用于小型燃料电池内部参数测量的瞬态热流计实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型燃料电池具有能量密度高、结构简单、清洁无污染等优点,有望成为下一代小型电子设备的电源。燃料电池中反应物的浓度、温度等参数对电池的性能、效率和燃料利用率等均有重要的影响。其中,温度在电池性能的提高上起着不可替代的作用,影响催化剂的活性、膜的含水量、传质以及电池的热管理等,因此获得燃料电池内部的温度和热流分布对提高电池的性能,改进电池的结构以及电池的热模拟有重要的指导意义。
     目前,国内外已经有关于运行中燃料电池内部温度分布的测试方法,但是薄膜传感器由于体积小、响应快、应用范围广等将是微小型燃料电池内部温度分布测量最具发展前景的替代品。随着燃料电池的微小型化,需要掌握电池内部电化学反应的热量收支情况,迄今为止,国内外还没有关于燃料电池内部热流密度分布直接测试方法的公开文献报道。因此,本文根据微小型燃料电池的特殊结构以及燃料电池内部热流的瞬变性,研制出一种响应速度快、灵敏度高、体积小的薄膜传感器。
     为了测量微小型燃料电池内部的温度和热流,选用边长为8mm,厚度为0.1mm的二氧化硅绝缘基片以及相同尺寸的石墨和不锈钢作为薄膜传感器的测头基片,根据金属薄膜的热敏性,选择铜-镍或钴-锑作为传感器的热电极材料。通过在绝缘基片上蒸镀0.08~0.09μm厚的铜-镍或钴-锑薄膜热电堆进行瞬变温度的测量;在0.15μm厚的热阻层两侧蒸镀0.08~0.09μm厚的铜-镍或钴-锑热电堆进行瞬变热流的测量。采用不锈钢或石墨作为基片时,首先要在基片上蒸镀0.1~0.15μm厚的二氧化硅绝缘层。
     利用本文的传导式标定系统对薄膜传感器测头进行了静态标定和动态响应测试。通过实验得出,本文研制的薄膜传感器在响应时间、应用范围和测头尺寸上存在着一定的优势,能够满足燃料电池微小空间内的瞬变温度和热流测量的需求。
     最后,本文利用自制的薄膜传感器进行了动态响应性能测试,验证了传感器对瞬变温度和热流的响应能力以及测试系统的可靠性。
Small fuel cells are one of the most promising candidates for the next generation power sources of the miniature electronic devices due to their high energy density, simple structure, clean and so on. It is essential to control the parameters, such as reactants concentration and temperature, for they have important influence on the performance, efficiency and fuel utilization of the micro fuel cells. Of which, temperature plays an important role in achieving high performance of the fuel cells because it greatly affects the activity of catalyst, dehydration of polymer membrane, mass transfer and heat management of fuel cells. Therefore, getting the temperature distribution inside the fuel cells has guiding significance in achieving high performance, modulating the structure, modeling and simulation.
     To date, several studies have been conducted in order to monitor the temperature variations inside micro fuel cells, but thin film thermocouples are the most promising candidates among various types of temperature sensors for measuring temperature inside a operating fuel cell because of their small size, fast response and widely application range.
     With the miniaturization of fuel cells, the heat generated from electrochemical reaction inside the cells need to be mastered. There has not publicly reported domestic and abroad about the direct testing methods on the heat flux density inside fuel cells. Therefore, according to the special structure and the transient properties of the heat flux inside the fuel cells, this paper developed a thin-film sensor with the merits of fast response, high sensitivity and small size.
     In order to measure the temperature and heat flux inside the micro fuel cells, choosing the insulating silicon dioxide substrate with length of 8mm, width of 8mm, thickness of 0.1mm and the same size of graphite and stainless steel as the sensors substrate, according to the heat-sensitive of the metal film, select the Cu-Ni or Co-Sb as the thermal electrode materials for the thin film sensors. By evaporate thickness of 0.08~0.09μm Cu-Ni or Co-Sb thin film thermopiles on the insulating substrates for temperature measurements; By depositing of 0.08~0.09μm thick Cu-Ni or Co-Sb thermopile on both sides of the 0.15μm thick thermal resistance layer for heat flux measurements. When use stainless steel or graphite as the substrate, we need to deposit silicon dioxide insulation layer with the thickness of 0.1~0.15μm on the substrate first.
     The thin film sensors are calibrated and tested using this conduction calibration system. The experiment results proved that the thin film sensors have some advantages in response speed, application range and dimensions, which can satisfy the requirement of transient temperature and heat flux measurement inside the micro space of the fuel cells.
