APRAMVI算法及气溶胶间接气候效应研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,越来越多的卫星(如TRMM)上搭载有多种高精度观测仪器,能够从各个角度实现对地气系统不同物理量的同步精确测量。基于这些仪器的综合观测结果,建立和发展多参数反演算法,有助于细致研究各种气候影响因素的变化及相互关系。本文利用TRMM上搭载的微波辐射计(TMI)、可见/红外扫描仪(VIRS)以及测雨雷达(PR)的同步观测结果,建立了一套可用于洋面非降水条件下的全参数(地表、水汽和多种云参数)同步反演算法—APRAMVI(All Parameters Retrieval Algorithm for combined Microwave andVisible/Infrared measurements),并利用该算法,对中国近海区域的气溶胶间接气候效应进行了研究。
     1.APRAMVI算法
     APRAMVI算法由四个子反演算法组成,各子反演算法相互联系但技术上相对独立,分别为:
     (1)被动微波环境参数(风速、海温和水汽)反演算法:基于一个能够反映微波亮温和对其产生影响的五种参数(海温、风速、水汽、云水含量和云温)之间本质的对数线性关系的辐射传输方程,通过TMI五通道亮温对数线性组合,且无需其它任何辅助资料,实现对风速、海温和水汽的反演。作为算法的验证,地基观测数据和另一种基于TMI观测结果的反演产品被用于与本算法各环境参数反演结果的比较。结果表明,水汽反演值与探空资料的均值偏差(0.435 kg m~(-2))和均方根误差(2.593 kg m~(-2))都较小;与赤道地区浮标观测结果的比较表明,风速(海温)与实测值之间也仅有-0.075 m s~(-1)(0.116K)的均值偏差及0.672 m s~(-1)(0.665K)的均方根误差;而在全球尺度上,各反演参数与RSS TMI逐日产品的格点间(0.25°)差异统计特征也均表现为中值为0左右的准正态分布。并且,为研究其他参数对反演结果的影响程度,在验证过程中也按其他参数不同取值对各种反演参数进行了分类比较统计。结果表明,其它参数的变化,不会对反演结果造成太大影响,除了高风速时海温的反演结果有一定误差。此外,为了探讨算法在气候研究中的适用性,我们也对各反演参数的全球月平均分布情况进行了研究。结果表明,多年夏季(7月)和冬季(1月)反演参数的全球水平分布与实际情况基本相符,与其他卫星反演资料在全球大部分区域的偏差不超过1 m s~(-1)(风速)和1 K(海温)。
     (2)被动微波云参数(云水含量和云温)反演算法:利用对数线性关系辐射传输方程和环境参数反演算法的结果,对已有的一个云水含量反演框架进行了订正和改进,实现仅依赖于TMI观测结果的云水含量和云温同步反演。验证结果表明,有云时反演的云水含量与基于可见/红外算法获得的云水含量在分布上基本一致,均值偏差在0.03 kg m~(-2)左右(后者略高);云温较海温低7K左右,也与实际大气相吻合;当无云时,仅有20%的无云像素被误识为云,并且平均误差仅为0.01kg m~(-2);在全球尺度上的格点统计比较方面,反演结果要略低于RSSTMI产品的云水含量(0.007kg m~(-2))。
     (3)综合被动微波和可见/红外的云参数(云厚和云高等)反演算法:利用被动微波环境参数反演算法和被动微波云参数反演算法的结果(海温和云温),并结合VIRS对云顶温度的探测结果,基于一个简单的云模型实现对云厚和云高的反演。个例验证的结果显示,冰水混合云的云厚与云高均大于水云,定性表明了算法的合理性和准确性。
     (4)可见/红外云光学参数(有效半径和光学厚度)反演算法:利用VIRS可见光和近红外通道分别对光学厚度和有效半径敏感的性质,同步反演这两个参数(注:该可见/红外子反演算法技术源于已有文献,非本文成果)。
     2.中国近海气溶胶间接气候效应
     基于Terra和Aqua卫星MODIS气溶胶产品,对中国中东部地区气溶胶的一些物理特性,如气溶胶类型、光学厚度分布等进行了分析。研究结果表明,春夏季该区域气溶胶浓度较大,且在黄海沿岸地区,由于其位于季风下风向,更多来自中国南部的气溶胶粒子在此积累,导致该地区成为光学厚度极值区。相应地,其近海区域易出现较强的气溶胶间接效应。因此,利用APRAMVI算法的云参数反演结果(基于TRMM观测结果),结合准同步的MODIS气溶胶产品,对春夏季中国东部近海区域的气溶胶间接效应进行了个例统计研究。结果表明,对于第二类间接效应,无论是单独的水云,或是全部的非降水云(包括冰水混合云),均可被卫星直接观测到。但是,在中国近海这一特定区域,尽管有效半径与气溶胶光学厚度存在可通过信度检验(0.95)的负相关,但有效半径更多地是由云本身的热动力学过程决定,因此第一类间接效应虽真实存在,却无法被卫星直接观测到。
Up to now, there are so many satellites having the capabilities to simultaneously observe various variables related to the Earth-Atmosphere System, with kinds of sensors in high-performance. Based on these united observations, it can be beneficial in the development and the improvement of multi-variables retrieval algorithm, in turn the investigation on the climate change associated to the variation of the variables and the relationship to each other. In this study, by using the combined measurements from TRMM TMI, VIRS, as well as PR, an integrated algorithm - APRAMVI (All Parameters Retrieval Algorithm for combined Microwave and Visible/Infrared measurements) is proposed to simultaneously retrieve surface and atmospheric variables including the sea surface temperature (SST), wind (U), columnar water vapor (CWV), cloud liquid water path (LWP), cloud temperature (Tc), cloud geometric depth (Dc), cloud height (Hc), cloud effective droplet radius (Re), cloudoptical thickness (τ_c), and so on, over ocean in the absence of rain. Moreover, anapplication of this algorithm to explore the aerosol indirect effect over the Yellow Sea region is presented.
