSFD
     Performance comparison of the traditional and PMFSFD-based PAB-DMFCs is reported indetails. Especially the structural effects of the PMFSFD with different porosities andthicknesses are analyzed. Besides, this chapter also reveals the effects of PMFSFD assemblymodes and current collector openings on the cell performance. When the PMFSFD is applied,how the fuel cell is affected by various operational parameters and how it behaves under thedynamic conditions are also investigated.
     To summarize, the results show that, when optimizing the structures of a PAB-DMFC, theircoupling effects and difference effects on both sides must be taken into account. The core rulefor structural optimization lies in whether the structure parameters of different componentsand their combinations benefit the internal mass and heat transfer mechanisms, especially thebalance among reactant delivery, product removal and methanol crossover inhibition. Whenthe PAB-DMFC uses a PMFSFD, the performance get greatly improved, leading to not onlyhigher energy density and power density, but also a longer operating time.
引文
[1]衣宝廉.燃料电池——原理·技术·应用[M].北京:化学工业出版社,2004:5-384.
    [2]毛宗强等.燃料电池[M].北京:化学工业出版社,2005:1-241.
    [3] Hoogers G. Fuel Cell Technology Handbook[M]. Boca Raton: CRC press,2003.
    [4] EG&G Technical Services, Inc.. Fuel cell Handbook[M].7th Edition. New York: VanNostrand Reinhold Co. Inc.,2004.
    [5] Sammes N.. Fuel Cell Technology: Reaching Towards Commercialization[M]. London:Springer-Verlag London Limited,2006.
    [6] Demirci U.B.. How green are the chemicals used as liquid fuels in direct liquid-feed fuelcells[J]? Environment International,2009,35(3):626-631.
    [7] Qian W., Wilkinson D.P., Shen J., et al. Architecture for portable direct liquid fuel cells[J].Journal of Power Sources,2006,154(1):202-213.
    [8] Ogden J.M., Steinbugler M.M., Kreutz T.G.. A comparison of hydrogen, methanol andgasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructuredevelopment[J]. Journal of Power Sources,1999,79(2):143-168.
    [9] Aricò A.S., Srinivasan S., Antonuccia V.. DMFCs: From fundamental aspects totechnology development[J]. Fuel Cells,2001,1(2):133-161.
    [10] Kamarudin S.K., Daud W.R.W., Ho S.L., et al. Overview on the challenges anddevelopments of micro-direct methanol fuel cells (DMFC)[J]. Journal of Power Sources,2007,163(2):743-754.
    [11] Zhao T.S., Chen R., Yang W.W., et al. Small direct methanol fuel cells with passive supplyof reactants[J]. Journal of Power Sources,2009,191(2):185-202.
    [12] Kamarudin S.K., Achmad F., Daud W.R.W. Overview on the application of directmethanol fuel cell (DMFC) for portable electronic devices[J]. International Journal ofHydrogen Energy,2009,34(16):6902-6916.
    [13] Dyer C.K.. Fuel cells for portable applications[J]. Journal of Power Sources,2002,106(1-2):31-34.
    [14] Wee J.H.. A feasibility study on direct methanol fuel cells for laptop computers based on acost comparison with lithium-ion batteries[J]. Journal of Power Sources,2007,173(1):424-436.
    [15] Oedegaard A., Hentschel C.. Characterisation of a portable DMFC stack and amethanol-feeding concept[J]. Journal of Power Sources,2006,158(1):177-187.
    [16] Chan Y.H., Zhao T.S., Chen R.. A small mono-polar direct methanol fuel cell stack withpassive operation[J]. Journal of Power Sources,2008,178(1):118-124.
    [17] Guo Z., Faghri A.. Development of planar air breathing direct methanol fuel cell stacks[J].Journal of Power Sources,2006,160(2):1183-1194.
    [18] Zhu Y., Liang J., Liu C., et al. Development of a passive direct methanol fuel cell (DMFC)twin-stack for long-term operation[J]. Journal of Power Sources,2009,193(2):649-655.
    [19] Baglio V., Stassi A., Matera F.V., et al. Investigation of passive DMFC mini-stacks atambient temperature[J]. Electrochimica Acta,2009,54(7):2004-2009.
    [20] Kuan Y.D., Chang J.Y., Lee S.M., et al. Characterization of a direct methanol fuel cellusing Hilbert curve fractal current collectors[J]. Journal of Power Sources,2009,187(1):112-122.
    [21] Guo J.W., Xie X.F., Wang J.H., et al. Effect of current collector corrosion made fromprinted circuit board (PCB) on the degradation of self-breathing direct methanol fuel cellstack[J]. Electrochimica Acta,2008,53(7):3056-3064.
    [22] Heinzel A., Barragán V.M.. A review of the state-of-the-art of the methanol crossover indirect methanol fuel cells[J]. Journal of Power Sources,1999,84(1):70-74.
    [23] Gurau B., Smotkin E.S.. Methanol crossover in direct methanol fuel cells: a link betweenpower and energy density[J]. Journal of Power Sources,2002,112(2):339-352.
