被动式直接甲醇燃料电池动态响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是整个世界发展和经济增长的最基本的驱动力,是人类赖以生存的基础。当今社会能源结构以化石燃料为主,它们都是不可再生的一次能源,储量有限。人类在享受这些能源带来的经济发展、科技进步等利益的同时,也遇到一系列无法避免的能源安全挑战,能源短缺、资源争夺以及过度使用能源造成的环境污染等问题威胁着人类的生存与发展。如果没有新型能源动力,世界将从目前的能源短缺很快走向能源枯竭,因此开发和利用可再生、清洁高效的新能源动力技术刻不容缓。燃料电池正是以其可再生、高效和清洁等特点为人们带来了曙光。
     被动式直接甲醇燃料电池(passive DMFC)具有体积小、重量轻、系统结构简单、燃料能量密度高、存储方便、安全性高、燃料更换方便等许多优点,使其在小型移动电源(如手机、数码相机、笔记本电脑等)领域有独特的优势,受到人们极大的关注,被认为是最有可能实现商业化应用的燃料电池。
     本论文首先介绍了被动式DMFC的制作方法,然后利用自行设计的实验台对其进行性能测试,最后对被动式DMFC进行了一系列的动态性能实验,研究电池在加速、减速、瞬间加载/卸载、持续加载/卸载、脉冲等这些常见负载变化时的动态响应规律。主要研究成果如下:
     ①电池性能实验结果表明:刚制作的膜电极(MEA)经过用大电流放电活化可使其性能显著提高;由于浓差极化和甲醇渗透的共同作用,随着甲醇浓度的增加,电池功率密度先上升后下降,在甲醇浓度为4 mol/L时电池性能最佳;由于甲醇渗透的影响,燃料罐中注入甲醇后电池温度会先迅速升高然后趋于平缓。
     ②加载/卸载循环中电池的电压响应表现为加载时前三个周期电压差别不大,随后出现先增加后减小的趋势;卸载时电池电压都会出现一个远高于稳定开路电压的峰值。随着加载/卸载循环次数的增加,电池电压峰值和开路电压峰值均逐渐增加。
     ③加载/卸载循环中卸载时间的长短对电池的电压响应影响较大。卸载时间较短,加载时产生的液态水无法完全通过蒸发排除,这将造成液态水在阴极表面的累积,阻碍阴极氧气的传质,从而对后续的放电过程造成影响。
     ④在梯形加载的恒电流段,电池的电压响应比加载/卸载循环中的恒电流段要稳定。
     ⑤在阶梯加载方式中,同一电流密度对应的电压响应在电流密度上升阶段要低于下降阶段。
     ⑥电流以脉冲的方式加载时,电压响应在一定范围内波动,并且脉冲频率越大电压响应波动范围越大。高频脉冲加载时,以脉冲加载的时间加权平均电流密度作为加载电流与脉冲加载的电压响应非常接近。
Energy plays a critical role in the world's economic development and civilization of the world. Nowadays, Fossil fuels (coal, oil, gas) are still the predominant energy source. While enjoying the economic growth and technology improvement brought by energy, we encountered series of problems, such as shortage of energy, Fig.hting for energy and overusing, which threaten our human being. If there were no new energy sources, the existing sources would be exhausted. Therefore it is urgent to develop a clean and efficient energy technology. A fuel cell, by the nature of its operating principles, is efficient, extracting more electricity from a fuel than combustion based technologies, and thereby have received widespread attention allover the world. However, the engineering work needed to make this practical is still at the research and development stage.
     Passive air-breathing DMFCs, which are considered as the most potential for commercialization, have attracted much attention and regarded as a possible candidate for the power source for portable electronic devices (such as mobile phone, camera and personal computer) due to its small volume, light weight, simple structure, high power density, convenience for storage, safety, easy for changing fuels.
     This thesis was divided into three parts: First, the fabricating process of a passive air-breathing DMFC was extensively investigated. Second, a self-design experimental system was used to optimize the operation conditions. Finally, the dynamic responses of the passive DMFC were studied under some usual loading modes such as acceleration, deceleration, transient loading/off loading, continuous loading/off loading and pulse. The main results are drawn as follow:
     ①It was found that the cell performance was substantially improved with an increase in methanol concentration; a maximum of power density of 12 mW/cm2 was achieved with 4.0 M methanol solution. The measurements indicated that the better performance with higher methanol concentrations was mainly attributed to the increase in the cell operating temperature caused by the exothermic reaction between permeated methanol and oxygen on the cathode. However, this effect became less pronounced due to the flooding of the cathode surface, and thereby leaded to a temperature plateau.
     ②The voltage response was similar in the first three loading cycle, then had a trend of increasing first and decreasing later. In the case of unloading, the open-circuit voltage (OCV) reached a peak, which was much higher than the steady values. In addition, it was found that the peak OCV increased with the loading/unloading cycle number.