     1. APRAMVI
     There are four sub-algorithms in APRAMVI, which are dependent on each other in retrieval step, but different in retrieval technique.
     (1) Environmental variables (SST, U and CWV) sub-algorithm for TMI measurements: Applying an inherent log-linear relationship between the microwave brightness temperature (T_B) and variables including CWV, SST, U, LWP and Tc, the TMI T_Bs on five channels are log-linearly combined to retrieve environmental variables. For the validation, the retrievals are compared to the ground-based measurements and the other TMI-based retrieval product, respectively. The results show that there are small differences between the retrievals and ground-based measurements, e.g., the mean bias (MB) and root mean square error (RMS) between CWV retrievals and radiosonde observations are 0.435 kg m~(-2) and 2.593 kg m~(-2), while MB and RMS between U (SST) retrievals and buoy observations are -0.075 m s~(-1) (0.116K) and 0.672 m s~(-1)(0.665K), respectively. On the other hand, a good agreement is also shown when global grid-to-grid (0.25°) comparing with the other TMI-based retrieval product (RSS TMI product), where there is the mostly unbiased Gaussian probability distribution of the difference between them with maximum frequency near zero. Moreover, for various other variables, the variation of MB or RMS statistics is small, which suggests that the uncertainties related to other variables on any retrieved variable are eliminated in current sub-algorithm, except that there is significant error in retrieved SST with high wind speed. Finally, the results from monthly global distribution indicate the rationality of current sub-algorithm, due to low differences over mostly global ocean area with compared to other climatic dataset.
     (2) Cloud variables (LWP and Tc) sub-algorithm for TMI measurements: Based on the above log-linear relationship and environmental retrievals, a published LWP retrieval frame is corrected and improved to simultaneously retrieve LWP_m (subscript m indicates LWP obtained from TMI measurements)and Tc with only TMI measurements as the input data. The quantitative validation shows that, with respect to cloud presence, the retrieved LWP_m is consistent to the retrieved LWP_s (subscript m indicates LWP obtained from VIRS measurements) by Visible/Infrared sub-algorithm (See subsequent paragraph about it), whether the pattern or values. Specially, the MB about 0.03 kg m~(-2) (LWP_m is low) is in agreement with the generally intrinsic difference between them; the difference about 7 K between retrieved Tc and SST is coherent with actual atmosphere. For cloud absence, only 20% of clear-sky pixels are misjudged as cloud pixels by current sub-algorithm, where the average value is less than 0.01 kg m~(-2); the grid-to-grid comparison with RSS TMI product on global scale indicates the slight difference of 0.007 kg m~(-2) between them.
     (3) Cloud variables (Dc and Hc) sub-algorithm for combined TMI and VIRS measurements: Based on a simple cloud model, the conjunction of above retrieved SST and Tc for TMI measurements and cloud top temperature detected by VIRS is used to retrieve Dc and Hc. Case study results show that Dc and Hc of multi-layer ice-water mixed cloud are larger than single-layer water cloud, which qualitatively suggests the rationality and accuracy of current sub-algorithm.
     (4) Cloud optical variables (Re,τ_c and LWP_s) sub-algorithm for VIRS measurements: Based on the separate dependence of VIRS visible and near-infrared channel onτ_c and Re, combination of these two channels is used to simultaneously retrieveτ_c and Re. The retrieval technology for this sub-algorithm is derived from published references.
     2. The aerosol indirect effect over the Yellow Sea region
     First, the aerosol characteristics in middle-eastern China, such as aerosol optical depth, aerosol type, mass concentration and fine aerosol fraction, are investigated by using the MODIS aerosol product from Terra and Aqua satellites. The results indicate that there is high aerosol concentration in this region during Spring and Summer. Specially, the largest aerosol optical depth locates the region near the Yellow Sea, due to aerosol accumulation effect with the prevailing west-south wind direction in East Asia summer monsoon period. Similarly, it is possible that there is obvious aerosol indirect effect over the Yellow Sea. As a result, the aerosol-cloud relationship is studied by using retrieved cloud parameters derived from APRAMVI for TRMM measurements and aerosol optical depth in MODIS product. The cases statistics results show that, the second aerosol indirect effect is obvious over the Yellow Sea region, whether for water clouds or for all non-precipitation clouds. However, the first aerosol indirect effect can not be observed by satellite, though there is significant negative correlation between Re and aerosol optical depth. Further investigation on the relationship between Re and cloud thermodynamic parameters suggests that the influence of thermodynamics on Re exceeds that of aerosol, so that the first aerosol indirect effect is obscure in this particular region.
引文
1. Ackerman, A. S., et al. (2000a), Reduction of tropical cloudiness by soot, Science, 288, 1042-1047.
    
    2. Ackerman, A. S., et al. (2000b), Effects of aerosols on cloud albedo: Evaluation of Twomey's parameterization of cloud susceptibility using measurements of ship tracks, J Atmos Sci, 57, 2684-2695.
    3. Ackerman, S. A., et al. (2008), Cloud detection with MODIS. Part II: Validation, J Atmos Ocean Tech, 25, 1073-1086.
    4. Ackerman, S. A., et al. (1998), Discriminating clear sky from clouds with MODIS, J Geophys Res-Atmos, 103, 32141-32157.