    [24] Kho B.K., Bae B., Scibioh M.A., et al. On the consequences of methanol crossover inpassive air-breathing direct methanol fuel cells[J]. Journal of Power Sources,2005,142(1-2):50-55.
    [25] Lai Q.Z., Yin G.P., Wang Z.B., et al. Influence of methanol crossover on the fuel utilizationof passive direct methanol fuel cell[J]. Fuel Cells,2008,8(6):399-403.
    [26] Xu C., Faghri A., Li X., et al. Methanol and water crossover in a passive liquid-feed directmethanol fuel cell[J]. International Journal of Hydrogen Energy,2010,35(4):1769-1777.
    [27] Kim H.K.. Passive direct methanol fuel cells fed with methanol vapor[J]. Journal of PowerSources,2006,162(2):1232-1235.
    [28] Xu C., Faghri A.. Mass transport analysis of a passive vapor-feed direct methanol fuelcell[J]. Journal of Power Sources,2010,195(20):7011-7024.
    [29] Pan Y.H.. Advanced air-breathing direct methanol fuel cells for portable applications[J].Journal of Power Sources,2006,161(1):282-289.
    [30] Shaffer C.E., Wang C.Y.. High concentration methanol fuel cells: Design and theory[J].Journal of Power Sources,2010,195(13):4185-4195.
    [31] Zhao T.S., Yang W.W., Chen R., et al. Towards operating direct methanol fuel cells withhighly concentrated fuel[J]. Journal of Power Sources,2010,195(11):3451-3462.
    [32] Li X., Faghri A., Xu C.. Water management of the DMFC passively fed with ahigh-concentration methanol solution. International Journal of Hydrogen Energy,2010,35(16):8690-8698.
    [33] Li X., Faghri A., Xu C.. Structural optimization of the direct methanol fuel cell passivelyfed with a high-concentration methanol solution[J]. Journal of Power Sources,2010,195(24):8202-8208.
    [34] Zhang H.F., Hsing I.M.. Flexible graphite-based integrated anode plate for direct methanolfuel cells at high methanol feed concentration[J]. Journal of Power Sources,2007,167(2):450-454.
    [35] Nakagawa N., Abdelkareem M.A., Sekimoto K.. Control of methanol transport andseparation in a DMFC with a porous support[J]. Journal of Power Sources,2006,160(1):105-115.
    [36] Pan Y.H.. Direct Methanol Fuel Cell with Concentrated Solutions[J]. Electrochemical andSolid-State Letters,2006,9(7): A349-A351.
    [37] Kim W.J., Choi H.G., Lee Y.K., et al. Suppression of the methanol crossover by hydrogelsin passively operated flat-pack type DMFCs and its application for the power source ofcellular phone[J]. Journal of Power Sources,2006,163(1):98-102.
    [38] Liu J.G., Zhao T.S., Liang Z.X., et al. Effect of membrane thickness on the performanceand efficiency of passive direct methanol fuel cells[J]. Journal of Power Sources,2006,153(1):61-67.
    [39] Liu J.G., Zhao T.S., Chen R., et al. The effect of methanol concentration on theperformance of a passive DMFC[J]. Electrochemistry Communications,2005,7(3):288-294.
    [40] Ge J., Liu H.. Experimental studies of a direct methanol fuel cell[J]. Journal of PowerSources,2005,142(1-2):56-69.
    [41] Han J., Liu H.. Real time measurements of methanol crossover in a DMFC[J]. Journal ofPower Sources,2007,164(1):166-173.
    [42] Park J.Y., Lee J.H., Kang S.K., et al. Mass balance research for high electrochemicalperformance direct methanol fuel cells with reduced methanol crossover at variousoperating conditions[J]. Journal of Power Sources,2008,178(1):181-187.
    [43] Valdez T.I., Narayanan S.R.. Recent studies on methanol crossover in liquid-feed directmethanol fuel cells[C].194th Meetings of the Electrochemical Society, Boston,1998,98-27:380-387.
    [44] Gogel V., Frey T., Zhu Y.. Performance and methanol permeation of direct methanol fuelcells: dependence on operating conditions and on electrode structure[J]. Journal of PowerSources,2004,127(1-2):172-180.
    [45] Chen R., Zhao T.S., Liu J.G.. Effect of cell orientation on the performance of passivedirect methanol fuel cells[J]. Journal of Power Sources,2006,157(1):351-357.
    [46] Chan Y.H., Zhao T.S., Chen R., et al. A self-regulated passive fuel-feed system for passivedirect methanol fuel cells[J]. Journal of Power Sources,2008,176(1):183-190.
    [47] Meng D.D., Kim C.J.. An active micro-direct methanol fuel cell with self-circulation offuel and built-in removal of CO2bubbles[J]. Journal of Power Sources,2009,194(1):445-450.
    [48] Paust N., Krumbholz S., Munt S., et al. Self-regulating passive fuel supply for small directmethanol fuel cells operating in all orientations[J]. Journal of Power Sources,2009,192(2):442-450.