     ③In loading/unloading cycle, the unloading time had great influence on the response of the passive DMFC. When the unloading time was relatively short, water produced in cathode cannot evaporate completely, causing water accumulation in cathode and the blockage of the oxygen mass transfer, and therefore affected the following charging processes.
     ④It was found that the voltage responses in the constant current part of rapeziform current loading is more steady than those of the transient loading/off loading.
     ⑤The dynamic responds of the DMFC showed different behaviors in step loading and step unloading.
     ⑥The voltage response of the passive DMFC fluctuated in a certain range under a loading of constant current plus high-frequence pulse. Moreover, the voltage reponse of the passive DMFC under a loading of constant current plus high-frequence pulse is similar with that of a loading with the weighted average current density using loading time of the pulse
引文
[1]黄镇江著.燃料电池及其应用[M].北京:电子工业出版社,2005.8.
    [2]陈志.直接甲醇质子交换膜燃料电池中阳极CO2去除及水热的综合管理[D].南京:东南大学,2006.
    [3]衣宝廉著.燃料电池——原理·技术·应用[M].北京:化学工业出版社,2003.
    [4]郑雪艳.直接甲醇燃料电池内阳极侧两相流动与传输特性[D].重庆:重庆大学,2007.
    [5]张亚.不同工况下PEM燃料电池性能研究[D].南京:南京航空航天大学,2007.
    [6]谢晋.质子交换膜燃料电池一(PEMFC)控料和管理系统的研究[D].上海:上海海事大学,2006.
    [7]康明艳.直接甲醇燃料电池的一维数学模型[D].天津:天津大学,2006.
    [8]朱小伟.被动式自呼吸直接甲醇燃料电池温度特性及可视化实验研究[D].重庆:重庆大学,2008.
    [9]卢婷利,梁国正,辛文利,李文锋.燃料电池质子交换膜的研究进展[J].化工新型材料,2002,30(4):9-12.
    [10]何燕,周震涛.燃料电池用质子交换膜的研究进展[J].电池,2002,32:168-170.
    [11]熊济时.质子交换膜燃料电池的流场结构优化与新型流场研究[D].武汉:武汉理工大学, 2006.
    [12]郭公毅著.燃料电池[M].北京:能源出版社,1984.
    [13]孙艳,苏伟,周理著.氢燃料[M].北京:化学工业出版社,2005.
    [14] Liu J,Barnett S A.Operation of anode-supported solid oxide fuel cells on methane and natural gas[J].Solid State Ionics,2003,158:11-16.
    [15] Estevam V S,Almir O N,T R R, et al.Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process[J].Journal of Power Sources,2004,137:17-23.
    [16] Wang H,Jusys Z,Behm R J.Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields[J].Journal of Physical Chemistry B,2004,108: 19413-19424.
    [17]刘凤君著.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2005.
    [18]方波.微型燃料电池便携设备的持续动力源[R].慧聪电子元器件商务网.2003, 10.
    [19] Blum A,et al.Water–neutral micro direct-methanol fuel cell(DMFC)for portable applications[J].Journal of Power Sources,2003,117(1–2):22–25.
    [20] Wang Z H,Wang C Y,Chen K S,Two–phase flow and transport in the air cathode of protonexchange membrane fuel cells[J].Journal of Power Sources,2001,94(1):40-50.
    [21] Kamarudin S K,Daud W R W,Ho S L,et al.Overview on the challenges and developments of micro-direct methanol fuel cells(DMFC)[J].Journal of Power Sources,2007,163(2):743-754.
    [22] Besmann,Theodore M,Burchell,et al.Bipolar plate/diffuser for a proton exchange membrane fuel cel[P].US,6171720,2001.01.09.
    [23]詹姆斯,拉米尼著,朱红译.燃料电池系统—原理.设计.应用[M].北京:科学出版社,2006.2.
    [24] Yao Shi Chune,Tang Xu Dong,Hsieh Cheng Chieh,et al.Micro–electro–mechanical systems (MEMS)–based micro–scale direct methanol fuel cell development[J].Energy,2006,31(5): 636–649.
    [25] Sun G Q,Wang J T,Savinell R F.Iron(III)tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells[J].Journal of Applied Electrochemistry,1998,28(10):1087-1093.
    [26] Wei Z D,Chan S H. [J].J Electroanal Chem,2004,569(1):23– 33.
    [27] Wilson M S,Gottesfeld S.Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J].J Appl-electrochem,1992: 22:1– 7.
    [28] Wei Z B, Wang S L,Yi B L,et al. Influence of electrode structure on the performance of a direct methanol fuel cell[J].Journal of Power Sources,2002,106(1-2):364– 369.
    [29] Taylor E J,Anderson E B,Vilambi N R K.Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells[J].Electrochem. Soc.,1992, 139:L45-L46.
    [30]刘建国.直接甲醇燃料电池结构与性能研究[D].大连:大连化学物理研究所,2004.
    [31] Robert G H..Fuel cell[ P].USP,4 673 624,1987.06.16.
