建筑蓄热与自然通风耦合作用下室内温度计算及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可持续发展战略的提出,建筑自然通风技术逐渐受到人们的重视。合理利用自然通风可改善建筑热环境、减少空调能耗。自然通风应用效果与建筑蓄热密切相关,不同的建筑蓄热能力将导致不同的室内温度。本文力求探讨建筑蓄热与自然通风的耦合关系,揭示建筑蓄热对自然通风室内温度波动的影响规律,其研究成果将为建筑材料的选取、自然通风系统的设计与控制策略的确定打下理论基础。
     建筑蓄热体可分为建筑外蓄热体和内蓄热体。外蓄热体即为建筑外围护结构,建筑外围护结构是室内环境与室外环境的联系纽带,人们对建筑外围护结构的研究着重在其对空调环境下负荷的影响,而自然通风环境下的围护结构作用则鲜有研究;建筑内蓄热体包括建筑内墙、内部家具等物体,一般情况下,可以认为内部蓄热体温度与室内空气相等,但当内部蓄热体不满足集总参数法时,则不能这样简化计算;此外,自然通风主要驱动力为热压和风压,当风压驱动时,我们可认为自然通风量为已知值,而当热压驱动时,室内温度、自然通风量呈非线性耦合关系,室内温度计算更为复杂。
     针对上述问题,本文主要开展了以下工作:
     (1)提出了自然通风建筑热压等效流量概念及计算方法。无论是热压驱动还是定风压驱动的自然通风,建筑室内温度均呈周期性变化,本文分析得到了等效流量计算公式。通过数值计算验证,利用该值可在一定误差范围内将热压驱动自然通风视作定流量自然通风处理,即可将自然通风量、室内温度非线性耦合问题线性处理,从而简化问题,缩短计算时间。
     (2)系统分析探讨了内外蓄热体导热系数、体积热容、面积等参数对自然通风房间室内温度的影响。将内外蓄热体视作有限板层,联合一维非稳态热传递方程与自然通风房间热平衡方程,通过数值计算方法对内外蓄热体以及流量、热源等对自然通风建筑室内温度的影响进行了计算分析。该分析结果有助于指导自然通风建筑设计。
     (3)提出了综合考虑建筑内外蓄热能力与自然通风的室内温度计算方法。引入谐波反应法,得到外墙内壁温度分布,并结合室内热平衡方程,计算得到了室内温度平均温度、衰减系数及延迟时间与内外蓄热体的关系式,其中描述内外蓄热体的参数分别为无量纲换热数λ和时间常数τ。利用该方法可较为简便地对内外蓄热体作用进行分析,计算自然通风房间室内温度、设计室内蓄热体。该方法还可扩展计算间歇供冷/制热房间响应时间,以及在考虑建筑蓄热情况时比较不同城市自然通风潜力。
     (4)提出了应用虚拟球法计算分析室内蓄热体作用的方法。对自然通风建筑室内温度计算模型进行改进,引入虚拟球法来计算内部蓄热体蓄热作用,联合外墙内壁温度分布及室内热平衡方程,最终得到了以虚拟球法模拟室内蓄热作用的自然通风建筑室内温度计算方法。该方法在综合考虑室内多种外形、多种材质、以及内部温度非均匀分布蓄热体的蓄热作用时相比其他方法更为准确。
     (5)提出了综合考虑建筑内外蓄热能力的夜间通风室内温度计算方法。在前述自然通风室内温度计算模型基础上,将夜间通风视为阶段性通风,提出了室内温度计算方法,并通过了实验验证。利用该方法系统分析了夜间通风时间、室内热源、夜间通风换气次数、外围护结构、室内蓄热质、昼夜温差对夜间通风效果的影响,并计算提出了夏季典型建筑应用夜间通风的得热极限及夜间通风最佳换气次数。该分析结果有助于指导夜间通风设计和应用。
With the direction of sustainable development, nowadays people in increasing numbers begin to notice the importance of natural ventilation. Applying the technology of natural ventilation can improve indoor thermal comfort, and reduce air-conditioning consumption. The role of natural ventilation is related close with thermal mass. The main focus of this paper is to study theoretically and numerically the coupling between ventilation and thermal mass in naturally ventilated building. The content is help to choosing building's material and designing or controlling natural ventilation.