     Finally, dynamic response characteristics of the thin film sensors are tested, the response ability to transient heat flux change of the sensors and the feasibility of the testing system are verified.
引文
1衣宝廉.燃料电池原理、技术、应用.化学工业出版社, 2003: 1~3
    2曹殿学,王贵领,吕艳卓等.燃料电池系统.北京航空航天大学出版社, 2009: 1~2
    3王晓红,谢克文,姜英琪,钟凌燕,刘理天.硅基微型直接甲醇燃料电池的研究.半导体学报. 2006, 156(7): 1437~1441
    4 C. W. Wong, T. S. Zhao, Q. Ye, J. G. Liu. Experimental investigations of the anode flow field of a micro direct methanol fuel cell. J. of Power Sources. 2006, 155(2): 291~296
    5汤小川,张宇峰,张博,王喜莲,刘晓为.基于MEMS技术的微型直接甲醇燃料电池的设计与制作.纳米技术与精密工程. 2009, 7(1): 76~80
    6 Y. Q. Jiang, X. H. Wang, L. Y. Zhong, L. T. Liu. Air-breathing micro direct methanol fuel cell with 3D KOH-etched cathode structure. Chinese Journal of Semiconductors. 2006, 27(3): 478~481
    7 M. Broussely, G. Archdale. Li-ion batteries and portable power source prospects for the next 5-10 years. J. of Power Sources. 2004, 136(2): 386~394
    8朱小伟.被动式自呼吸直接甲醇燃料电池温度特性及可视化实验研究.重庆大学硕士论文. 2008: 16~43
    9 B. C. Bae, B. K. Kho, T. H. Lim, I. H. Oh, S. A. Hong, H. Y. Ha. Performance evaluation of passive DMFC single cells. J. of Power Sources. 2006, 158(2): 1256~1261
    10 G. Jewett, Z. Guo, A. Faghri. Water and air management systems for a passive direct methanol fuel cell. J. of Power Sources. 2007, 168(2): 434~446
    11 Q. Z. Lai, G. P. Yin, Z. B. Wang. Effect of anode current collector on the performance of passive direct methanol fuel cells. Internation Journal of Energy Research. 2009, 33(8): 719~727
    12吴晓晖.小型被动式直接甲醇燃料电池动态性能实验研究.北京工业大学硕士学位论文. 2009: 34~53
    13 S. Eccarius, F. Krause, K. Beard, C. Agert. Passively operated vapor-fed direct methanol fuel cells for portable applications. J. of Power Sources. 2008, 182(2): 565~579
    14 J. G. Liu, T. S. Zhao, Z. X. Liang, R. Chen. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J. of Power Sources. 2006, 153(1): 61~67
    15 C. Y. Lee, G. W. Wu, W. J. Hsieh. Fabrication of micro sensors on a flexible substrate. Sensors and Actuators A. 2008, 147(1): 173~176
    16 J. Yeom, R. S. Jayashree, C. Rastogi, M. A. Shannon, P. J. A. Kenis. Passive direct formic acid microfabricated fuel cells. J. of Power Sources. 2006, 160(2): 1058~1064
    17 T. S. Zhao, R. Chen, W. W. Yang, C. Xu. Small direct methanol fuel cells with passive supply of reactants. J. of Power Sources. 2009, 191(2): 185~202
    18 H. Uehara, S. Morishita, A. Kamitani, H. Onishi, H. Kotaki. Fuel cell and CO2self~exchange system with micro fluid channels for a micro direct methanol fuel cell. In: Proceeding of 21st IEEE International Conference on Micro Electro Mechanical Systems, January, 2008, Tucson, USA: 956~959
    19 C. H. Lee, C. H. Parka, S. Y. Leea, B. O. Jungb, Y. M. Leea. Passive DMFC system using a proton conductive hydrocarbon membrane. Desalination. 2008, 233(1-3): 210~217
    20 V. Baglio, A. Stassi, F. V. Matera, A. D. Blasi, V. Antonucci, A .S. Arico. Optimization of properties and operating parameters of a passive DMFC mini-stack at ambient temperature. J. of Power Sources. 2008, 180(2): 797~802
    21 Q. Z. Lai, G. P. Yin, Z. B. Wang, C. Y. Du, P. J. Zuo, X. Q. Cheng. Influence of Methanol Crossover on the Fuel Utilization of Passive Direct Methanol Fuel Cell. Fuel Cells. 2008, 8(6): 399~403
    22 J. P. Esquivel, N. Sabate, J. Santander, N. Torres, C. Cane. Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsyst Technol. 2008, 14(4-5): 535~541