    
    5. Albrecht, B. A. (1989), Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227-1230.
    6. Alishouse, J. C, et al. (1990a), Determination of cloud liquid water content using the SSM/I, IEEE Trans Geosci Remote Sens, 28, 817-822.
    7. Alishouse, J. C, et al. (1990b), Determination of oceanic total precipitable water from the SSM/I, IEEE Trans Geosci Remote Sens, 28, 811 -816.
    8. Arking, A., and J. D. Childs (1985), Retrieval of cloud cover parameters from multispectral images, J Appl Meteorol, 24, 322-333.
    9. Barrett, A. H., and V. K. Chung (1962), A method for the determination of high-altitude water vapor abundance from ground-based microwave observations, J Geophys Res, 67, 4259-4266.
    10. Bell, T. L., et al. (1990), Sampling Errors for Satellite-Derived Tropical Rainfall - Monte-Carlo Study Using a Space-Time Stochastic-Model, J Geophys Res-Atmos, 95, 2195-2205.
    11. Bell, T. L., and P. K. Kundu (1996), A study of the sampling error in satellite rainfall estimates using optimal averaging of data and a stochastic model, J Climate, 9, 1251-1268.
    12. Bellerby, T., et al. (2000), Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network, J Appl Meteorol, 39, 2115-2128.
    13. Berk, A., L W. Bernstein and D. C. Robertson (1983), MODTRAN: A moderate resolution model for LOWTRAN 7. Rep. AFGL-TR-83-0187.261.
    14. Bierman, G. J., et al. (1978), Modem estimation techniques applied to microwave sensing of the marine boundary layer, Pro. Twelve Asilomar Conference on Circuits, Systems and computers, IEEE Society, 101-106.
    15. Brenguier, J. L., et al. (2000), An overview of the ACE-2 CLOUDYCOLUMN closure experiment, Tellus B, 52, 815-827.
    16. Brenguier, J. L., et al. (2003), Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate, J Geophys Res-Atmos, 108, doi:10.1029/2002JD002682.
    17. Breon, F. M., et al. (2002), Aerosol effect on cloud droplet size monitored from satellite, Science, 295, 834-838.
    18. Burnet, F., and J. L. Brenguier (2007), Observational study of the entrainment-mixing process in warm convective clouds, J Atmos Sci, 64,1995-2011.
    19. Cess, R. D., et al. (1993), Uncertainties in Carbon-Dioxide Radiative Forcing in Atmospheric General-Circulation Models, Science, 262, 1252-1255.
    20. Chameides, W. L., et al. (2002), Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: Indication of indirect effect?, J Geophys Res-Atmos, 107,doi: 10.1029/2000JD000208.
    21. Chang, A. T. C, and T. T. Wilheit (1979), Remote sensing of atmospheric water vapor,liquid water,and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite, Radio Sci, 14, 793-802.
    22. Charlson, R. J., and J. H. Pilat (1969), Climate: the influence of aerosols, J Appl Meteorol, 8, 1001-1002.
    23. Charlson, R. J., et al. (1992), Climate Forcing by Anthropogenic Aerosols, Science, 255, 423-430.
    24. Chelton, D. B., et al. (2001), Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific, J Climate, 14, 1479-1498.
    25. Chelton, D. B., et al. (2004), Satellite measurements reveal persistent small-scale features in ocean winds, Science, 303, 978-983.
    26. Chelton, D. B., et al. (2007), Summertime coupling between sea surface temperature and wind stress in the California Current System, J Phys Oceanogr, 37,495-517.
    27. Chelton, D. B., and F. J. Wentz (2005), Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research, B Am Meteorol Soc, 86, 1097-1115.
    28. Chen, R. Y., et al. (2008), Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data, J Geophys Res-Atmos, 113, doi: 10.1029/2002JD002682.
    29. Coakley, J. (2005), Atmospheric physics - Reflections on aerosol cooling, Nature, 438, 1091-1092.
    30. Coakley, J. A., et al. (1987), Effect of ship-stack effluents on cloud reflectivity, Science, 237, 1020-1022.
    31. Coakley, J. A., and C. D. Walsh (2002), Limits to the aerosol indirect radiative effect derived from observations of ship tracks, J Atmos Sci, 59, 668-680.
    32. Collins, W. D., et al. (2002), Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J Geophys Res-Atmos, 107, doi: 10.1029/2000JD000032.
    33. Cook, J., and E. J. Highwood (2004), Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model, Q J Roy Meteor Soc, 130, 175-191.
    34. Deblonde, G., and N. Wagneur (1997), Evaluation of global numerical weather prediction analyses and forecasts using DMSP special sensor microwave imager retrievals .1. Satellite retrieval algorithm intercomparison study, J Geophys Res-Atmos, 102, 1833-1850.
    35. Deeter, M. N. (2007), A new satellite retrieval method for precipitable water vapor over land and ocean, Geophys Res Lett, 34, doi: 10.1029/2006GL028019.
    36. Deeter, M. N., and J. Vivekanandan (2006), New dual-frequency microwave technique for retrieving liquid water path over land, J Geophys Res-Atmos, 111, doi: 10.1029/2005JD006784.
    37. Dickinson, R. E. (1982), In: Carbon Dioxide Review, Clark, W.C. Ed., Clarendon, New York, NY, USA, pp. 101-133.
    38. Ellison, W. J., et al. (2003), A comparison of ocean emissivity models using the Advanced Microwave Sounding Unit, the Special Sensor Microwave Imager, the TRMM Microwave Imager, and airborne radiometer observations, J Geophys Res-Atmos, 108, doi: 10.1029/2002JD003213.