    [49] Guo Z., Cao Y.. A passive fuel delivery system for portable direct methanol fuel cells[J].Journal of Power Sources,2004,132(1-2):86-91.
    [50] Faghri A., Guo Z.. An innovative passive DMFC technology[J]. Applied ThermalEngineering,2008,28(13):1614-1622.
    [51] Guo Z., Faghri A.. Miniature DMFCs with passive thermal-fluids management system[J].Journal of Power Sources,2006,160(2):1142-1155.
    [52] Yang Y., Liang Y.C.. A direct methanol fuel cell system with passive fuel delivery basedon liquid surface tension[J]. Journal of Power Sources,2007,165(1):185-195.
    [53] Lu G.Q., Wang C.Y.. Electrochemical and flow characterization of a direct methanol fuelcell[J]. Journal of Power Sources,2004,134(1):33-40.
    [54] Yang H., Zhao T.S., Ye Q.. In situ visualization study of CO2gas bubble behavior inDMFC anode flow fields[J]. Journal of Power Sources,2005,139(1-2):79-90.
    [55] Liao Q., Zhu X., Zheng X., Ding Y.. Visualization study on the dynamics of CO2bubblesin anode channels and performance of a DMFC[J]. Journal of Power Sources,2007,171(2):644-651.
    [56] Scott K., Argyropoulos P., Yiannopoulos P., et al. Electrochemical and gas evolutioncharacteristics of direct methanol fuel cells with stainless steel mesh flow beds[J]. Journalof Applied Electrochemistry,2001,31(13):823-832.
    [57] Argyropoulos P., Scott K., Taama W.M.. Gas evolution and power performance in directmethanol fuel cells[J]. Journal of Applied Electrochemistry,1999,29(6):661-669.
    [58] Hutzenlaub T., Paust N., Zengerle R., et al. The effect of wetting properties on bubbledynamics and fuel distribution in the flow field of direct methanol fuel cells[J]. Journal ofPower Sources,2011,196(19):8048-8056.
    [59] Fei K., Chen T.S., Hong C.W.. Direct methanol fuel cell bubble transport simulations viathermal lattice Boltzmann and volume of fluid methods[J]. Journal of Power Sources,2010,195(7):1940-1945.
    [60] Kulikovsky A.A.. Model of the flow with bubbles in the anode channel and performanceof a direct methanol fuel cell[J]. Electrochemistry Communications,2005,7(2):237-243.
    [61] Kulikovsky A.A.. Bubbles in the anode channel and performance of a DMFC: Asymptoticsolutions[J]. Electrochimica Acta,2006,51(10):2003-2011.
    [62] Fu B.R., Pan C.. Bubble growth with chemical reactions in microchannels[J]. InternationalJournal of Heat and Mass Transfer,2009,52(3-4):767-776.
    [63] Jiang R., Chu D.. Water Crossover: A challenge to DMFC system I. Experimentaldetermination of water crossover[J]. Journal of The Electrochemical Society,2008,155(8):B798-B803.
    [64] Jiang R., Chu D.. Water Crossover: A challenge to DMFC system II. Simulation of waterrecycling in a20W DMFC system[J]. Journal of The Electrochemical Society,2008,155(8):B804-B810.
    [65] Song K.Y., Lee H.K., Kim H.T.. MEA design for low water crossover in air-breathingDMFC[J]. Electrochimica Acta,2007,53(2):637-643.
    [66] Oliveira V.B., Rangel C.M., Pinto A.M.F.R.. Water management in direct methanol fuelcells[J]. International Journal of Hydrogen Energy,2009,34(19):8245-8256.
    [67] Oliveira V.B., Rangel C.M., Pinto A.M.F.R.. Modelling and experimental studies on adirect methanol fuel cell working under low methanol crossover and high methanolconcentrations[J]. International Journal of Hydrogen Energy,2009,34(15):6443-6451.
    [68] Liu W., Wang C.Y.. Modeling water transport in liquid feed direct methanol fuel cells[J].Journal of Power Sources,2007,164(1):189-195.
    [69] Lu G.Q., Liu F.Q., Wang C.Y.. Water transport through Nafion112membrane inDMFCs[J]. Electrochemical and Solid-State Letters,2005,8(1): A1-A4.
    [70] Liu F.Q., Lu G.Q., Wang C.Y.. Low crossover of methanol and water through thinmembranes in direct methanol fuel cells[J]. Journal of The Electrochemical Society,2006,153(3):A543-A553.
    [71] Liu F.Q., Wang C.Y.. Water and methanol crossover in direct methanol fuel cells—Effectof anode diffusion media. Electrochimica Acta,2008,53(17):5517-5522.
    [72] Peled E., Blum A., Aharon A., et al. Novel approach to recycling water and reducing waterloss in DMFCs[J]. Electrochemical and Solid-State Letters,2003,6(12): A268-A271.
    [73] Jewett G., Guo Z., Faghri A.. Water and air management systems for a passive directmethanol fuel cell[J]. Journal of Power Sources,2007,168():434-446.