     Thermal mass can be classified as external thermal mass and internal thermal mass. The external envelopes such as external walls and roofs belong to this category. They connect the outdoor environment and the indoor environment. Most of previous researchers focused on the impact of building envelopes on the heating/cooling loads of buildings assuming the indoor air temperature is constant, but few focused on the impact of it on natural ventilated building. Furniture, and internal wall are internal thermal mass. Usually, the temperature distribution of the internal thermal mass is assumed to be uniform and equal to the indoor air temperature, but the problem would be complicated if the elements are not meet the condition of lumped method. Moreover, natural ventilation can be induced by wind or stack force. When the buildings are ventilated by wind, the ventilation flow rate can be treated as given value. But when the buildings are ventilated by stack force, the ventilation flow rate has nonlinear relation with indoor air temperature. In view of these problems, following work are carried out in the paper.
     (1) Stack equivalent flow rate and its calculating method are presented. Temperature variation of indoor air in natural ventilated building is periodic whatever the power induced is constant wind pressure or stack effect pressure, so the problem of natural ventilation with stack effect pressure may be treated as ventilation with constant wind pressure. Indoor air temperature of natural ventilated building with stack effect can be calculated out easily by using stack equivalent flow rate.
     (2) By using numerical simulation method, the effects of external and internal thermal mass on decrement factor and time lag of indoor air temperature are analyzed, including thermal conductivity, volume heat capacity, area and depth etc. In the model, the heat transfer of all thermal mass are treated as one dimension unsteady heat transfer problem. The conclusions are help for natural ventilation's design.
     (3) On the base of harmonic response method and the temperature shift of interior side of external thermal mass, the indoor air temperature of natural ventilated building coupling with thermal mass is calculated. Heat transfer number and time constant represent the effect of external and internal thermal mass individually. By using the model, the effects of external and internal thermal mass on indoor air temperature are analyzed. Moreover, the response time of building with intermittent cooling/heating, and natural ventilation potential of different city can be calculated and analyzed by the model.
     (4) On the basis of previous model, virtual sphere is introduced in analyzing and calculating the effect of internal thermal mass in natural ventilated building. The method can receive more accurate results in considering the effect of internal thermal mass with various shapes, various materials, and uneven temperature.
     (5) Night ventilation is analyzed by the model as phase ventilation and the calculation method about indoor air temperature is presented. This method is validated by night ventilation experiment. The effect of ventilation time, internal heat gains, flow rate of night ventilation, thermal mass, and diurnal temperature range on efficiency of night ventilation are analyzed. The limit for heat gains in building with night ventilation and the optimal flow rate are pointed out. The conclusions are help for night ventilation's design and application.