    39. Eymard, L., et al. (1993), Validation of Microwave Radiometer Geophysical Parameters Using Meteorological Model Analyses, Int J Remote Sens, 14, 1945-1963.
    40. Feingold, G. (2003), Modeling of the first indirect effect: Analysis of measurement requirements, Geophys Res Lett, 30, doi: 10.1029/2003GL017967.
    41. Feingold, G., et al. (2003), First measurements of the Twomey indirect effect using ground-based remote sensors, Geophys Res Lett, 30, doi: 10.1029/2002GL016633.
    42. Feingold, G., et al. (2001), Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach, J Geophys Res-Atmos, 106, 22907-22922.
    43. Ferraro, R. R., et al. (1998), A screening methodology for passive microwave precipitation retrieval algorithms, J Atmos Sci, 55, 1583-1600.
    44. Fischer, K., and H. Grassl (1975), Absorption by airborne and deposited particles in 8-13 micrometer range, Tellus, 27, 522-528.
    45. Freilich, M. H., and R. S. Dunbar (1999), The accuracy of the NSCAT1 vector winds: Comparisons with National Data Buoy Center buoys, J Geophys Res-Oceans, 104, 11231-11246.
    46. Fu, Y. F., and G. S. Liu (2001), The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data, J Appl Meteorol, 40, 2130-2143.
    47. Fu, Y., et al. (2009), A hybrid approach of quadratic surface moving fitting and weighted average on merging TRMM PR VIRS and TMI data. (Submitted to JAppl Meterol)
    48. Gentemann, C. L., et al. (2004), In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures, J Geophys Res, 109, doi: 10.1029/2003JC002092.
    49. Greenwald, T. J., et al. (1995), Observations of the global characteristics and regional radiative effects of marine cloud liquid water, J Climate, 8, 2928-2946.
    50. Greenwald, T. J., et al. (1993), A Physical Retrieval of Cloud Liquid Water over the Global Oceans Using Special Sensor Microwave Imager (Ssm/I) Observations, J Geophys Res-Atmos, 98, 18471-18488.
    51. Grody, N., et al. (2001), Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit, J Geophys Res-Atmos, 106, 2943-2953.
    52. Grody, N. C. (1976), Remote sensing of atmospheric water content from satellites using microwave radiometery, IEEE Trans on antennas and propagation, AP-24, 155-161.
    53. Grody, N. C, et al. (1980), Atmospheric water content over the tropical Pacific derived from the Nimubs 6 Scanning Microwave spectrometer, J Appl Meteorol, 19,986-996.
    54. Guenther, B., et al. (1996), MODIS calibration: A brief review of the strategy for the at-launch calibration approach, J Atmos Ocean Tech, 13, 274-285.
    55. Guenther, B., et al. (2002), On-orbit performance of the Earth Observing System Moderate Resolution Imaging Spectroradiometer; first year of data, Remote Sens Environ, 83, 16-30.
    56. Guo, H., et al. (2007), Examination of the aerosol indirect effect under contrasting environments during the ACE-2 experiment, Atmos Chem Phys, 7, 535-548.
    57. Han, Q. Y, et al. (1998), Global survey of the relationships of cloud albedo and liquid water path with droplet size using ISCCP, J Climate, 11, 1516-1528.
    58. Han, Q. Y, et al. (1994), Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using Isccp Data, J Climate, 7, 465-497.
    59. Han, Q. Y., et al. (2002), Three different behaviors of liquid water path of water clouds in aerosol-cloud interactions, J Atmos Sci, 59, 726-735.
    60. Hansen, J., and J. B. Pollack (1970), Near-infrared light scattering by terrestrial clouds, J Atmos Sci, 265-281.
    61. Hansen, J., et al. (1997), The missing climate forcing, Philos T Roy Soc B, 352, 231-240.
    62. Held, I. ML, and B. J. Soden (2000), Water vapor feedback and global warming, Annu Rev Energ Env, 25,441-475.
    63. Hilburn, K. A., and F. J. Wentz (2008), Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA), J Appl Meteorol Clim, 47, 778-794.
    64. Ho, S. P., et al. (2003), Estimates of cloud vertical structure and water amount over tropical oceans using VIRS and TMI data, J Geophys Res-Atmos, 108, doi: 10.1029/2002JD003298.
    65. Hofer, R., et al. (1981), Microwave radiometric measurements of sea surface temperature from the Seasat satellite: First results Science, 212, 1385-1387.
    66. Horvath, A., and R. Davies (2007), Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR, J Geophys Res-Atmos, 112, doi: 10.1029/2006JD007101.
    67. Huang, J. P., et al. (2006), Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements, Geophys Res Lett, 33, doi: 10.1029/2006GL027038.
    68. Huang, J. P., et al. (2005), Advanced retrievals of multilayered cloud properties using multispectral measurements, J Geophys Res-Atmos, 110, doi: 10.1029/2004JD005101.
    
    69. Huffman, G. J., et al. (1997), The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset, B Am Meteorol Soc, 78, 5-20.
    70. Iguchi, T., et al. (2000), Rain-profiling algorithm for the TRMM precipitation radar, J Appl Meteorol, 39, 2038-2052.
    71. Ikai, J., and K. Nakamura (2003), Comparison of rain rates over the ocean derived from TRMM microwave imager and precipitation radar, J Atmos Ocean Tech, 20, 1709-1726.
    72. IPCC, Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Intergovernmental Pannel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, et al. Ed., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
    73. Irisov, V. G. (2007), Radiometric model of the sea surface in the presence of currents, Ieee T Geosci Remote, 45,2116-2121.