    23 R. Chen, T. S. Zhao, J. G. Liu. Effect of cell orientation on the performance of passive direct methanol fuel cells. J. of Power Sources. 2006, 157(1): 351~357
    24裴媛.小型全被动式直接甲醇燃料电池性能实验研究.北京工业大学硕士学位论文. 2010: 45~51
    25 R. Chen, T. S. Zhao. Performance characterization of passive direct methanol fuel cells. J. of Power Sources. 2007, 167(2): 455~460
    26 Z. Guo, A. Faghri, Miniature DMFCs with passive thermal-fluids management system. J. of Power Sources. 2006, 160(2): 1142~1155
    27 N. Sabate, J. P. Esquivel, J. Santander, N. Torres, I. Gràcia, P. Ivanov, L. Fonseca, E. Figueras and C. Cané. Passive Direct Methanol Fuel Cells in Silicon Technology. J. of New Materials for Electrochemical Systems. 2008, 11(2): 143~146
    28 W. M. Yang, S. K. Choub, C. Shu. Effect of current-collector structure on performance of passive micro direct methanol fuel cell. J. of Power Sources. 2007, 164(2): 549~554
    29 J. G. Liu, T. S. Zhao, R. Chen, C. W. Wong, The effect of methanol concentration on the performance of a passive DMFC. Electrochemistry Communications. 2005, 7(3): 288~294
    30 P. C. Lin, B. J. Y. Park, M. J. Madou. Development and characterization of a miniature PEM fuel cell stack with carbon bipolar plates. J. of Power Sources. 2008, 176(1): 207~214
    31 T. Yuan, Z. Q. Zou, M. Chen, Z. L. Li, B. J. Xia, H. Yang. New anodic diffusive layer for passive micro-direct methanol fuel cell. J. of Power Sources. 2009, 192(2): 423~428
    32 M. H. Wang, H. Guo, C. F. Ma, Y. E. Fang, Y. U. Jian, X. Liu, Y. Wang, C. Y. Wang. Temperature Measurement Technologies and Their Application in the Research of Fuel Cells. 1st International Conference on Fuel Cell Science. Engineering and Technology, April, 2003, Rochester, NY: 90~100
    33 K. Inman, X. Wang, B. Sangeorzan. Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry. J. of PowerSources. 2010, 195(15): 4753~4757
    34 C. Y. Lee, W. Y. Fan, W. J. Hsieh. In-situ Monitoring of internal local temperature and voltage of proton exchange membrane fuel cells. Sensors. 2010, 10(7): 6395~6405
    35 C. Y. Lee, C. H. Lin. A novel integration approach for combining the micro thermal sensor and stainless steel foil as gas diffusion layer in micro fuel cell. Renewable Energy. 2010, 35(4): 759~762
    36 H. Choi, X. C. Li. Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel. Sensors and Actuators A: Physical. 2007, 136(1): 118~124
    37燕希强,侯名,孙立言,徐洪峰,侯中军,明平文,衣宝廉. CN101158607A, 2008-4-9
    38 A. M. Abdullah, T. Okajima, A.M. Mohammad, F. Kitamura, T. Ohsaka. Temperature gradients measurements within a segmented H2/air PEM fuel cell. J. of Power Sources. 2007, 172(1): 209~214
    39 P. J. S. Vie. Characterization and optimization of the polymer electrolyte fuel cell. Ph.D. Thesis, NTN University, Trondheim, Norway, 2002: 15~33
    40 M. Wilkinson, M. Blanco, E. Gu, J. J. Martin, D. Wilkinson, J. J. Zhang, H. Wang. In situ experimental technique for measurement of temperature and current distribution in proton exchange membrane fuel cells. Electrochemical and Solid-State Letters. 2006, 9(11): A507~A511
    41 M. M. Mench, D. J. Burford, T. W. Davis. In situ temperature disribution measurement in an opreating polymer electrolyte fuel cell. Proceedings of IMECE’03 2003 ASME International Mechanical Engineering Congress & Exposition, 11, 2003, Washington, D.C.