    [32] Robert G H.Micro mirror photovoltaic cells[ P].USP,5 482 568 , 1996.01.09:2.
    [33] Robert G H.Surface replica fuel cell[ P].USP,5 631 099,1997.05.20.
    [34]宋文生,王宇新,张玉清.DMFC研究进展及影响性能的主要因素[J].拖拉机与农用运输车,2006,01-0052-04.
    [35]于景荣,衣宝廉,张华民,等.微型燃料电池的研究与发展[J].电源技术,2004,28(8): 515– 519.
    [36]魏昭彬.刘建国.乔亚光,等.直接甲醇燃料电池性能[J].电源技术,2000,7(2):228– 233.
    [37] P. Argyropoulos,K. Scott,W.M. Taama.Pressure drop modelling for liquid feed direct methanol fuel cells Part II[J]. Model based parametric analysis Chemical EngineeringJournal,1999,73:229-245.
    [38]张军,许莉,王宇新.液体进料直接甲醇燃料电池的电化学性能[J].电源技术,2003,27(4):355– 359.
    [39] Jiabin Ge,Hongtan Liu.Experimental studies of a direct methanol fuel cell [J].Journal of Power Sources,2005,142:56–69.
    [40]李建玲,毛宗强,徐景明.直接甲醇燃料电池性能研究[J].电池,2002,32(2):72-74.
    [41] Kazuyoshi Furukawa,Keiichi Okajima,Masao Sudoh. Structural control and impedance analysis of cathode[J].Journal of Power Sources,2005,139: 9-14.
    [42] Sharon C,Thomas, Xiaoming Ren,et al.Piotr Zelenay Electrochimica Acta,2002:47: 3741– 3748
    [43] Prabhuram J,Zhao T S,Yang H.Methanol adsorbates on the DMFC cathode and their effect on the cell performance[J].Journal of Electroanalytical Chemistry,2005,578:105–112.
    [44] Paganin V A,Sitta E,Iwasita T et al. Methanol crossover effect on the cathode potential of a direct PEM fuel cell[J].Journal of Applied Electrochemistry,2005,35:1239– 1243.
    [45] Argyropoulos P,Scott K,Taama W M.The effect of operating conditions on the dynamic response of the direct methanol fuel[J].Electrochimica Acta, 2000, 45;1983– 1998.
    [46] Argyropoulos P,Scott K,Taama W M.Dynamic response of the direct methanol fuel cell under variable load conditions[J].Journal of Power Sources,2000,87:153–161.
    [47] Argyropoulos P,Scott K,Taama W M.An investigation of scale-up on the response of the direct methanol[J].Journal of Applied Electrochemistry,2001,31:13– 24.
    [48]汪茂海,郭航,马重芳.温度对直接甲醇燃料电池动态性能的影响[J].工程热物理学报,2005,26(5):865– 867.
    [49]汪茂海,郭航,马重芳.运行参数对直接甲醇燃料电池动态响应的影响–甲醇溶液浓度和流量[J].电源技术,2005,29(5):269-273.
    [50]汪茂海,郭航,马重芳.运行参数对直接甲醇燃料电池动态响应的影响–电池温度,氧气压力和流量[J].电源技术,2005,29(6):406-409.
    [51]汪茂海,郭航,马重芳等.直接甲醇燃料电池动态性能的研究[J].中国电机工程学报,2005, 25(6):161– 165.
    [52] Jung-Han Yoo,Hoo-Gon Choi,Jae-Do Namb,et al.Dynamic behaviour of 5-W direct methanol fuel cell stack[J].Journal of Power Sources,2006,158:13–17.
    [53] Chang C L,Chen C Y,Sung C C,et al.Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources[J].Journal of Power Sources,2008,182:133–140
    [54] Yang W M,Chou S K,Shu C.Effect of current-collector structure on performance of passivemicro direct methanol fuel cell[J].Journal of Power Sources,2007,164(2):549– 554.
    [55] Scott K,Taama W M,Argyropoulos P.Material aspects of the liquid feed direct methanol fuel cell.[J].Appl Electrochem, 1998,,28:1389– 1397.
    [56] Qi Z, Kaufman A. Activation of low temperature PEM fuel cells[J]. Journal Power Sources, 2002, 111: 181-184.
    [57] Chen R , Zhao T S . Performance characterization of passive direct methanol fuel cells[J].Journal of Power Sources,2007,167::455– 460.
    [58] Chen R , Zhao T S . Porous current collectors for passive direct methanol fuel cells[J].Electrochimica Acta,2007,52:4317– 4324.
    [59] Kim D,CHO E A,HONG S A,et al.Recent progress in passive direct methanol fuel cells at KIST[J].Journal of Power Sources,2004,130(1-2):172– 177.
    [60] Chen R , Zhao T S . Performance characterization of passive direct methanol fuel cells[J].Journal of Power Sources,2007,167:455– 460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700