    [74] Jewett G., Faghri A., Xiao B.. Optimization of water and air management systems for apassive direct methanol fuel cell[J]. International Journal of Heat and Mass Transfer,2009,52(15-16):3564-3575.
    [75] Xu C., Zhao T.S., Yang W.W.. Modeling of water transport through the membraneelectrode assembly for direct methanol fuel cells[J]. Journal of Power Sources,2008,178(1):291-308.
    [76] Wu Q.X., Zhao T.S., Chen R., et al. Enhancement of water retention in the membraneelectrode assembly for direct methanol fuel cells operating with neat methanol[J].International Journal of Hydrogen Energy,2010,35(19):10547-10555.
    [77] Yang W.W., Zhao T.S., Chen R., et al. An approach for determining the liquid waterdistribution in a liquid-feed direct methanol fuel cell[J]. Journal of Power Sources,2009,190(2):216-222.
    [78] Wu Q.X., Zhao T.S.. Characteristics of water transport through the membrane in directmethanol fuel cells operating with neat methanol[J]. International Journal of HydrogenEnergy,2011,36(9):5644-5654.
    [79] Zhao T.S., Xu C., Chen R., et al. Mass transport phenomena in direct methanol fuelcells[J]. Progress in Energy and Combustion Science,2009,35(3):275-292.
    [80] Kamitani A., Morishita S., Kotaki H., et al. Improved fuel use efficiency in microchanneldirect methanol fuel cells using a hydrophilic macroporous layer[J]. Journal of PowerSources,2009,187(1):148-155.
    [81] Yuan T., Zou Z., Chen M., et al. New anodic diffusive layer for passive micro-directmethanol fuel cell[J]. Journal of Power Sources,2009,192(2):423-428.
    [82] Tsai M.C., Yeh T.K., Chen C.Y., et al. A catalytic gas diffusion layer for improving theefficiency of a direct methanol fuel cell[J]. Electrochemistry Communications,2007,9(9):2299-2303.
    [83] Wu Q.X., Zhao T.S., Chen R., et al. Effects of anode microporous layers made of carbonpowder and nanotubes on water transport in direct methanol fuel cells[J]. Journal of PowerSources,2009,191(2):304-311.
    [84] Xie F., Chen C., Meng H. Effect of the anodic diffusion layer on the performance of liquidfuel cells[J]. Fuel Cells,2007,(4):319-322.
    [85] Park J.Y., Kim H.T., Lee E.S., et al. Effect of the porous carbon layer in the cathode gasdiffusion media on direct methanol fuel cell performances[J]. International Journal ofHydrogen Energy,2009,34(19):8257-8262.
    [86] Xu C., Zhao T.S., He Y.L.. Effect of cathode gas diffusion layer on water transport and cellperformance in direct methanol fuel cells[J]. Journal of Power Sources,2007,171(2):268-274.
    [87] Wu Q.X., Zhao T.S., Yang W.W.. Effect of the cathode gas diffusion layer on the watertransport behavior and the performance of passive direct methanol fuel cells operatingwith neat methanol[J]. International Journal of Heat and Mass Transfer,2011,54(5-6):1132-1143.
    [88] Lin C., Wang T., Ye F., et al. Effects of microporous layer preparation on the performanceof a direct methanol fuel cell[J]. Electrochemistry Communications,2008,10(2):255-258.
    [89] Cao J., Chen M., Chen J., et al. Double microporous layer cathode for membrane electrodeassembly of passive direct methanol fuel cells[J]. International Journal of HydrogenEnergy,2010,35(10):4622-4629.
    [90] Xu C., Zhao T.S., Ye Q.. Effect of anode backing layer on the cell performance of a directmethanol fuel cell[J]. Electrochimica Acta,2006,51(25):5524-5531.
    [91] Neburchilov V., Martin J., Wang H., et al. A review of polymer electrolyte membranes fordirect methanol fuel cells[J]. Journal of Power Sources,2007,169(2):221-238.
    [92] Liu H., Song C., Zhang L., et al. A review of anode catalysis in the direct methanol fuelcell[J]. Journal of Power Sources,2006,155(2):95-110.
    [93] Zainoodin A.M., Kamarudin S.K., Daud W.R.W.. Electrode in direct methanol fuel cells[J].International Journal of Hydrogen Energy,2010,35(10):4606-4621.
    [94] Piela P., Eickes C., Brosha E., et al. Ruthenium crossover in direct methanol fuel cell withpt-ru black anode[J]. Journal of The Electrochemical Society,2004,151(12):A2053-A2059.
    [95] Kjeang E., Goldak J., Golriz M.R., et al. A parametric study of methanol crossover in aflowing electrolyte-direct methanol fuel cell[J]. Journal of Power Sources,2006,153(1):89-99.
    [96] Reeve R.W., Burstein G.T., Williams K.R.. Characteristics of a direct methanol fuel cellbased on a novel electrode assembly using microporous polymer membranes[J]. Journal ofPower Sources,2004,128(1):1-12.