    42 S. T. Ali, J. Leb?k, L. P. Nielsen, C. Mathiasen, P. M?ller, S. K. K?r. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell. J. of Power Sources. 2010, 195(15): 4835~4841
    43 A. V. Pattekar, M. V. Kothare. A Microreactor for Hydrogen Production in Micro Fuel Cell Applications. J. of Micro Electro-mechanical Systems, 2004, 13(1): 7~18
    44 S. He, M. M. Mench, S. Tadigadapa. Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell. Sensors and Actuators A. 2006, 125(2): 170~177
    45 C. Y. Lee, R. D. Huang, C. W. Chuang. Novel integration approach for in situ monitoring of temperature in micro-direct methanol fuel cell. Japanese Journal of Applied Physics. 2007, 46(10A): 6911~6914
    46 C. Y. Lee, S. J. Lee, C. L. Hsieh. Application of micro sensors on diagnosis of micro fuel cells. Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 1, 2007 Bangkok, Thailand: 434~437
    47 C. Y. Lee, G. W. Wu, C. L. Hsieh. In situ diagnosis of micrometallic proton exchange membrane fuel cells using microsensors. J. of Power Sources. 2007, 172(1): 363~367
    48 C. Y. Lee, W. J. Hsieh, G. W. Wu. Embedded flexible micro-sensors in MEA for measuring temperature and humidity in a micro-fuel cell. J. of Power Sources. 2008, 181(2): 237~243
    49 Q. Zhang, X. H. Wang, Y. M. Zhu, Y. A. Zhou, X. P. Qiu, L. T. Liu. Optimized temperature control system integrated into a micro direct methanol fuel cell for extreme environments. J. of Power Sources. 2009, 192(2): 494~501
    50裴媛,郭航,叶芳,马重芳.燃料电池的微尺度测试技术.现代化工. 2010, 30(3): 87~92
    51 M. Adzic, M. V. Heitor, D. Santos, Design of dedicated instrumentation for temperature distribution measurements in solid oxide fuel cells. J. of Applied Electrochemistry. 1997, 27(12): 1355~1361
    52 P. J. S. Vie, S. Kjelstrup. Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta. 2004, 49(7): 1069~1077
    53 T. Fabian, J. D. Posner, R. O’Hayre, S. W. Cha, J. K. Eaton, F. B. Prinz, J. G. Santiago. The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell. J. of Power Sources. 2006, 161(1): 168~182
    54 G. Maranzana, O. Lottin, T.t Colinart, S. Chupin, S. Didierjean. A multi-instrumented polymer exchange membrane fuel cell: Observation of the in-plane non-homogeneities. J. of Power Sources. 2008, 180(2): 748~754
    55 S. J. Andreasen, S. K. K?r. Dynamic model of the high temperature proton exchange membrane fuel cell stack temperature. J. of Fuel Cell Science and Technology. 2009, 6(4): 0410061~8
    56 C. Y. Wen, G. W. Huang. Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell. J. of Power Sources. 2008, 178 (1):132~140
    57 J. Leb?k, S. T. Ali, P. M?ller, C. Mathiasen, L. P. Nielsen, S. K. K?r. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell. International Journal of Hydrogen Energy. 2010, 35(18): 9943~9953
    58 J. Scholta, M. Messerschmidt, L. J?issen, Ch. Hartnig. Externally cooled high temperature polymer electrolyte membrane fuel cell stack. J. of Power Sources. 2009, 190(1): 83~85
    59 C. Y. Lee, F. B. Weng, C. H. Cheng, H. R. Shiu, S. P. Jung, W. C. Chang, P. C. Chan, W. T. Chen, C. J. Lee. Use of flexible micro-temperature sensor to determine temperature in situ and to simulate a proton exchange membrane fuel cell. J. of Power Sources. 2011, 196(1): 228~234
    60 K. Jiao, I. E. Alaefour, G. Karimi, X. G. Li. Simultaneous measurement of current and temperature distributionsin a proton exchange membrane fuel cell during cold start processes. Electrochimica Acta, 2011, 56(8): 2967~2982
    61 N. A. David, P. M. Wild, J. W. Hu, N. Djilali. In-fibre Bragg grating sensors for distributed temperature measurement in a polymer electrolyte membrane fuel cell. J. of Power Sources.2009, 192(2): 376~380