    74. Jackson, D. L., and G. L. Stephens (1995), A Study of Ssm/I-Derived Columnar Water-Vapor over the Global Oceans, J Climate, 8,2025-2038.
    75. Jacobson, M. Z. (2002), Control of fossil-fuel paniculate black carbon and organic matter, possibly the most effective method of slowing global warming, J Geophys Res-Atmos, 107, doi: 10.1029/2001JD001376.
    76. Jiang, H. L., and G. Feingold (2006), Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model, J Geophys Res-Atmos, 111, doi: 10.1029/2005JD006138.
    77. Johnson, B. T., et al. (2004), The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Q J Roy Meteor Soc, 130, 1407-1422.
    78. Johnson, J. T., and Y. Y. Cai (2002), A theoretical study of sea surface up/down wind brightness temperature differences, Ieee T Geosci Remote, 40, 66-78.
    79. Jones, T. A., and S. A. Christopher (2008), Seasonal variation in satellite-derived effects of aerosols on clouds in the Arabian Sea, J Geophys Res-Atmos, 113, doi: 10.1029/2007JD009118.
    80. Karstens, U., et al. (1994), Remote-Sensing of Cloud Liquid Water, Meleorol Atmos Phys, 54, 157-171.
    81. Katsaros, K. B., et al. (1981), Quality of seasat SMMR (Scanning Multichannel Microwave Radiometer) atmospheric water determinations, in Oceanography from Space, Gower Ed., Plenum Publishing Corp., NY, pp 691-706.
    82. Kaufman, Y. J., and R. S. Fraser (1997), The effect of smoke particles on clouds and climate forcing, Science, 277, 1636-1639.
    83. Kaufman, Y. J., et al. (2005), The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, P Natl Acad Sci USA, 102, 11207-11212.
    84. Kaufman, Y. J., and T. Nakajima (1993), Effect of Amazon Smoke on Cloud Microphysics and Albedo - Analysis from Satellite Imagery, J Appl Meteorol, 32, 729-744.
    85. Kaufman, Y. J., et al. (2002), A satellite view of aerosols in the climate system, Nature, 419, 215-223.
    86. Kaufman, Y. J., et al. (1997), Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J Geophys Res-Atmos, 102, 17051-17067.
    87. Kawamoto, K., et al. (2004), Examining the aerosol indirect effect over China using an SO2 emission inventory, Atmos Res, 72,353-363.
    88. Kawamoto, K., et al. (2006), A correlative study on the relationship between modeled anthropogenic aerosol concentration and satellite-observed cloud properties over east Asia, J Geophys Res-Atmos, 111, doi: 10.1029/2005JD006919.
    89. Kidd, C. (2001), Satellite rainfall climatology: A review, Int J Climatol, 21, 1041-1066.
    90. Kneizys, F. X., et al. (1983), Atmospheric transmittance/radiance: Computer code LOWTRAN 6. Rep. AFGL-TR-83-0187.200.
    91. Kozu, T., et al. (2001), Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, Ieee T Geosci Remote, 39, 102-116.
    92. Kreiss, W. T. (1969), The influence of clouds on microwave brightness temperatures viewing downward over open seas, Proc IEEE, 57, 440-445.
    93. Kumar, A., et al. (2003), Error characteristics of the atmospheric correction algorithms used in retrieval of sea surface temperatures from infrared satellite measurements: Global and regional aspects, J Atmos Sci, 60, 575-585.
    94. Kummerow, C., et al. (1998), The Tropical Rainfall Measuring Mission (TRMM) sensor package, JAtmos Ocean Tech, 15, 809-817.
    95. Kummerow, C., et al. (2000), The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit, J Appl Meteorol, 39, 1965-1982.
    96. Lebsock, M. D., et al. (2008), Multisensor satellite observations of aerosol effects on warm clouds, J Geophys Res-Atmos, 113, doi: 10.1029/2008JD009876.
    97. Lin, B., et al. (1998a), Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 2. Results, J Geophys Res-Atmos, 103, 3887-3905.
    98. Lin, B., and W. B. Rossow (1994), Observations of Cloud Liquid Water Path over Oceans -Optical and Microwave Remote-Sensing Methods, J Geophys Res-Atmos, 99, 20907-20927.
    99. Lin, B., et al. (1998b), Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 1. Microwave brightness temperature simulations, J Geophys Res-Atmos, 103, 3873-3886.
    100. Lipes, R. G., et al. (1979), Seasat scanning multichannel microwave radiometer: Results of the Gulf of Alaska workshop, Science, 204, 1415-1417.
    101. Liu, G. S. (1998), A fast and accurate model for microwave radiance calculations, J Meteorol Soc Jpn, 76,335-343.
    102. Liu, G. S. (2004), Approximation of single scattering properties of ice and snow particles for high microwave frequencies, J Atmos Sci, 61, 2441 -2456.
    103. Liu, G. S., and J. A. Curry (1993), Determination of Characteristic Features of Cloud Liquid Water from Satellite Microwave Measurements, J Geophys Res-Atmos, 98, 5069-5092.
    104. Liu, G. S., and J. A. Curry (1998), An investigation of the relationship between emission and scattering signals in SSM/I data, J Atmos Sci, 55, 1628-1643.
    105. Liu, G. S., et al. (2001), Retrieval and characterization of cloud liquid water path using airborne passive microwave data during INDOEX, J Geophys Res-Atmos, 106, 28719-28730.
    106. Liu, G. S., et al. (1995), Classification of Clouds over the Western Equatorial Pacific-Ocean Using Combined Infrared and Microwave Satellite Data, J Geophys Res-Atmos, 100, 13811-13826.