    [97] Jung D.H., Lee C.H., Kim C.S., et al. Performance of a direct methanol polymerelectrolyte fuel cell[J]. Journal of Power Sources,1998,71(1-2):169-173.
    [98] Dohle H., Divisek J., Mergel J., et al. Recent development of the measurement of themethanol permeation in a direct methanol fuel cell[J]. Journal of Power Sources,2002,105(2):274-282.
    [99] Murgia G., Pisani L., Shukla A.K., et al. A numerical model of a liquid-feed solid polymerelectrolyte DMFC and its experimental validation[J]. Journal of The ElectrochemicalSociety,2003,150(9):A1231-A1245.
    [100] Colmati F., Paganin V.A., Gonzalez E.R.. Effect of operational parameters of mini-directmethanol fuel cells operating at ambient temperature[J]. Journal of AppliedElectrochemistry,2006,36(1):17-23.
    [101] Xu C., Zhao T.S.. In situ measurements of water crossover through the membrane fordirect methanol fuel cells[J]. Journal of Power Sources,2007,168(1):143-153.
    [102] Kallo J., Lehnert W., Helmolt R.. Conductance and methanol crossover investigation ofNafion membranes in a vapor-fed DMFC[J]. Journal of The Electrochemical Society,2003,150(6):A765-A769.
    [103]邢巍,冯立刚,刘长鹏等.一种采用纯甲醇进料方式的被动式直接甲醇燃料电池[P].中国: CN201570541U,2010.
    [104] Cao J., Zou Z., Huang Q., et al. Planar air-breathing micro-direct methanol fuel cell stacksbased on micro-electronic-mechanical-system technology[J]. Journal of Power Sources,2008,185(1):433-438.
    [105] Zhang J., Yin G., Wang Z., et al. Effects of MEA preparation on the performance of adirect methanol fuel cell[J]. Journal of Power Sources,2006,160(2):1035-1040.
    [106] Liu P., Yin G.P., Wang E.D., et al. Influence of hot-pressing temperature on physical andelectrochemical performance of catalyst coated membranes for direct methanol fuelcells[J]. Journal of Applied Electrochemistry,2009,39(6):859-866.
    [107] Park J.Y., Lee J.H., Kim J., et al. Stable operation of air-blowing direct methanol fuel cellswith high performance[J]. Journal of Power Sources,2008,179(1):1-8.
    [108] Reshetenko T.V., Kim H.T., Lee H., et al. Performance of a direct methanol fuel cell(DMFC) at low temperature: Cathode optimization[J]. Journal of Power Sources,2006,160(2):925-932.
    [109] Reshetenko T.V., Kim H.T., Krewer U., et al. The effect of the anode loading and methodof MEA fabrication on DMFC performance[J]. Fuel Cells,2007,(3):238-245.
    [110] Abdelkareem M.A., Morohashi N., Nakagawa N.. Factors affecting methanol transport ina passive DMFC employing a porous carbon plate[J]. Journal of Power Sources,2007,172(2):659-665.
    [111] Ashby M.F., Evans A.G., Fleck N.A., et al. Metal foams: a design guide[M]. Woburn:Butterworth-Heinemann,2000.
    [112] Evans A.G., Hutchinson J.W., Ashby M.F.. Multifunctionality of cellular metal systems[J].Progress in Materials Science,1999,43(3):171-221.
    [113] Davies G.J., Zhen S.. Metallic foams: their production, properties and applications[J].Journal of Materials Science,1983,18(7):1899-1911.
    [114] Banhart J.. Manufacture, characterisation and application of cellular metals and metalfoams[J]. Progress in Materials Science,2001,46(6):559-632.
    [115] Lefebvre L.P., Banhart J., Dunand D.C.. Porous metals and metallic foams: current Statusand recent developments[J]. Advanced Engineering Materials,2008,10(9):775-787.
    [116] Sosnick B.. Process for making foam like mass of metal[P]. US:2434775,1948.
    [117] Elliott J.C.. Method of producing metal foam[P]. US:2751289,1956.
    [118]奚正平,汤慧萍等.烧结多孔金属材料[M].北京:冶金工业出版社,2009.
    [119] Hryniewicz T., Skubala W., Chrzczonowicz M.. Porous sinters for elevated-temperaturenatural-gas fuel cells[J]. Powder Technology,1990,61(3):217-223.
    [120] Allen R.G., Lim C., Yang L.X., et al. Novel anode structure for the direct methanol fuelcell[J]. Journal of Power Sources2005,143(1-2):142-149.
    [121] Lim C., Scott K., Allen R.G., et al. Direct methanol fuel cells using thermally catalysed Timesh[J]. Journal of Applied Electrochemistry,2004,34(9):929-933.
    [122] Cheng H., Scott K.. Improvement in methanol oxidation in a centrifugal field[J]. Journalof Power Sources2003,123(2):137-150.
