高性能单晶光纤生长及其高温传感器与光纤激光器应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶光导纤维是一种具有光纤形式的特殊单晶体。它不但具有光纤的诸多优点,如导光性好、重量轻、体积小、抗电磁干扰,而且由于其本身材料是单晶,所以又具有单晶体固有的特性。近年来,随着光纤传感技术、光纤激光技术的发展,特别是单晶光纤在制备工艺上的不断成熟,不同基质的单晶光纤无论在生长还是应用方面都得到了普遍关注。
     本论文所涉及的研究工作的主要目标是研究单晶光纤在高温传感和激光领域的应用潜力。首先,采用激光加热基座(LHPG)法生长一系列蓝宝石单晶光纤和掺钕钇铝石榴石(Nd:YAG)单晶光纤。在制备过程中,深入分析了单晶光纤生长的机理,研究了熔区界面对于单晶光纤生长稳定性以及光纤中气泡包裹的影响。通过不断优化生长参数,生长出了高性能的优质单晶光纤。
     本文研究了基于蓝宝石光纤的FBG堆传感头的制备及相关特性。与传统的方法不同,本文采用真空镀膜技术制备光纤高温传感器。通过反复的实验研究,在蓝宝石基底上研制出了具有复合相纳米晶结构的薄膜,解决了光学膜在高温下由于结晶而产生失透的问题。在此基础上,通过选用合适的材料,以及设计-合理的膜层结构,成功制备出了基于蓝宝石单晶光纤的FBG堆高温传感器,最高的测量温度可达1050℃。此外,为了分析反射峰在超过1100℃时消失的原因,设计并进行了对照实验,通过比较,得出在1100℃以上反射峰的消失是由于膜层间不同组分相互扩散的结论。
     在激光应用领域,对选用高品质的Nd:YAG单晶光纤作为增益介质的光纤激光器进行了深入研究。由于影响单晶光纤激光器性能的因素十分复杂,所以本文通过大量的实验,对这些因素进行分别研究,例如光纤的冷却问题、泵浦光中心波长与Nd:YAG光纤吸收谱的匹配问题、腔镜的优化问题等,最后对这些因素进行综合考虑,得出了系统优化后的最佳参数,并且在输入60W泵浦功率时,得到了13W的连续光输出。此外,本论文还采用该Nd:YAG单晶光纤进行了小信号激光放大的尝试。通过对种子激光、单晶光纤、泵浦光源三者独立水冷的方式,经过反复的实验比较,深入分析了影响信号激光放大的因素,得出了如何进行系统优化的参考意见。
     本论文的实验结果表明,采用激光加热基座法生长的蓝宝石单晶光纤和Nd:YAG单晶光纤品质优良,通过进一步的深入研究,可望在高温传感和光纤激光放大领域发挥更大的作用。
Single crystal fibers (SCFs) are special crystals with fiber appearances. They have many advantages of the general optical fibers, such as good light guiding, light weight, small size and strong ability of anti-electromagnetic interference. Meanwhile, they have the inherent characteristics of the single crystal. In recent years, along with the development of optical fiber sensing and laser technology, especially with the maturity of the fabrication technique of SCFs, much attention has been paid to the growth and utilization of the SCFs with different medium.
     The aim of the work in this thesis is to develop high temperature sensors and high power lasers by adopting the SCFs. A series of sapphire fibers and Nd:YAG fibers have been grown by the laser heated pedestal growth (LHPG) method. The mechanism of growth was deeply analyzed. The effects of growing interface on stability of growth and involvement of bubbles have been further discussed. High quality SCFs were grown by optimization of growing parameters.
     Different from the general FBG fabrication methods, the vacuum coating technology was used for fabricating high temperature FBG stack sensors. Through repeated experimental investigation, a composite nano-crystalline structured thin film was realized on the sapphire substrate, and the devitrification effect at high temperature has been eliminated. Based on this, fiber Bragg grating (FBG) stacks were successfully fabricated at the end surface of sapphire fibers by adopting appropriate materials and thin film structures. The device thus fabricated can be used as a high temperature sensor, with a maximum working temperature of 1050℃. To explain the phenomenon of reflection peak disappearance after annealing at high temperature of 1100℃, a control experiment was carried out. A conclusion of inter-diffusion between layers of stack, which resulted in reflection disappearance, was obtained.