    62 N. A. David, P. M. Wild, J. Jensen, T. Navessin, N. Djilali. Simultaneous in situ measurement of temperature and relative humidity in a PEMFC using optical fiber sensors. J. of The Electrochemical Society. 2010, 157(8): B1173~B1179
    63 G. Hinds, M. Stevens, J. Wilkinson, M. D. Podesta, S. Bell. Novel in situ measurements of relative humidity in a polymer electrolyte membrane fuel cell. J. of Power Sources. 2009, 186(1): 52~57
    64 S. S H, K. M C. Channel and rib geometric scale effects of flow field plates on the performance and transient thermal behavior of a micro-PEM fuel cell. J. of Power Sources, 2007, 173(1): 222~232
    65汪茂海,郭航,马重芳,刘璇,俞坚,王朝阳.质子交换膜燃料电池表面温度分布的测量.电源技术. 2004, 28(12): 764~766
    66 A. Hakenjos, C. Hebling. Spatially resolved measurement of PEM fuel cells. J. of Power Sources. 2005, 145(2): 307~311
    67 H. Guo, G. Iqbal, B. S. Kang. In situ measurement of surface deformation and temperature of SOFC button cell as a function of current density. Proceedings of ASME 2009 Seventh International Fuel Cell Science, Engineering and Technology Conference 6, 2009, Newport Beach, California, USA:1~6
    68 H. Guo, G. Iqbal, B. S. Kang. Development of an in situ surface deformation and temperature measurement technique for a solid oxide fuel cell button cell. International Journal of Applied Ceramic Technology. 2010, 7(1): 55~62
    69 G. Ju, K. Reifsnider, X. Huang. Infrared thermography and thermoelectrical study of a solid oxide fuel cell. J. of Fuel Cell Science and Technology. 2008, 5(3): 0310061~6
    70 V. Lawlor, G. Zauner, C. Hochenauer, A. Mariani, S. Griesser, J. G. Carton, K. Klein, S. Kuehn, A. G. Olabi, S. Cordiner, D. Meissner, G. Buchinger. The use of a high temperature wind tunnel for MT-SOFC testing-part I: detailed experimental temperature measurement of an MT-SOFC Using an avant-garde high temperature wind tunnel and various measurement techniques. J. of Fuel Cell Science and Technology. 2010, 7(6): 0610161~7
    71 Y. H. Du, C. Finnerty, J. Jiang. Thermal stability of portable microtubular SOFCs and stacks. J. of The Electrochemical Society. 2008, 155(9): B972~B977
    72 D. J. L. Brett, P. Aguiar, R. Clague, A. J. Marquis, S. Sch?ttl, R. Simpson, N. P. Brandon. Application of infrared thermal imaging to the study of pellet solid oxide fuel cells. J. of Power Sources. 2007, 166(1): 112~119
    73 M. B. Pomfret, D. A. Steinhurst, D. A. Kidwell, J. C. Owrutsky. Thermal imaging of solid oxide fuel cell anode processes. J. of Power Sources. 2010, 195(1): 257~262
    74 R. Shimoi, M. Masuda, K. Fushinobu, Y. Kozawa, K. Okazaki. Visualization of the membrane temperature field of a polymer electrolyte fuel cell. J. of Energy Resour.Technol. 2004, 126(4): 258~261
    75 A. Hakenjos, H. Muenter, U. Wittstadt, C. Hebling. A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding. J. of Power Sources. 2004, 131(1-2): 213~216
    76 M. H. Wang, H. Guo, C. F. Ma. Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed. J. of Power Sources. 2006, 157(1): 181~187
    77 S. Basu, M. W. Renfro, B. M. Cetegen. Spatially resolved optical measurements of water partial pressure and temperature in a PEM fuel cell under dynamic operating conditions, J. of Power Sources. 2006, 162(1): 286~293
    78 S. Hashimoto, H. Nishino, Y. Liu, K. Asano, M. Mori, Y. Funahashi, Y. Fujishiro. The electrochemical cell temperature estimation of micro-tubular SOFCs during the power generation. 2008, 181(2): 244~250
    79李超.微型薄膜瞬态热流计的研制.北京工业大学硕士学位论文. 2005: 3~10
    80 S. Polat, A. R. P. Van Heiningen and W. J. M. Douglas. Sensor for transient heat flux at a surface with throughflow. International Journal of Heat and Mass Transfer. 1993, 34(6): 1515~1523