    [123] Yu E.H., Scott K.. Direct methanol alkaline fuel cell with catalysed metal mesh anodes[J].Electrochemistry Communications,2004,6(4):361-365.
    [124] Shao Z.G., Lin W.F., Zhu F., et al. Novel electrode structure for DMFC operated withliquid methanol[J]. Electrochemistry Communications,2006,8(1):5-8.
    [125] Shao Z.G., Lin W.F., Christensen P.A.. Ti mesh anodes prepared by electrochemicaldeposition for the direct methanol fuel cell[J]. International Journal of Hydrogen Energy,2006,31(13):1914-1919.
    [126] Shao Z.G., Lin W.F., Zhu F., et al. A tubular direct methanol fuel cell with Ti meshanode[J]. Journal of Power Sources2006,160(2):1003-1008.
    [127] Chen R., Zhao T.S.. Porous current collectors for passive direct methanol fuel cells[J].Electrochimica Acta,2007,52(13):4317-4324.
    [128] Chen R., Zhao T.S.. A novel electrode architecture for passive direct methanol fuel cells[J].Electrochemistry Communications,2007,9(4):718-724.
    [129] Murphy O.J., Cisar A., Clarke E.. Low-cost light weight high power density PEM fuel cellstack[J]. Electrochimica Acta,1998,43(24):3829-3840.
    [130] Riva R., Philippe J., Crouvezier P.. A promising concept: porous materials[N]. CLEFSCEA,2004-2005,50-51:79-80.
    [131] Kumar A., Reddy R.G.. Polymer electrolyte membrane fuel cell with metal foam in the gasflow-field of bipolar/end Plates[J]. Journal of New Materials for Electrochemical Systems,2003,6(4):231-236.
    [132] Kumar A., Reddy R.G.. Materials and design development for bipolar/end plates in fuelcells[J]. Journal of Power Sources,2004,129(1):62-67.
    [133] Kumar A., Reddy R.G.. Modeling of polymer electrolyte membrane fuel cell with metalfoam in the flow-field of the bipolar/end plates[J]. Journal of Power Sources,2003,114(1):54-62.
    [134] Honta ón E., Escudero M.J., Bautista C., et al. Optimisation of flow-field in polymerelectrolyte membrane fuel cells using computational fluid dynamics techniques[J]. Journalof Power Sources,2000,86(1-2):363-368.
    [135] Senn S.M., Poulikakos D.. Polymer electrolyte fuel cells with porous materials as fluiddistributors and comparisons with traditional channeled systems[J]. Journal of HeatTransfer–Transactions of the ASME,2004,126(3):410-418.
    [136] Birgersson E., Vynnycky M.. A quantitative study of the effect of flow-distributorgeometry in the cathode of a PEM fuel cell[J]. Journal of Power Sources,2006,153(1):76-88.
    [137] Brown J.. Design, processing, and characterization of composite metal foams for fuel cellapplications[R]. North Carolina State University: Mechanical and Aerospace Engineering,2009.
    [138] Jiang R., Rong C., Chu D.. Determination of energy efficiency for a direct methanol fuelcell stack by a fuel circulation method[J]. Journal of Power Sources,2004,126(1-2):119-124.
    [139] Arisetty S., Prasad A.K., Advani S.G.. Metal foams as flow field and gas diffusion layer indirect methanol fuel cells[J]. Journal of Power Sources,2007,165(1):49-57.
    [140] Shudo T., Suzuki K.. Performance improvement in direct methanol fuel cells using ahighly porous corrosion-resisting stainless steel flow field[J]. International Journal ofHydrogen Energy,2008,33():2850-2856.
    [141] Mitchell, Philip, John. Current distributors of sintered metals and fuel cells usingthem[P].US: WO/1998/052241.
    [142] Gamburzev S., Appleby A.J.. Recent progress in performance improvement of the protonexchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources,2002,107(1):5-12.
    [143] Hottinen T., Mikkola M., Mennola T., et al. Titanium sinter as gas diffusion backing inPEMFC[J]. Journal of Power Sources,2003,118(1-2):183-188.
    [144] Hottinen T., Himanen O., Lund P.. Effect of cathode structure on planar free-breathingPEMFC[J]. Journal of Power Sources,2004,138(1-2):205-210.
    [145] Liu J.G., Sun G.Q., Zhao F.L., et al. Study of sintered stainless steel fiber felt as gasdiffusion backing in air-breathing DMFC[J]. Journal of Power Sources,2004,133(2):175-180.
    [146] Zhang Y., Pitchumani R.. Numerical studies on an air-breathing proton exchangemembrane (PEM) fuel cell[J]. International Journal of Heat and Mass Transfer,2007,50(23-24):4698-4712.
    [147] Kim J.H., Kim H.K., Hwang K.T., et al. Performance of air-breathing direct methanol fuelcell with anion-exchange membrane[J]. International Journal of Hydrogen Energy,2010,35(2):768-773.
    [148] Oedegaard A., Hebling C., Schmitz A., et al. Influence of diffusion layer properties on lowtemperature DMFC[J]. Journal of Power Sources,2004,127(1-2):187-196.