     In the aspect of laser, the single crystal fiber laser was investigated by adopting a high quality Nd:YAG single crystal fiber as the gain medium. Because the factors that affect laser performance were very complicated. a large number of experiments were carried out to study these factors respectively. e.g. cooling for the single crystal fiber, spectral matching of the pumping laser and crystal absorption spectrum, selection of the cavity mirrors, etc. After a general consideration for those parameters, a maximum output power of 13W was obtained at a pump power of 60W. Besides, an attempt was made to study the laser amplification by using the same Nd:YAG single crystal fiber as the gain medium. In particular, the water cooling systems were separately used for seed laser. single crystal fiber and pumping source. By comparing the results of repeated experiments, the factors which affect the signal amplification were studied, and a conclusion was made to optimize the performance of the system.
     Results thus obtained show the great prospect of using those sapphire fibers and Nd:YAG fibers in high temperature sensing and fiber laser applications.
引文
[1]Gomperz E V. Untersuchungen an Einkristalldrahten. Z. Phys.,1922,8(1):184-190.
    [2]LaBelle H E, Mlavsky A I. Growth of sapphire filaments from the melt. Nature,1967, 216(5115):574-575.
    [3]Gasson D B, Cockayne B. Oxide crystal growth using gas lasers. J. Material Science, 1970,5(2):100-104.
    [4]Haggerty J. Production of fibers by a floating zone fiber drawing technique. NASA Contract Report,1972:NASA-CR-120948.
    [5]Burrus C A, Stone J. Single crystal fiber optical devices:a Nd:YAG fiber laser. Applied Physics Letters,1975,26(6):318-320.
    [6]Burrus C A, Coldren L A. Growth of single-crystal sapphire-clad ruby fibers. Applied Physics Letters,1977,31(6):383-384.
    [7]Burrus C A, Stone J. Room-temperature continuous operation of a ruby fiber laser. J. Applied Physics,1978,49(6):3118-3123.
    [8]Mimura T, Hiyamizu S, Fujii T, Nanbu K. A new field-effect transistor with selectively doped GaAs/n-AlxGa1-x As heterojunctions. Japanese Journal of Applied Physics,1980, 19(5):225-227.
    [9]Bridges T J, Hasiak J S, Strnad A R. Single-crystal AgBr infrared optical fibers. Optics Letters,1980,5(3):85-86.
    [10]Que W, Zhou Y, Lam Y L, Chan Y C, Kam C H, Huo Y, Yao X. Cladding and characteristics of LiNbO3 single crystal fibre. J. Modern Optics,2000,47(6):1127-1136.
    [11]Ribeiro R M, Fiasca A B A, dos Santos P A M, Andreeta M R B, Hernandes A C. Optical activity measurements in the photorefractive Bi12TiO20 single crystal fibers. Optical Materials,1998,10(3):201-205.
    [12]Nubling R K, Harrington J A. Optical properties of single-crystal sapphire fibers. Applied Optics,1997,36(24):5934-5940.
    [13]Yang P Z, Deng P Z, Xu J, Yin Z W. Growth of high-quality single crystal of 30 at% Yb:YAG and its laser performance. J. Crystal Growth,2000,216(1-4):348-351.
    [14]陈继勤,丁祖昌,董绵豫.光学晶体纤维.杭州:浙江大学出版社,1994,1-122.
    [15][美]R.A.劳迪斯著,刘光照译.单晶生长.北京:科学出版社,1979,1-50.
    [16]Wilkens V, Wiemann C, Koch C, Foth H J. Fiber-optic dielectric multilayer temperature sensor:in situ measurement in vitreous during Er:YAG laser irradiation. Optics& Laser Technology,1999,31 (8):593-599.
    [17]Botsis J, Humbert L, Colpo F, Giaccari P. Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials. Optics & Lasers in Engineering, 2005,43(3-5):491-510.
    [18]Kulkarni A, Na J, Kim Y L, Baik S, Kim T. An evaluation of the optical fiber beam as a force sensor. Optical Fiber Technology,2009,15(2):131-135.