    107. Liu, G. S., and Y. F. Fu (2001), The characteristics of tropical precipitation profiles as inferred from satellite radar measurements, J Meteorol Soc Jpn, 79, 131 -143.
    108. Liu, G. S., et al. (2003), Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX: Implication to aerosols' indirect radiative effect, J Geophys Res-Atmos, 108, doi: 10.1029/2001JD001395.
    109. Lohmann, U., and J. Feichter (2005), Global indirect aerosol effects: a review, Atmos Chem Phys, 5,715-737.
    110. Lojou, J. Y., et al. (1994), A Simple Method for Testing Brightness Temperatures from Satellite Microwave Radiometers, J Atmos Ocean Tech, 11,387-400.
    111. Lu, M. L., et al. (2008), Aerosol-cloud relationships in continental shallow cumulus, J Geophys Res-Atmos, 113, doi: 10.1029/2007JD009354.
    112. Masunaga, H., et al. (2002), Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measurement Mission Microwave Imager and Visible/Infrared Scanner: Algorithm, J Geophys Res, 107, doi: 10.1029/2001JD000743.
    113. Matheson, M. A., et al. (2005), Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations, J Geophys Res-Atmos, 110, doi: 10.1029/2005JD006165.
    114. Matsui, T., et al. (2006), Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle (vol 111, art no D17204, 2006), J Geophys Res-Atmos, 111, doi: 10.1029/2006JD008056.
    115. Mauger, G. S., and J. R. Norris (2007), Meteorological bias in satellite estimates of aerosol-cloud relationships, Geophys Res Lett, 34, doi: 10.1029/2007GL029952.
    116. McClain, E. P., et al. (1985), Comparative performance of AVHRR-based multichannel sea surface temperatures, J Geophys Res, 90, 11587-11601.
    117. McCollum, J. R., and R. R. Ferraro (2005), Microwave rainfall estimation over coasts, J Atmos Ocean Tech, 22,497-512.
    118. McCormick, R., and J. H. Ludwig (1967), Climate Modification by Atmospheric Aerosols, Science, 156, 1358-1359.
    119. McPhaden, M. J., et al. (1998), The tropical ocean global atmosphere observing system: A decade of progress, J Geophys Res-Oceans, 103, 14169-14240.
    120. Meneghini, R., et al. (2000), Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar, J Appl Meteorol, 39, 2053-2070.
    121. Menon, S. (2004), Current uncertainties inassessing aerosol effects on climate, Annu Rev Env Resour,29, 1-30.
    122. Menon, S., et al. (2003), Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations, J Geophys Res-Atmos, 108, doi: 10.1029/2003JD003902.
    123. Menon, S., et al. (2002), Climate effects of black carbon aerosols in China and India, Science, 297, 2250-2253.
    124. Myhre, G, et al. (2007), Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models, Atmos Chem Phys, 7, 3081-3101.
    125. Nakajima, T., et al. (2001), A possible correlation between satellite-derived cloud and aerosol microphysical parameters, Geophys Res Lett, 28, 1171-1174.
    126. Nakajima, T., and M. D. King (1990), Determination of the optical thickness and effective radius of clouds from reflected solar radiation measurements. Part I: Theory, J Atmos Sci, 47, 1878-1893.
    127. Nakajima, T. Y., and T. Nakajima (1995), Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions, J Atmos Sci, 52, 4043-4059.
    128. NBernstein, L. S., A. Berk, D. C. Robertson, et al. (1996), Addition of a correlated-k capability to MODTRAN. Proc. 19th Annual Conf. on Atmospheric Transmission Models.261.
    129. Norris, J. R. (2001), Has northern Indian Ocean cloud cover changed due to increasing anthropogenic aerosol?, Geophys Res Lett, 28, 3271-3274.
    130. Ou, S. C., et al. (1993), Remote-Sensing of Cirrus Cloud Parameters Using Advanced Very-High-Resolution Radiometer 3.7-Mu-M and 10.9-Mu-M Channels, Appl Optics, 32, 2171-2180.
    131. Parekh, A., et al. (2007), A comparative assessment of surface wind speed and sea surface temperature over the Indian ocean by TMI, MSMR, and ERA-40, J Atmos Ocean Tech, 24, 1131-1142.
    132. Penner, J. E., et al. (2002), A comparison of model- and satellite-derived aerosol optical depth and reflectivity, J Atmos Sci, 59, 441-460.
    133. Petty, G. W. (1990), On the response of the Special Sensor Microwave/Imager to the marine environment--Implications for atmospheric parameter retrievals, Ph.D. dissertation, Dept. of Atmos. Sci., Univ. of Washington, Seattle, Wash.
    134. Petty, G. W. (1994), Physical Retrievals of over-Ocean Rain Rate from Multichannel Microwave Imagery .1. Theoretical Characteristics of Normalized Polarization and Scattering Indexes, Meteorol Atmos Phys, 54, 79-99.
    135. Pierluissi, J. H. and C. E. Maragoudakis (1986), Molecular Transmission Band Models for LOWTRAN. AFGL-TR-86-0272, AD A180655.
    136. Platnick, S., et al. (2000), The role of background cloud microphysics in the radiative formation of ship tracks, J Atmos Sci, 57, 2607-2624.
    137. Platnick, S., and S. Twomey (1994), Determining the Susceptibility of Cloud Albedo to Changes in Droplet Concentration with the Advanced Very High-Resolution Radiometer, J Appl Meteorol, 33, 334-347.
    138. Platnick, S., and F. P. J. Valero (1995), Validation of a Satellite Cloud Retrieval during Astex, J Atmos Sci, 52, 2985-3001.