    81 A. H. George, J. L. Smalley. An instrumented cylinder for the measurement of instantaneous local heat flux in high temperature fluidized beds. International Journal of Heat and Mass Transfer. 1991, 34(12): 3025~3036
    82 C. H. Kuo, A. K. Kulkarni. Analysis of heat flux measurement by circular foil gages in a Mixed convection/radiation environment. Proceedings of the 3rd ASME/JSME Thermal Engineering Joint Conference Part 5, March, 1991. ASME J. of Heat Transfer. 1991: 41~45
    83 M. Hayashi, A. Sakurai, S. Aso. A study of a multi-layered thin film heat transfer gauge and a new method of measuring heat transfer rate with it. Japan Society for Aeronautical and Space Sciences, Journal. 1985, 33(380): 525~531
    84 M. Hayashi, A. Sakurai, S. Aso. Measurement of heat-transfer coefficient in shock wave turbulent boundary layer interaction regions with a multi-layered thin film heat transfer gauge. Technology Reports of the Kyushu University. 1984, 57(4): 455~462
    85 J. M. Hager, J. P. Terrell, L. W. Langley, S. Onishi, T. E. Diller. Measurements with the heat flux microsensor. Proceeding of the 37th International Instrumentation Symposium. 1991, 37: 551~561
    86 G. J. Borell, T. E. Diller. A convection calibration method for local heat flux gages. J. of Heat Transfer. 1987, 109(5): 83~89
    87 E. Piccini, S. M. Guo, T. V. Jones. The Development of a new direct-heat-flux gauge for heat-transfer facilities. Measurement Science and Techonlogy. 2000, 4(11): 342~349
    88 J. M. Hager, S. Simmons, D. Smith, S. Onishi, L. W. Langley, T. E. Diller. Experimental performance of a heat flux microsensor. Transactions of the ASME. 1991, 113(2): 246~250
    89 D. G. Holmberg, T. E. Diller. High-frequency heat flux sensor calibration and modeling. J. of Fluids Engineering. 1995, 117(4): 659~664
    90杨素君,肖劲松,马重芳.微型瞬态薄膜热流计的研制.工程热物理学报. 2002, 23: 180~182
    91 G. Scheepers, R. M. Morris. Experimental study of heat transfer augmentation near the entrance to a film cooling hole in a turbine blade cooling passage. J. of Ournal of Turbomachinery Transactions of the ASME. 2009, 131(4): 044501~11
    92肖劲松,李超,郭航,等.微型薄膜瞬态热流计的研究与开发.北京工业大学学报, 2006, 32(12): 1116~1120
    93王诚,毛宗强,陈荣华.小型燃料电池的研究现状与应用前景分析.化学进展. 2006, 18(1): 30~35
    94刘晓为,张博,张宇峰,张鹏. MEMS微型燃料电池.化学进展. 2009, 21(9): 1980~1986
    95汪茂海,郭航,马重芳.运行参数对直接甲醇燃料电池动态响应的影响—Ⅰ.甲醇溶液浓度和流量.电源技术. 2005, 29(5): 269~273
    96 H. B. Zhao, J. Shen, J. J. Zhang, H. J. Wang, D. P. Wilkinson, C. E. Gua. Liquid methanol concentration sensors for direct methanol fuel cells. J. of Power Sources. 2006, 159(1): 626~636
    97 W. Sun, G. Q. Sun, W. Q. Yang, S. H. Yang, Q. Xin. A methanol concentration sensor using twin membrane electrode assemblies operated in pulsed mode for DMFC. J. of Power Sources, 2006, 162(3): 1115~1121
    98 S. Doerner, T. Schultz, T. Schneider, R. K. Sundmache, P. Hauptmann. Capacitive sensor for methanol concentration measurement in direct methanol fuel cells (DMFC). Proceedings of the IEEE Sensors. Vienna: 2004, 2: 639~641
    99 H. Dohle, J. Divisek, J. Mergel, H. F. Oetjen, C. Zingler, D. Stolten. Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell. J. of Power Sources, 2002, 105(2): 274~282
    100 J. S. Yang, J. H. Park, S. Kim, Y. T. Kim, Y. H. Kim. I–V characteristics of a methanol concentration sensor for direct methanol fuel cell (DMFC) by using catalyst electrode of Pt dots. Current Applied Physics, 2010, 10(2): 370~372
    101 J. S. Yang, J. H. Park, S. Kim, Y. T. Kim, K. Han. I–V characteristics of a methanol sensor for direct methanol fuel cell (DMFC) as a function of deposited platinum (Pt) thickness. Microelectronics Journal, 2008, 39(9): 1140~1143