    [19]刘艳磊,苑立波.一种三环并联Rayleigh后向散射式光纤转动传感器.光子学报,2008,37(6):1180-1185.
    [20]沈剑威,傅志辉,王其良.基于Ga:YlG晶体的新型光纤电流传感器.传感技术学报,2006,19(4):1231-1233.
    [21]Grattan K T V, Sun T. Fiber optic sensor technology:an overview. Sensors and Actuators A:Physical,2000,82(1-3):40-61.
    [22]Lee B. Review of the present status of optical fiber sensors. Optical Fiber Technology, 2003,9(2):57-79.
    [23]Tong L M, Shen Y H, Ye L H. Performance improvement of radiation based high temperature fiber-optic sensor by means of curved sapphire fiber. Sensors and Actuators A: Physical,1999,75(1):35-40.
    [24]Zhang Z Y, Grattan K T V, Palmer A W, Meggitt B T. Characteristics of a high-temperature fibre-optic sensor probe. Sensors and Actuators A:Physical,1998,64(3): 231-236.
    [25]Keyvan S, Rossow R, Romero C. Blackbody-based calibration for temperature calculations in the visible and near-IR spectral ranges using a spectrometer. Fuel,2006, 85(5-6):796-802.
    [26]Guo H Q, Tao S Q. An active core fiber-optic temperature sensor using an Eu(Ⅲ)-doped Sol-Gel silica fiber as a temperature indicator. IEEE Sensors Journal,2007,7(6):953-954.
    [27]Shen Y H, Zhao W Z, He J L, Sun T, Grattan K T V. Fluorescence decay characteristic of Tm-doped YAG crystal fibre for sensor applications, investigated from room temperature to 1400℃. IEEE Sensors Journal,2003,3:(4):507-512.
    [28]Betta G, Pietrosanto A. An intrinsic fiber optic temperature sensor. IEEE Transactions on Instrumentation and Measurement,2000,49(1):25-29.
    [29]Zhan Y G, Xue S L, Yang Q Y, Xiang S Q, He H, Zhu R D. A novel fiber Bragg grating high-temperature sensor. Optik-International Journal for Light and Electron Optics,2008, 119(11):535-539.
    [30]Zhang B W, Kahrizi M. High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sensors Journal,2007,7(4):586-591.
    [31]Glaesemann G S, Smith J A, Clark D A, Johnson R. Measuring thermal and mechanical stresses on optical fiber in a DC module using fiber Bragg gratings. Journal of Lightwave Technology,2005,23(11):3461-3468.
    [32]Rao Y J, Henderson P J, Jackson D A, Zhang L, Bennion I. Simultaneous strain, temperature and vibration measurement using a multiplexed in fibre Bragg grating/fibre Fabry-Perot sensor system. Electronics Letters,1997,33(24):2063-2064.
    [33]Dils R R. High-temperature optical fiber thermometer. J. Applied Physics,1983,54(3): 1198-1201.
    [34]叶林华,沈永行.蓝宝石单晶光纤高温仪的研制.红外与毫米波学报,1997,16(6):437-442.
    [35]Sharp J H, Seat H C, Zhang Z Y, Grattan K T V. Single-crystal ruby fibres for fluorescence-based temperature sensing. Sensors & their Applications X, Cardiff,1999, 5-8:219-223.
    [36]Sun T, Zhang Z Y, Grattan K T V. Fiber optic fluorescence-based temperature excursion alarm system.14th OFS Conference,2000:46-49.
    [37]Reilly D, Willshire A J, Fusiek G, Niewczas P, McDonald J R. A fiber-Bragg-grating-based sensor for simultaneous AC current and temperature measurement. IEEE Sensors Journal,2006,6(6):1539-1542.
    [38]RajiniKumar R, Narayankhedkar K G, Krieg G, Suβer M, Nyilas A, Weiss K P. Fiber Bragg gratings for sensing temperature and stress in superconducting coils. IEEE Transactions on applied superconductivity,2006,16(2):1737-1740.
    [39]Crunelle C, Wuilpart M, Caucheteur C, Megret P. Original interrogation system for quasi-distributed FBG-based temperature sensor with fast demodulation technique. Sensors and Actuators A:Physical,2009,150(2):192-198.