    139. Podgorny, I. A., et al. (2003), Large aerosol radiative forcing due to the 1997 Indonesian forest fire, Geophys Res Lett, 30, doi: 10.1029/2002GL015979.
    140. Poore, K., et al. (1995), Cloud layer thicknesses from a combination of surface and upperair observations, J Climate, 8, 550-568.
    141. Prabhakara, C, et al. (1982), Remote Sensing of Precipitable Water over the Oceans from Nimbus 7 Microwave Measurements, J Appl Meteorol, 21, 59—68.
    142. Pulvirenti, L., and N. Pierdicca (2006), Retrieval of atmospheric and surface parameters from satellite microwave radiometers over the Mediterranean Sea, Ieee T Geosci Remote, 44, 90-101.
    143. Quaas, J., et al. (2008), Satellite-based estimate of the direct and indirect aerosol climate forcing, J Geophys Res-Atmos, 113, doi: 10.1029/2007JD008962.
    144. Radke, L. F., et al. (1989), Direct and remote sensing observations of the effects of ships on clouds, Science, 246, 1146-1149.
    145. Ramaswamy, V., et al. (2001), Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution to Working Group I to the Third Assessment Report of the the Intergovernmental Pannel on Climate Change, Houghton, J.T., et al. Ed., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 349-416.
    146. Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, J Atmos Sci, 62,947-973.
    147. Reynolds, R. W., et al. (2002), An improved in situ and satellite SST analysis for climate, J Climate, 15, 1609-1625.
    148. Reynolds, R. W., and T. M. Smith (1994), Improved Global Sea-Surface Temperature Analyses Using Optimum Interpolation, J Climate, 7,929-948.
    149. Ricciardulli, L., and F. J. Wentz (2004), Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM, J Geophys Res-Oceans, 109, doi: 10.1029/2003JC002247.
    150. Rosenfeld, D., and G. Feingold (2003), Explanation of discrepancies among satellite observations of the aerosol indirect effects, Geophys Res Lett, 30, doi: 10.1029/ 2003GL017684.
    151. Sagan, C, and J. B. Pollack. (1967), Anisotropic nonconservative scattering and the clouds of Venus, J Geophys Res, 72,, 469-477.
    152. Schluessel, P., and W. J. Emery (1990), Atmospheric water vapour over oceans from SSM/I measurements, Int J Remote Sensing, 11, 753-766.
    153. Schluessel, P., and H. Luthardt (1991), Surface Wind Speeds over the North-Sea from Special Sensor Microwave Imager Observations, J Geophys Res-Oceans, 96, 4845-4853.
    154. Schuller, L., et al. (2003), Retrieval of microphysical, geometrical, and radiative properties of marine stratocumulus from remote sensing, J Geophys Res-Atmos, 108, doi: 10.1029/2002JD002680.
    155. Schwartz, S. E., et al. (2002), Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling, P Natl Acad Sci USA, 99, 1784-1789.
    156. Sekiguchi, M., et al. (2003), A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters, J Geophys Res-Atmos, 108, doi: 10.1029/2002JD003359.
    157. Seo, E. K., et al. (2007), How TRMM precipitation radar and microwave imager retrieved rain rates differ, Geophys Res Lett, 34, doi: 10.1029/2007GL032331.
    158. Shao, H. F., and G. S. Liu (2004), Detecting drizzle in marine warm clouds using combined visible, infrared, and microwave satellite data, J Geophys Res, 109, doi: 10.1029/2003JD00 4286.
    159. Shao, H. R, and G. S. Liu (2006), Influence of mixing on evaluation of the aerosol first indirect effect, Geophys Res Lett, 33, doi: 10.1029/2006GL026021.
    160. Sheu, R. S., et al. (1996), Satellite retrieval of tropical precipitation using combined international satellite cloud climatology project DX and SSM/I data, J Geophys Res-Atmos, 101,21291-21301.
    161. Smith, E. A., et al. (1998), Results of WetNet PIP-2 project, J Atmos Sci, 55, 1483-1536.
    162. Sohn, B. J., et al. (1998), Examing total precipitable water from SSM/I and TOVS over the East Asian summer monsoon region, Korean J Atmos Sci, 1, 79-93.
    163. Sohn, B. J., and E. A. Smith (2003), Explaining sources of discrepancy in SSM/I water vapor algorithms, J Climate, 16, 3229-3255.
    164. Spencer, R. W. (1986), A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates, J Appl Meteorol, 25,754-766.
    165. Spencer, R. W., et al. (1989), Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal, JAtmos Ocean Tech, 6,254-273.
    166. Staelin, D. H. (1969), Passive remote sensing at microwave wavelengths, Proc IEEE, 57, 427-439.
    167. Staelin, D. H., et al. (1972), The Nimbus 5 User's Guide, Sabatini, R. Ed., Greenbelt, Md.: NASA/GSFC,pp.141-151.
    168. Staelin, D. H. (1976), Remote Sensing of Atmospheric Water Vapor and Liquid Water with the Nimbus 5 Microwave Spectrometer, J Appl Meteorol, 15, 1204-1214.
    169. Stammer, D., et al. (2003), Validation of microwave sea surface temperature measurements for climate purposes, J Climate, 16, 73-87.
    170. Stammer, K., et al. (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl Opt, 27,2502-2509.
    171. Stephens, G. L., et al. (1994), A Comparison of Ssm/I and Tovs Column Water-Vapor Data over the Global Oceans, Meteorol Atmos Phys, 54, 183-201.
    172. Stith, J. L., et al. (2002), Microphysical observations of tropical clouds, J Appl Meteorol, 41, 97-117.
    173. Stogryn, A. (1967), The apparent temperature of the sea at microwave frequencies, IEEE Trans on antennas and propagation, 15, 278-286.