引文
[1]江亿.我国建筑能耗趋势与节能重点.建设科技(建设部),2006,7:10-13,15
    [2]李兆坚,江亿.我国城镇住宅夏季空调能耗状况分析.暖通空调,2009,39(5):82-88
    [3]刘建龙,谭超毅,张国强.长沙市居民在不同室内环境中停留时间的调查研究.制冷空调与电力机械,2008,29(6):32-35
    [4]陈瑜.民用建筑工程室内空气污染原因讨论.科协论坛(下半月),2008,4: 93-94
    [5]王惠想,张伟捷.建筑空调能耗与城市热岛效应.河北建筑科技学院学报(自然科学版), 2004,21(1):23-27
    [6]屈睿瑰.暖通空调节能及CFC问题探讨.广西轻工业,2007,23(3):80-81
    [7]人民网.党的十七大报告谈加强能源资源节约和生态环境保护. finance.people.com.cn/GB/8215/105264/105265/6385925.html,2007-10-16
    [8]中央政府门户网站.胡锦涛:走可持续发展道路,加强应对气候变化能力建设. 202.123.110.3/test/2009-02/25/content_1242081.htm,2009-2-25
    [9]叶耀先.中国可持续发展研究会1999年学术年会大会学术报告专辑:未来的建筑和二十一世纪住宅.cssd.acca21.org.cn/99xueshu03.html.2009-7-20
    [10] P. La Roche, M. Milne. Effects of window size and thermal mass on comfort using an intelligent ventilation controller. Solar Energy,2004,77:421–434
    [11] J. Yam, Y. Li, Z. Zheng. Nonlinear coupling between thermal mass and natural ventilation in buildings. International Journal of Heat and Mass Transfer,2003,46:1251–1264
    [12]王怡.寒冷地区居住建筑夏季室内热环境研究:[西安建筑科技大学博士论文].西安:西安建筑科技大学,2003,25-56
    [13] Y.Li, F.Haghighat, K.T.Andersen, et al. Analysis methods for natural and hybrid ventilationAn IEA ECB ANNEX 35 LITERRATURE REVIER. In: Proceedings of the 3rd International Symposium on Heating, Ventilating and Air Conditioning. Shenzhen, China, 1999, 1230
    [14] Steven J.Emmerich. Natural ventilation review and plan for design and analysis tools. New York:National Institute of Standards and Technology Administration, 2001
    [15] Li Yuguo, Delsante Angelo, Symons Jeff. Prediction of natural ventilation in buildings with large openings. Building and Environment, 2000, 35: 191-206
    [16]陈友明,王盛卫.建筑围护结构非稳定传热分析新方法.第一版.北京:科学出版社,2004,6-10
    [17] TRANSYS 13.1. A transient system simulation program developed from solar energy laboratory. University of WisconsinMadison, Madison, WI, 1990
    [18] ESP-r. A transient simulation program. Energy Systems Research Unit(ESRU). Strathclyde University, Glascow, 1998
    [19] K.A.Antonopoulos, E.P.Koronaki. On the dynamic thermal behaviour of indoor spaces. Applied Thermal Engineering,2001,21:929-940
    [20]段双平,张国强,彭建国等.自然通风技术研究进展.暖通空调,2004,34(3):22-28
    [21] H.Asan. Effects of Wall's insultation thickness and position on time lag and decrement factor. Energy and Buildings,1998,28:299-305
    [22]龚明启,冀兆良,白贵平.广州市自然通风类建筑围护结构内表面温度的计算与分析.暖通空调,2005,35(12):20-23
    [23] Y. Zhang, K. Lin, Q. Zhang, H. Di. Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy and Buildings, 2006,38:1164-1170
    [24] Agas G, Matsaggos T, Argyriou A. On the use of the atmospheric heat sinks for heat dissipation. Energy and Buildings, 1991,17(4):321-329
    [25] Connolly D. Sensitivity analysis of a maritime located night ventilated library building. In: International Conference“Passive and Low Energy Cooling for the Built Environment”. Santorini, 2005, 47-52
    [26] Pfafferott J, Herkel S, Wambsgan M. Design, monitoring and evaluation of a low energy office building with passive cooling by night ventilation. Energy and Buildings, 2004,36(5):455-465
    [27]冉茂宇.封闭空间蓄热体对室内空气温湿度调节性能.华侨大学学报(自然科学版),2004,25(4):396-400