    [40]Tsai T E, Griscom DL, Friebele E J. On the structure of Ge-associated defect centers in irradiated high purity GeO2 and Ge-doped SiO2. Diffusion and Defect Data,1987,53-54: 469.
    [41]Tsai T E, Griscom DL, Friebele E J. Radiation induced defect centers in high-purity GeO2 glasses. J. Applied Physics,1987,62(6):2264-2268.
    [42]Brambilla G, Pruneri V, Reekie L. Photorefractive index gratings in SnO2:SiO2 optical fibres. Applied Physics Letters,2000,76(7):807-809.
    [43]Shen Y H, Sun T, Grattan K T V, Sun M. Highly photosensitive Sb/Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability. Optics Letters,2003,28(21):2025-2027.
    [44]Shen Y H, He J L, Sun T, Grattan K T V. High temperature sustainability of strong fiber Gragg gratings written into Sb-Ge-codoped photosensitive fibre:decay mechanisms involved during annealing. Optics Letters,2004,29(6):554-556.
    [45]Shen Y H, He J L, Qiu Y Q, Zhao W Z, Chen S Y, Sun T, Grattan K T V. Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability. J. the Optical Society of America B-Optical Physics,2007,24(3):430-438.
    [46]Fokine M. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers. Optics Letters,2002,27(22):1974-1976.
    [47]Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, Unruh J. Fiber Bragg gratings made with a phase mask and 800 nm femtosecond radiation. Optics Letters,2003, 28(12):995-997.
    [48]Grobnic D, Mihailov S J, Smelser C W, Ding H M. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photonics Technology Letters,2004,16(11):2505-2507.
    [49]Morse T F, He Y F, Luo F. An optical fiber sensor for the measurement of elevated temperatures. IEICE Trans.Electron,2000, E83-C(3):298-301.
    [50]Luo F, Hernandez-Cordero J, Morse T F. Multiplexed fiber-optic Bragg stack sensors (FOBSS) for elevated temperatures. IEEE Photonics Technology Letters,2001,13(5): 514-516.
    [51]Morse T F, Luo F. A novel high temperature optical probe, sensors, Proceedings of IEEE, 2004,3:1269-1272.
    [52]Maiman T H. Stimulated Optical Radiation in Ruby. Nature,1960,187(4736):493-494.
    [53]Snitzer E. Neodymium glass laser. Proceedings of the Third International Conference on Solid State Lasers,1963:999-1019.
    [54]Koester C J, Snitzer E. Amplification in a fiber laser. Applied Optics,1963,3(10): 1182-1186.
    [55]Tippett J T, Glapp L C. Optical and Electro-Optical Information Processing. Combridge. Massachusetts:Massachusetts Institute of Technology Press,1965, Chaps.14.15 and 17.
    [56]Kao K C, Hockham G A. Dielectric-fibre Surface Waveguides for Optical Frequencies. IEE Proceedings J.,1966,113(3):1151-1158.
    [57]Koester C J. Laser action by enhanced total internal reflection. IEEE Journal of Quantum Electronics,1966,2(4):151.
    [58]Chester R B, Dragegert D A. Miniature diode-pumped Nd:YAIG lasers. Applied Physics Letters,1973,23(5):235-236.
    [59]Stone J, Burrus C A. Neodymium-doped silica lasers in end-pumped fiber geometry. Applied Physics Letters,1973,23(7):388-389.
    [60]Stone J, Burrus C A. Neodymium-doped fiber lasers:room temperature cw operation with an injection laser pump. Applied Optics,1974,13(6):1256-1258.
    [61]Burrus C A, Stone J. Single-crystal fiber optical devices:a Nd:YAG fiber laser. Applied Physics Letters,1975,26(6):318-320.
    [62]Digonnet M J F, Gaeta C J. Theoretical analysis of optical fiber laser amplifiers and oscillators. Applied Optics,1985,24(3):333-342.
    [63]Digonnet M J F, Gaeta C J, Shaw H J.1.064-and 1.32-μm Nd:YAG single crystal fiber lasers. J. Lightwave Technology,1986,4(4):454-460.
    [64]Digonnet M J F, Shaw H J, Gaeta C J, O'Meara D. Clad Nd:YAG fibers for laser applications. J. Lightwave Technology,1987,5(5):642-646.