    174. Stone, R., et al. (1990), The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory, J Appl Meteorol, 29, 353-366.
    175. Storelvmo, T., et al. (2006), Combined observational and modeling based study of the aerosol indirect effect, Atmos Chem Phys, 6, 3583-3601.
    176. Streets, D. G., et al. (2003), Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, Global Biogeochem Cy, 17, doi: 10.1029/2003GB002040.
    177. Takemura, T, et al. (2007), Two competing pathways of aerosol effects on cloud and precipitation formation, Geophys Res Lett, 34, doi: 10.1029/2006GL028349.
    178. Tanre, D., et al. (1997), Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J Geophys Res-Atmos, 102, 16971-16988.
    179.Tjemkes, S. A., et al. (1991), Spaceborne Observation of Columnar Water-Vapor - Ssmi Observations and Algorithm, J Geophys Res-Atmos, 96, 10941 -10954.
    180. Trenberth, K. E., et al. (2006), Monitoring and prediction of the earth's climate: A future perspective, J Climate, 19, 5001-5008.
    181.Twomey, S., and K. J. Seton (1980), Inferences of gross microphysicalproperties of clouds from spectral reflectance measurements., J Atmos Sci, 37, 1065-1069.
    182. Twomey, S. A. (1977), The influence of pollution on the shortwave albedo of clouds, Journal of Atmospheric Sciences, 34, 1149-1152.
    183. Van de Hulst, H. C. (1980a), Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 1. Academic Press, pp. 317.
    184. Van de Hulst, H. C. (1980b), Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 2. Academic Press, pp. 422.
    185. Walton, C. C, et al. (1998), The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA Polar-Orbiting Environmental Satellites, J Geophys Res, 103, 27999-28012.
    186. Wentz, F. J. (1983), A model function for ocean microwave brightness temperatures, J Geophys Res, 88, 1892-1908.
    187. Wentz, F. J. (1992), User's manual SSM/I antenna temperature tapes. Rev. 1. Remote Sensing Systems Tech. Rep. 120191.
    188. Wentz, F. J. (1997), A well-calibrated ocean algorithm for special sensor microwave/imager, J Geophys Res-Oceans, 102, 8703-8718.
    189. Wentz, F. J., and R. W. Spencer (1998), SSM/I rain retrievals within a unified all-weather ocean algorithm, J Atmos Sci, 55, 1613-1627.
    190. Wentz, F. J., et al. (2000), Satellite measurements of sea surface temperature through clouds, Science, 288, 847-850.
    191. Wentz, F. J. (1995), The intercomparison of 53 SSM/I water vapor algorithms, Remote Sensing Systems Tech. Rep. on WefNet Water Vapor Intercomparison Project (VIP), Remote Sensing Systems, Santa Rosa, CA, pp. 19.
    192. Wielicki, B. A., and Coauthors (1990), The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft, Monthly Weather Review, 118, 2356-2376.
    193. Wilheit, T. T. (1979a), The effect of wind on the microwave emission from the ocean's surface at 37GHz, J Geophys Res, 84, 4921 -4926.
    194. Wilheit, T. T. (1979b), A model for the microwave emissivity of the ocean's surface as a function of wind speed,NASA Tech.Memo.,80278,April.
    195.Wilheit,T.T.,and A.T.C.Chang(1980),An algorithm for retrieval of ocean surface and atmospheric parameters from observations of the scanning multichannel microwave radiometer,Radio Sci,15,525-544.
    196.Wilheit,T.T.,et al.(1984),Retrieval of ocean surface parameters from the Scanning Multifrequency Microwave Radiometer(SMMR) on the Nimbus-7 satellite,IEEE Trans Geosci Remote Sens,GE-22,133-143.
    197.Wu,R.,and J.A.Weinman(1984),Microwave radiances from precipitating clouds containing aspherical ice,combined phase,and liquid hydrometeors,J Geophys Res,89,7170-7178.
    198.Xu,L.M.,et al.(1999),A cloud-patch technique for identification and removal of no-rain clouds from satellite infrared imagery,J Appl Meteorol,38,1170-1181.
    199.Xue,H.W.,and G.Feingold(2006),Large-eddy simulations of trade wind cumuli:Investigation of aerosol indirect effects,J Atmos Sci,63,1605-1622.
    200.Xue,H.W.,et al.(2008),Aerosol effects on clouds,precipitation,and the organization of shallow cumulus convection,J Atmos Sci,65,392-406.
    20l.Yu,H,,et al.(2007),Interannual variability of smoke and warm cloud relationships in the Amazon as inferred from MODIS retrievals,Remote Sens Environ,111,435-449.
    202.Yu,H.,et al.(2006),A review of measurement-based assessments of the aerosol direct radiative effect and forcing,Atmos Chem Phys,6,613-666.
    203.Zhang,L.,and J.L.Liu(2005),A comparison and validation of algorithms for retrieving water vapor content from SSM/I over ocean,Optical Technologies for Atmospheric,Ocean,and Environmental Studies,Lu,D.and G.M.Gennadii Ed.,SPIE,Bellingham,WA,pp.569-576.
    204.Zuidema,P.,and R.Joyce(2008),Water vapor,cloud liquid water paths,and rain rates over northern high latitude open seas,J Geophys Res-Atmos,113,doi:10.1029/2007JD009040.
    205.傅云飞,等(2005),西太平洋副热带高压下热对流降水结构特征的个例分析,气象学报,63,750-761.
    206.刘奇,(2007),基于ISCCP及TRMM观测的热带降水云与非降水云差异的研究,博士论文,中国科学技术大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700