    102 M. S. Lee, J. Sohn, J. Shim, W. M. Lee. Miniaturized electrochemical methanol sensor without gas diffusion backings. Sensors and Actuators B, 2007, 124(2): 323~328
    103 K. T. Jeng, W. M. Huang, C. C. Chien, N. Y. Hsu. A versatile electrochemical fuel sensor for direct membrane fuel cell applications. Sensors and Actuators B, 2007, 125(1): 278~283
    104 Z. Guo, A. J. Faghri. Thermal behavior of a novel micro-fuel cell-based methanol concentration sensor. Applied Thermal Engineering, 2008, 28(13): 1605~1613
    105 Y. J. Chiu, H. C. Lien. A strategy of estimating fuel concentration in a direct liquid-feed fuel cell system. J. of Power Sources, 2006, 159(2): 1162~1168
    106 J. Kondoh, S. Tabushi, Y. Matsui, S. Shiokawa. Development of methanol sensor using a shear horizontal surface acoustic wave device for a direct methanol fuel cell. Sensors and Actuators B, 2008, 129(2): 575~580
    107 X. M. Ren, S. Gottesfeld. Methanol sensor operated in a passive mode: US6488837B1, 2002-12-3
    108 S. Celik, M. D. Mat. Measurement and estimation of species distribution in a direct methanol fuel cell. Internatianl Journal of Hydrogen Energy, 2010, 35(5): 2151~2159
    109 T. J. Ha, J. H. Kim, H. I. Joh, S. K. Kim, G. Y. Moon, T. H. Lim, C. H. Han, H. Y. Ha. Sensor-less control of methanol concentration based on estimation of methanol consumption rates for direct methanol fuel cell systems. International Journal of Hydrogen Energy, 2008, 33(23): 7163~7171
    110 Y. G. Vlasov, S. S. Levichev, A. A. Kruchinin, B. J. Hwang. Spectroscopic study of dyes for pH and methanol sensing. Dyes and Pigments, 2009, 83(3): 381~384
    111 H. S. Shim, H. J. Ahn, T. Y. Seong, K. W. Park. Visualization of methanol concentration using the electrochromism of nickel oxide electrochemical and solid-state letters, 2005, 8(6): A277~A278
    112 M. M. Mench, Q. L. Dong, C. Y Wang. In situ water distribution measurmants in a polymer electrolyte fuel cell. J. of Power Sources, 2003, 124(1): 90~98
    113 D. J. Ludlow, C. M. Calebrese, S. H. Yu, C. S. Dannehy, D. L. Jacobson, D. S. Hussey, M. Arif, M. K. Jensen, G. A. Eisman. PEM fuel cell membrane hydration measurement by neutron imaging. J. of Power Sources, 2006, 162(1): 271~278
    114 D. Sparks, K. Kawaguchi, M. Yasuda, D. Riley, V. Cruz, N. Tran, A. Chimbayo, N. Najafi. Embedded MEMS-based concentration sensor for fuel cell and biofuel applications. Sensors and Actuators A, 2008, 145-146(SI): 9~13
    115 M. P. Gore, L. C. Mann. Density-based fuel indicator system for fuel cells: US6789421 B2, 2004-9-14
    116 D. R. Lide. Handbook of Chemistry and Physics. 85th ed. Boca Raton. CRC Press, 2004, 70~80
    117 Z. G. Qi, C. H. He, M. Hollett, A. Attia, K. Arthur. Reliable and fast-responding methanol concentration sensor with novel design. Electrochemical and Solid-State Letters, 2003, 6(5): A88~A90
    118 Z. Guo, Y. Cao. A passive fuel delivery system for portable direct methanol fuel cells. J. of Power Sources, 2004, 132(1-2): 86~91
    119 G. B. Altamont, R. S Hirsch. US 0157385A1, 2003
    120吴晓晖,郭航,叶芳,马重芳.硅材料在微型燃料电池中的应用.化学进展. 2009, 21(6): 1344~1348
    121 V. Saarinen, O. Himanen, T. Kallio, G. Sundholm, K. Kontturi. Current distribution measurements with a free-breathing direct methanol fuel cell using PVDF-g-PSSA andNafion117 membranes. J. of Power Sources. 2007, 163(2): 768~776
    122 S. S. Hsieh, Y. J. Huang. Measurements of current and water distribution for a micro-PEM fuel cell with different flow fields. J. of Power Sources. 2008, 183(1): 193~204