    [65]Poole S B, Payne D N, Fermann M E. Fabrication of low-loss optical fibres containing rare-earth ions. Electronics Letters,1985,21(17):737-738.
    [66]Alcock I P, Tropper A C, Ferguson A I, Hanna D C. Q-switched operation of a neodymium-doped monomode fibre laser. Electronics Letters,1986,22(2):84-85.
    [67]Millar C A, Ainslie B J, Miller I D, Craig S P. Concentration and co-doping dependence of the 4F3/2 to4/I11/2 lasing behavior of Nd3+ silica fibers. Optical Fiber Communication Conference,1987:WI4.
    [68]Miller I D, Mortimore D B, Ainslie B J, Urquhart W P, Craig S P, Millar C A, Payne D B. New all-fiber laser. Optical Fiber Communication Conference,1987:WI3.
    [69]Zurn M, Voigt J, Brinkmeyer Ernst, Ulrich R, Poole S B. Line narrowing and spectral hole burning in single-mode Nd3+-fiber lasers. Optics Letters,1987,12(5):316-318.
    [70]Shimizu M, Suda H, Horiguchi M. High-efficiency Nd-doped fibre lasers using direct-coated dielectric mirrors. Electronics Letters,1987,23(15):768-769.
    [71]Amano S, Yamashita T, Tajima H, Masuda I, Izumitani T. Lasing characteristics of Nd:phosphate glass fibre laser. ECOC,1987.
    [72]Gozen T, Kikukawa Y, Yoshida M, Tanaka H, Shintani T. Development of high Nd3+ content VAD single-mode fiber by the molecular stuffing technique. Optical Fiber Communication Conference,1988:WQ1.
    [73]Po H, Hakimi F, Mansfield R J, McCollum B C, Tuminelli R P, Snitzer E. Neodymium fibre laser at 0.905.1.06 and 1.4 μm. Abstract of the Annual Meeting of the Optical Society of America,1986:FD4.
    [74]Liu K, Digonnet M, Shaw H J, Ainslie B J, Craig S P.10 mW superfluorescent single-mode fibre source at 1060 nm. Electronics Letters,1987,23(24):1320-1321.
    [75]Miniscalco W J, Andrews L J, Thompson B A, Quimby R S, Vacha L J B, Drexhage M G. 1.3 μm fluoride fibre laser. Electronics Letters,1988,24(1):28-29.
    [76]Vatnik S M. Gain and laser operation of 1.1%Nd:YAG crystal fibers. Optics Communications,2001,197(4-6):375-378.
    [77]Didierjean J, Castaing M, Balembois F, Georges P, Perrodin D, Fourmigue J M, Lebbou K, Brenier A, Tillement O. High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique. Optics Letters,2006,31(23):3468-3470.
    [78]Duan Y S, Huo Y J, Huang Z L, Li G S. Laser-diode-pumped Nd:YAP single crystal fiber laser. Chinese Phys. Lett.,1991,8(12):622-624.
    [79]Que W X, Zhou Y, Lam Y L, Chan Y C, Kam C H, Huo Y J, Yao X. Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding. Opt. Eng.,2000,39(10):2804-2809.
    [80]夏红星,陈玉婷,刘莉,李正佳.cr4+:YAG作饱和吸收体的被动Q开关复合单晶光纤激光器.应用激光,2005,25(3):169-170.
    [81]侯印春,周哲仪,颜声辉.光功能晶体.北京:中国计量出版社,1991,1-5,60-71.
    [82]Fletcher N H. Ice crystal nucleation by aerosol particles. Discussions of the Faraday Society,1960,30:39-45.
    [83]廖延彪.光纤光学.北京:清华大学出版社,2000,197-204.
    [84]Andreas Othonos, Kyriacos Kalli. Fiber Bragg Gratings:fundamentals and applications in telecommunications and sensing. London:Artech house press,1999,98-100.
    [85]涂时雨.掺铬钇铝石榴石晶体光纤雷射之研制.[硕士学位论文]高雄.国立中山大学,2003:5-14.