    [28]王蕾.不同围护结构蓄热性能对空调启停时间的影响:[太原理工大学硕士论文].太原:太原理工大学,2003,31
    [29]李峥嵘,陈沛霖.晚间通风及其与蒸发冷却技术的联合应用.同济大学学报(自然科学版),1995,23(6):660–662
    [30]李峥嵘.蒸发冷却技术与相变技术在晚间通风中的应用研究:[同济大学博士学位论文].上海:同济大学,1997,22–35
    [31]李峥嵘,曹叔维.晚间通风的计算及其与机械供冷的关系.建筑热能通风空调,1999,18(3):12–15
    [32]李峥嵘,陈沛霖,裴晓梅.晚间通风房间热环境的改善.建筑热能通风空调,2001,20(3):27–28
    [33]付祥钊,高志明,康侍民.改善长江流域住宅热环境的通风措施.住宅科技,1994,24(4):3–6
    [34]付祥钊.长江流域间歇通风住宅外墙热工研究.住宅科技,1995,25(2):3–7
    [35]付祥钊,高志明,康侍民.长江流域住宅夏季通风降温方式探讨.暖通空调,1996,26(3):27–29
    [36]康艳兵,江亿,张寅平.夜间通风相变贮能堆积床系统降温效果实验研究.暖通空调,2003,33(2):24–26
    [37]康艳兵,江亿,张寅平.夜间通风相变贮能吊顶系统实验分析.建筑学报,2002,17(7):32– 34
    [38]林坤平,张寅平,江亿.我国不同气候地区夏季相变墙房间热性能模拟和评价.太阳能学报,2003,24(1):46–52
    [39]林坤平,张寅平,江亿.夏季“空调”型相变墙热设计方法.太阳能学报,2003,24(2):145–151
    [40]武丽霞.严寒地区大型超市应用夜间通风与人工制冷耦合运行研究:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2004,23–72
    [41]陈滨,孟世荣,陈会娟等.被动式太阳能集热蓄热墙对室内湿度调节作用的研究.暖通空调,2006,36(3):42-46
    [42]孙鹏.被动式采暖降温技术对室内热湿环境调节作用的研究:[大连理工大学硕士学位论文].大连:大连理工大学,2006,61–82
    [43]陈会娟,陈滨,庄智等.特朗贝墙体冬季集热性能的计算及预测.建筑热能通风空调,2006,25(2):1-7
    [44] Blondeau P, Sperandio M, Allard F. Night ventilation for building cooling in summer. Solar Energy, 1997,61(5):327–335
    [45] Geros V., Santamouris M, Tsangrasoulis A, et al. Experimental evaluation of night ventilation phenomena. Energy and Buildings, 1999,29(2):141–154
    [46] Shaviv E, Yezioro A, Capeluto I G. Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy, 2001,24(3-4):445–452
    [47] Olsen E L, Chen Q Y. Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate. Energy and buildings, 2003, 35(6): 561–571
    [48] Roche P L, Murray Milne. Effects of window size and thermal mass on building comfort using an intelligent ventilation controller. Solar Energy, 2004, 77(4): 421–434
    [49] Lomas K J,Fiala D, Cook M J, et al. Building bioclimatic charts for non-domestic buildings and passive downdraught evaporative cooling. Building and Environment, 2004,39(6):661–676
    [50] Kolokotroni M, Giannitsaris I, Watkins R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy, 2006,80(4):383–392
    [51] van der Maas J, Roulet C A. Nighttime Ventilation by Stack Effect. ASHRAE Transactions, 1991,97 (1):516–524
    [52] Givoni B. Comfort, climate analysis and building design guidelines. Energy and Buildings,1992,18(1):11–23
    [53] Givoni B., La Roche P. Modeling a Radiant Cooling test cell with different Ua values. In:Proceedings of PLEA 2002 Conference (Passive and Low Energy Architecture), Toulouse,France: PLEA,2002,854– 859
    [54] Pfafferott J, Herkel S, J?schke M. Design of passive cooling by ventilation: evaluation of a parametric model and building simulation with measurements. Energy and Buildings,2003, 35(11):1129– 143
    [55] Kolokotroni M. Night ventilation cooling of office buildings: parametric analyses of conceptual energy impacts. ASHRAE Transactions, 2001,107(1):479–489
    [56] Y. Li, P. Xu. Thermal mass design in buildings—heavy or light?. International Journal of Ventilation,2006,5:143–149
    [57]陈伟煌.夏热冬冷地区居民热舒适调查及开窗行为研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,20-51
    [58]韩杰.自然通风环境热舒适模型及其在长江流域的应用研究:[湖南大学博士学位论文].长沙:湖南大学,2009, 82-96