    [149] Hsiao M.C., Liao S.H., Yen M.Y., et al. Electrical and thermal conductivities of novelmetal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuelcells[J]. Journal of Power Sources,2010,195(2):509-515.
    [150] Sung M.F., Kuan Y.D., Chen B.X, et al. Design and fabrication of light weight currentcollectors for direct methanol fuel cells using the micro-electro mechanical systemtechnique[J]. Journal of Power Sources,2011,196(14):5897-5902.
    [151] Chang J.Y., Kuan Y.D., Lee S.M., et al. Characterization of a liquid feed direct methanolfuel cell with Sierpinski carpets fractal current collectors[J]. Journal of Power Sources,2008,184(1):180-190.
    [152] Kuan Y.D., Chang J.Y., Lee S.M.. Experimental investigation of the effect of free openingsof current collectors on a direct methanol fuel cell[J]. Journal of Power Sources,2011,196(2):717-728.
    [153] Hwang J.J., Wu S.D., Lai L.K., et al. Effect of breathing-hole size on the electrochemicalspecies in a free-breathing cathode of a DMFC[J]. Journal of Power Sources,2006,161(1):240-249.
    [154] Yang W.M., Chou S.K., Shu C.. Effect of current-collector structure on performance ofpassive micro direct methanol fuel cell[J]. Journal of Power Sources,2007,164(2):549-554.
    [155] Esquivel J.P., Sabaté N., Santander J., et al. Influence of current collectors design on theperformance of a silicon-based passive micro direct methanol fuel cell[J]. Journal ofPower Sources,2009,194(1):391-396.
    [156] Li X., Faghri A.. Effect of the cathode open ratios on the water management of a passivevapor-feed direct methanol fuel cell fed with neat methanol[J]. Journal of Power Sources,2011,196(15):6318-6324.
    [157] Mott porous metal in fuel cells and hydrogen separation[J]. Fuel Cells Bulletin,2007,2007(5):10.
    [158] Tang H., Wang S., Pan M., et al. Performance of direct methanol fuel cells prepared byhot-pressed MEA and catalyst-coated membrane (CCM)[J]. Electrochimica Acta,2007,52(11):3714-3718.
    [159] Lindermeir A., Rosenthal G., Kunz U., et al. On the question of MEA preparation forDMFCs[J]. Journal of Power Sources,2004,129(2):180-187.
    [160]万珍平,叶邦彦,汤勇,等.多齿刀具切削机理及其在金属纤维制造中的应用[J].机械科学与技术,2003,22(6):951-953.
    [161]万珍平,汤勇,刘亚俊,等.多齿刀具加工金属长纤维的机理[J].中国机械工程,2004,15(18):1599-1602.
    [162]万珍平,刘亚俊,汤勇,等.多齿刀具的切削模型及其分屑机理[J].机械工程学报,2005,41(3):211-215.
    [163]黄先德,叶邦彦,陈建红.金属纤维大刃倾角切削变形的三维有限元分析[J].机械制造,2005,43(494):19-21.
    [164]周伟.多孔金属纤维烧结板制造及其在制氢微反应器中的作用机理[D].广州:华南理工大学,2010.
    [165]杨奇彪,刘战强,苏国胜.高速切削锯齿形切屑形成机理的研究现状与发展[J].工具技术,2011,45(3):3-11.
    [166] Jena A., Gupta K.. Liquid extrusion techniques for pore structure evaluation ofnonwovens[J]. International Nonwovens Journal,2003:45-53.
    [167]王志,廖际常,韩学义.不锈钢纤维毡的孔径研究[J].稀有金属材料与工程,1997,26(4):49-52.
    [168] Wo S., Xie X., Morrow N.R.. A statistical model of apparent pore size distribution anddrainage capillary pressure[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2001,187-188(31):449-457.
    [169] Wang H., Sweikart M.A., Turner J.A.. Stainless steel as bipolar plate material for polymerelectrolyte membrane fuel cells[J]. Journal of Power Sources,2003,115(2):243-251.
    [170] Tawfik H., Hung Y., Mahajan D.. Metal bipolar plates for PEM fuel cell—A review[J].Journal of Power Sources,2007,163(2):755-767.
    [171] Hsieh S.S., Huang C.F., Feng C.L.. A novel design and micro-fabrication for copper (Cu)electroforming bipolar plates[J]. Micron,2008,39(3):263-268.
    [172] Jaouen F., Haasl S., Wijngaart W.V.D., et al. Adhesive copper films for an air-breathingpolymer electrolyte fuel cell[J]. Journal of Power Sources,2005,144(1):113-121.
    [173] Nikam V.V., Reddy R.G.. Corrosion studies of a copper–beryllium alloy in a simulatedpolymer electrolyte membrane fuel cell environment[J]. Journal of Power Sources,2005,152(1):146-155.
    [174] Nikam V.V., Reddy R.G.. Copper alloy bipolar plates for polymer electrolyte membranefuel cell[J]. Electrochimica Acta,2006,51(28):6338-6345.