    123 H. Sun, G. S. Zhang, L. J. Guo, H. T. Liu. A novel technique for measuring current distributions in PEM fuel cells. J. of Power Sources. 2006, 158(1): 326~332
    124 R. J. Bellows, M. Y. Lin, M. Arif, A. K. Thompson, D. Jacobson. Neutron imaging technique for in situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells. J. of the Electrochemical Society. 1999, 146(3): 1099~1103
    125 D. S. Hussey, D. L. Jacobson, M. Arif, J. P. Owejan, J. J. Gagliardo, T. A. Trabold. Neutron images of the through~plane water distribution of an operating PEM fuel cell. J. of Power Sources. 2007, 172(1): 225~228
    126 A. Bazylak, D. Sinton, Z. S. Liu, N. Djilali. Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. J. of Power Sources. 2007, 163(2): 784~792
    127 S. Litster, D. Sinton, N. Djilali. Ex-situ visualization of liquid water transport in PEM fuel cell gas diffusion layers. J. of Power Sources. 2006, 154(1): 95~105
    128 C. Y. Lee, C. L. Hsieh, G. W. Wu. Novel method for measuring temperature distribution within fuel cell using microsensors. Japanese Journal of Applied Physics. 2007, 46(5A): 3155~3158
    129 C. Y. Lee, G. W. Wu, C. L. Hsieh. In situ diagnosis of micro metallic proton exchange membrane fuel cells using micro sensors. J. of Power Sources. 2007, 172(1): 363~367
    130 K. Shah, W. C. Shin, R. S. Besser. A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional micro fabrication techniques. Sensors and Actuators B. 2004, 97(2-3): 157~167
    131 A. V. Pattekar, M. V. Kothare. A microreactor for hydrogen production in micro fuel cell applications. J. of Micro Electromechanical Systems. 2004, 13(1): 7~18
    132 C. Weinmueller, N. Hotz, A. Mueller, D. Poulikako. On two-phase flow patterns and transition criteria in aqueous methanoland CO2 mixtures in adiabatic, rectangular microchannels. International Journal of Multiphase Flow. 2009, 35(8): 760~772
    133 S. Y. Yoon, J. W. Ross, M. M. Mench, K. V. Sharp. Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. J. of Power Sources. 2006, 160(2): 1017~1025
    134王银川.真空镀膜技术的现状及发展.现代仪器. 2000, 6: 1~4
    135 D. C. Chu, D. T. Bilir, R. F. Wpease,et a1. Thin film Nano thermocouple sensors for application in laser and electron beam irradiation. The 12th International Conference on Solid State Sensors, Actuators and Mierosystems, 2003: 1112~1115
    136李付国,黄吕权,解亚军等.薄膜热电偶动态特性研究.仪器仪表学报, 1996, 17(3): 316~318
    137 L. G. Ang, H. C. Zhou, D. E. Zhao. A study on the method of calibration for transient surface temperature detectors. Acta Armamentar II, 2001, 22(2): 263~265
    138刘裕光,姜恩永,刘明升等.对向靶溅射制备NiCr-NiSi薄膜热电偶的动态特性研究.真空科学与技术. 1995, 15(5): 317~320
    139钱兰,陈宁.薄膜热电偶动态响应特性的实验研究.内燃机的学报. 1998, 16(2): 251~253
    140曾其勇,孙宝元,徐静,贾颖,崔云先,邓新禄,徐军化.爆材料瞬态切削温度的NiCr/NiSi薄膜热电偶温度传感器的研制.机械工程学报. 2006, 42(3): 206~211
    141 Y. Heichal, S. Chandra, E. Bordatchev. A fast-response thin film thermocouple to measure rapid surface temperature changes. Experimental Thermal and Fluid Science, 2005, 30(2): 153~159
    142黄吕权,李付国.薄膜热电偶的技术特性研究.中国机械工程. 1996, 7(5): 34~36
    143 W. M. Pitts, J. R. Shields and BFRL/NIST, Calibration of Heat Gages for Forum Heat Flux Measurement Working Group Interlaboratry Comparison,U.S. Department of Commerce National Institute of Standards and Technology Gaithersburg, MD 20899, Report of Test FR4015, 2001
    144杨列宇,关文铎,顾卓明.材料表面薄膜技术.北京:人民交通出版社. 1991: 15~26
    145姜忠良,陈秀云.温度的测量与控制.清华大学出版社. 2005: 65
    146黄泽铣.热电偶原理及其检定.北京:中国计量出版社. 1993: 270~286
    147李宏顺,康忠新.表面薄膜热电偶动态响应的精确分析.小型内燃机, 1992, 21(1): 25~29
    148孙奉道.嵌入式薄膜热电偶测温刀具传感器的研制.大连理工大学硕士论文. 2008: 43~44
    149曾其勇.化爆材料动态切削温度的薄膜热电偶测温原理及传感器研制.大连理工大学博士论文. 2005: 76~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700