    [59] Yi Jiang, Qingyan Chen. Buoyancy-driven single-sided natural ventilation in buildings with large openings. International Journal of Heat and Mass Transfer, 2003,46:973-988
    [60] Heiselberg P, Svidt K, Nielsen P V. Characteristics of airflow from open windows. Building and Environment, 2001,36(7):859-869
    [61] Li Yuguo, Delsante Angelo, Chen Zhengdong, et al. Some examples of solution multiplicity in natural ventilation. Building and Environment, 2001,36: 851-858
    [62] Awbi H B. Air movement in naturally-ventilated buildings. Renewable Energy, 1996,8(2):241-247
    [63] Yannas, S., E. Maldonado, Eds. Handbook on Passive Cooling Comfort Climate & Building Design. London: European Commission PASCOOL Project, Joule II– Programme, 1995
    [64] Sustainable Habitats. Thermal mass. sustainable-buildings.org/wiki/ index.php/Thermal_mass, 2009-6-24
    [65]周志平,裴清清.太阳能的综合利用.www.lunwentianxia. com/product.free.1219349.1, 2007-11-24
    [66] Balcomb, J. Heat Storage and Distribution inside passive Solar Buildings. New Mexico:Los Alamos National Laboratory,1983
    [67]柳孝图.建筑物理.第二版.北京:中国建筑工业出版社,2000,34,50-52,371
    [68]章熙民,任泽霈,梅飞鸣.传热学.第五版.北京:中国建筑工业出版社,2007,16
    [69] Van der Maas, J., F. Florentzos, et al. Passive Cooling by Night Ventilation. In:European Conference on Energy Performance and Indoor Climate in Buildings. Lyon, France,1994,v2
    [70] Szokolay, S.. Passive and low energy design for thermal and visual comfort. In:Passive and Low Energy Ecotechniques, 3rd International PLEA Conference. Oxford: Eds A. Bowen and S. Yannas. Pergamon Press, 1985, 6-11
    [71] Givoni, B.. Passive and Low Energy Cooling of Buildings. USA, Van Nostrand Reinhold,1994
    [72]付祥钊.夏热冬冷地区建筑节能技术.第一版.北京:中国建筑工业出版社出版,2002,248-249
    [73] Givoni, B.. Climate and Architecture. England:Applied Science Publishers Ltd.,1976
    [74] K.a.antonopoulos, E.koronaki. Apparent and effective thermal capacitance of buildings. Energy, 1998,23(3):183-192
    [75] K.A. Antonopoulos, E. Koronaki. Thermal parameter components of building envelope. Applied Thermal Engineering, 2000,20:1193-1211
    [76] K.A. Antonopoulos, E. Koronaki. Envelope and indoor thermal capacitance of buildings. Applied Thermal Engineering,1999,19:743-756
    [77] Al-Sallal, K. A.. Sizing windows to achieve passive cooling, passive heating, and daylighting in hot arid regions. Renewable Energy, 1998,14(1-4):365-371
    [78] Kontoleon, K. J. and D. K. Bikas. Modeling the Influence of Glazed Openings percentage and type of glazing on the thermal zone behavior, Energy and Buildings, 2002,34:389-399
    [79] Corbela, O.,V. N. Corner. The window relevance for the architectonic design in tropical climate. In:Proceedings of PLEA 2002 Conference (Passive and Low Energy Architecture). Toulouse, France: PLEA,2002,22-24
    [80] Diaz, C. Climate-responsive design for non-domestic buildings in warm climates Optimisation of thermal mass for indoor cooling, Environment & Energy. Programme. London:Architectural Association Graduate School, 1994
    [81]白贵平,冀兆良.围护结构隔热对室内热稳定及空调负荷的影响.建筑热能通风空调,2005,24(1):69-72