    [175] Nikam V.V., Reddy R.G.. Corrugated bipolar sheets as fuel distributors in PEMFC[J].International Journal of Hydrogen Energy,2006,31(13):1863-1873.
    [176] Lee H.Y., Lee S.H., Kim J.H., et al. Thermally nitrided Cu–5.3Cr alloy for application asmetallic separators in PEMFCs[J]. International Journal of Hydrogen Energy,2008,33(15):4171-4177.
    [177] Shams El Din A.M., El Dahshan M.E., Taj El Din A.M.. Dissolution of copper andcopper-nickel alloys in aerated dilute HCl solutions[J]. Desalination,2000,130(1):89-97.
    [178] Scott K., Taama W.M., Argyropoulos P., et al. The impact of mass transport and methanolcrossover on the direct methanol fuel cell[J]. Journal of Power Sources,1999,83(1-2):204-216.
    [179] Qi Z., Kaufman A.. Open circuit voltage and methanol crossover in DMFCs[J]. Journal ofPower Sources,2002,110(1):177-185.
    [180] Barragán V.M., Heinzel A.. Estimation of the membrane methanol diffusion coefficientfrom open circuit voltage measurements in a direct methanol fuel cell[J]. Journal of PowerSources,2002,104(1):66-72.
    [181] Sandhu S.S., Crowther R.O., Krishnan S.C., et al. Direct methanol polymer electrolytefuel cell modeling: reversible open-circuit voltage and species flux equations[J].Electrochimica Acta,2003,48(14-16):2295-2303.
    [182] Ye Q., Zhao T.S., Liu J.G.. Effect of transient hydrogen evolution/oxidation reactions onthe OCV of direct methanol fuel cells[J]. Electrochemical and Solid-State Letters,2005,8(10): A549-A553.
    [183] Ye Q., Zhao T.S., Yang H., et al. Electrochemical reactions in a DMFC under open-circuitconditions[J]. Electrochemical and Solid-State Letters,2005,8(1): A52-A54.
    [184] Mann R.F., Amphlett J.C., Peppley B.A., et al. Application of Butler–Volmer equations inthe modelling of activation polarization for PEM fuel cells[J]. Journal of Power Sources,2006,161(2):775-781.
    [185] Zhang J., Yin G.P., Wang Z.B., et al. Effects of hot pressing conditions on theperformances of MEAs for direct methanol fuel cells[J]. Journal of Power Sources,2007,165(1):73-81.
    [186] Argyropoulos P., Scott K., Taama W.M.. Dynamic response of the direct methanol fuel cellunder variable load conditions[J]. Journal of Power Sources,2000,87(1-2):153-161.
    [187] Yang W.W., Zhao T.S.. A transient two-phase mass transport model for liquid feed directmethanol fuel cells[J]. Journal of Power Sources,2008,185(2):1131-1140.
    [188] Kallo J., Kamara J., Lehnert W., et al. Cell voltage transients of a gas-fed direct methanolfuel cell[J]. Journal of Power Sources,2004,127(1-2):181-186.
    [189] Argyropoulos P., Scott K., Taama W.M.. The effect of operating conditions on the dynamicresponse of the direct methanol fuel cell[J]. Electrochimica Acta,2000,45(12):1983-1998.
    [190] Yoo J.H., Choi H.G., Nam J.D., et al. Dynamic behaviour of5-W direct methanol fuel cellstack[J]. Journal of Power Sources,2006,158(1):13-17.
    [191] Schultz T., Krewer U., Sundmacher K.. Impact of electrode kinetics on the dynamicresponse of a DMFC to change of methanol feed concentration[J]. Journal of PowerSources,2007,165(1):138-151.
    [192] Wang M., Guo H., Ma C.. Dynamic characteristics of a direct methanol fuel cell[J].Journal of Fuel Cell Science and Technology-Transactions of the ASME,2006,3(2):202-207.
    [193] Chen C.Y., Yang P.. Performance of an air-breathing direct methanol fuel cell[J]. Journalof Power Sources,2003,123(1):37-42.
    [194] Xiao B., Bahrami H., Faghri A.. Analysis of heat and mass transport in a miniature passiveand semi passive liquid-feed direct methanol fuel cell[J]. Journal of Power Sources,2010,195(8):2248-2259.
    [195] Bae B., Kho B.K., Lim T.H., et al. Performance evaluation of passive DMFC singlecells[J]. Journal of Power Sources,2006,158(2):1256-1261.
    [196]刘丹.质子交换膜力学性能研究[D].天津:天津大学,2010.
    [197] Yu E.H., Scott K.. Development of direct methanol alkaline fuel cells using anionexchange membranes[J]. Journal of Power Sources,2004,137(2):248-256.
    [198] Abdelkareem M.A., Yoshitoshi T., Tsujiguchi T., et al. Vertical operation of passive directmethanol fuel cell employing a porous carbon plate[J]. Journal of Power Sources,2010,195(7):1821-1828

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700