    [86]Nilsson J, Sahu J, Jeong Y, Clarkson W A, Selvas R, Grudinin Anatoly B, Alam S. High-power fiber lasers:new developments. Proceedings of the SPIE,2003,4974:50-59.
    [87]夏洁.Cr4+:YAG-Nd3+:YAG复合型单晶光纤及其被动调Q激光器研究.[硕士学位论文] 杭州.浙江大学,2005:9-12.
    [88][美]W.克希耐尔著,孙文,江泽文,程国祥译.固体激光工程.北京:科学出版社,2003,41-42,155-156,253-292,385-391.
    [89]陈钰清 王静环.激光原理.杭州:浙江大学出版社,2003,276-283.
    [90]曹三松,张向阳,黄燕琳,李光荣,苏心智.Nd:YAG单程激光放大器的设计方法.激光技术,2001,25(6):417-420.
    [91]Lan C W, Tsai C H. Modeling of ellipsoid mirror furnace for floating-zone crystal growth. J. Crystal Growth,1997,173(3-4):561-573.
    [92]Raming G, Muiznieks A, Miihlbauer A. Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals. J. Crystal Growth,2001,230(1-2):108-117.
    [93]Hu C, Chen J C. Experimental observation of interface shapes in the float zone of lithium niobate during a CO2 laser melting. International Journal of Heat and Mass Transfer,1996, 39(16):3347-3355.
    [94]Higuchi M, Kodaira K, Nakayama S. Growth of apatite-type neodymium silicate single crystals by the floating-zone method. J. Crystal Growth,1999,207(4):298-302.
    [95]Wu X J, Xu J Y, Jin W Q. Growth defects of lead germanate single crystals grown by the vertical Bridgman method. J. Materials Characterization,2005,55(2):143-147.
    [96]Katsurayama M, Anzai Y, Sugiyama A, Koike M, Kato Y. Growth of neodymium doped Y3Al5O12 single crystals by double crucible method. J. Crystal Growth,2001,229(1-4): 193-198.
    [97]Ko J M, Tozawa S, Yoshikawa A, Inaba K, Shishido T, Oba T, Oyama Y, Kuwabara T, Fukuda T. Czochralski growth of UV-grade CaF2 single crystals using ZnF2 additive as scavenger. J. Crystal Growth,2001,222(1-2):243-248.
    [98]Watauchi S, Tanaka I, Hayashi K, Hirano M, Hosono H. Crystal growth of Ca12Al14O33 by the floating zone method. J. Crystal Growth,2002,237-239(1):801-805.
    [99]沈剑威,王迅,沈永行.LHPG法生长单晶光纤中熔区生长界面对消除气泡的影响.人工晶体学报,2008,37(]):60-64.
    [100]顾菊观,沈永行,陈曙英,赵渭忠.LHPG法单晶光纤生长中的熔区控制技术.材料科学与工程,2001,19(4):20-23.
    [101]李冠告,刘骊.LHPG法单晶光纤生长的动力学分析.人工晶体学报,1995,24(3):208-211.
    [102]卢子宏,赵先胜,陈继勤,丁祖昌.单晶光纤生长条件及控制.人工晶体学报,1989,18(2):154-159.
    [103]Jiang B X, Xu J, Li H J, Wang J Y, Zhao G J. A Comparison between TGT and Cz Grown Nd:YAG. Journal of Materials Science & Technology,2006,22(5):581-583.
    [104]Shen J W, Shen Y H. Investigation on the structural and spectral characteristics of deposited FBG stacks at elevated temperature. Sensors and Actuators A:Physical,2008, 147(1):99-103
    [105]吴自勤,王兵著.薄膜生长.北京:科学出版社,2003,320-333.
    [106]Papadopoulos D N, Druon F, Boudeile J, Martial I, Hanna M, Georges P, Petit P O, Goldner P, Viana B. Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser, optics Letters,2009,34(2):196-201.
    [107]Kay R B, Poulios D. Q-switched rate equations for diode side-pumped slab and zigzag slab lasers including Gaussian beam shapes. IEEE J. Quantum Electronics,2005,41(10): 1278-1284.
    [108]Hanson F, Imthurn G.Efficient laser diode side pumped neodymium glass slab laser. IEEE J. Quantum Electronics,,1988,24(9):1811-1813

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700