    [82] Szokolay, S.. Thermal Design of Houses for Warm-humid Climates, Building and Urban Renewal. In:Proceedings of PLEA 1996 Conference (Passive and Low Energy Architecture), Louvain-la-Neuve, Belgium: PLEA,1996,16-18
    [83]陆耀庆.实用供热空调设计手册.第一版.北京:中国建筑工业出版社,1993,38-47,705
    [84]杨艺,邓启红,时冰冰.建筑墙体的延时与削减作用.建筑热能通风空调,2005,24(4):66-70
    [85] K.A. Antonopoulos, C.Tzivanids.Time constant of Greek Buiildings. Energy, 1995,20(8):789-802
    [86] F.C. McQuiston, J.D. Parker, J.D. Spitler, Heating. ventilating and air conditioning, analysis and design. New York:John Wiley & Sons, Inc., 2000
    [87]陶文铨.数值传热学.第一版.西安:西安交通大学出版社,1995,12
    [88] H. Asan, Y. S. Sancaktar. Effects of wall’s thermophysical properties on time lag and decrement factor. Energy and Buildings,1998,28(2):159-166
    [89] K. Elisabeth, K. Jan. Influence of insulation configuration on heating and cooling loads in a continuously used building. Energy and Buildings,2002,34: 321–331
    [90] K. Jan., K. Elisabeth. Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs. Energy and Buildings,2002,34:445-454
    [91] A.M.什克洛维尔.周期性作用下的传热.陈在康,蔡祖康.第一版.北京:中国工业出版社,1964,32-50
    [92] DBJ 11-602-2006.居住建筑节能设计标准[S].北京:北京市建筑设计标准化办公室,2006
    [93] GB50189-2005.公共建筑节能设计标准[S].北京:中国建筑工业出版社,2005
    [94] JGJ 134—2001.夏热冬冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社,2001
    [95]阳丽娜.建筑自然通风的多解现象与潜力分析:[湖南大学硕士学位论文].长沙:湖南大学,2005,49-63
    [96] Lina Yang, Guoqiang Zhang, Yuguo Li et al. Investigating potential of natural driving forces for ventilation in four major cities in China. Building and Environment,2005,40:738–746
    [97] Zhiwen Luo, Jianing Zhao, Jun Gao et al. Estimating natural-ventilation potential considering both thermal comfort and IAQ issues. Building and Environment,2007,42:2289–2298
    [98]中国气象局,清华大学.中国建筑热环境分析专用数据集(附光盘).北京:中国建筑工业出版社,2005
    [99]杨柳.建筑气候分析与设计策略研究:[西安建筑科技大学博士论文].西安:西安建筑科技大学,2003,18-38
    [100] J.F. Nicol, M.A. Humphreys. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings,2002,34(6):563–572.
    [101] Richard J. de Dear, Gail S. Brager. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 2002,34 (6):549–561
    [102] Heisler M P. Temperature Chares for Induction and Constant-Temperature Heating. Trans. Of ASME,1947,69(3):227-236
    [103] Gao, M., C. N. Reid. A simple virtual sphere method for estimating equilibration times in heat treatment. International Communications in Heat and Mass Transfer, 1997,24(1):79-88
    [104] Gao, M.,C. N. Reid, M. Jahedi et al. Estimating equilibration times and heating/cooling rates in heat treatment of workpieces with arbitrary geometry. Journal of Materials Engineering and Performance,2000,9(1):62-71
    [105]宋海霞,李辉,肖国先,酒少武.单颗粒球体非稳态传热过程的数值计算.冶金能源,2007,26(2):20-23,49
    [106] M.Abramowitz, I.A.Stegun. Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematic Series 55. Washington. D.C.: U.S. Government Printing Ofiice,1964
    [107]许燕.长沙地区办公建筑夜间通风技术实验研究及DeST模拟分析:[湖南大学硕士学位论文].长沙:湖南大学,2007,14-17,19-34
    [108]济南海涛电器有限公司.方形橱窗式换气扇. www.jnhaitaodianqi.com/gb316893_944924.html,2009-3-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700