轻集料导电混凝土的配制和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电混凝土既能用于道路、机场跑道的融冰化雪,又能用于建筑采暖、结构的裂纹监测等方面。开展导电混凝土材料的研究工作有着非常现实的重要意义。从适应社会发展的需要和节约资源的角度出发,本文构建了两种新型的导电混凝土-炭黑轻集料混凝土和复掺炭黑/碳纤维轻集料导电混凝土。分别对这两种新型导电混凝土的制备工艺、力学和电学性能以及电阻随荷载的变化规律进行了较系统的研究,具体研究内容和结论如下:
     (1)通过比较不同种类的导电炭黑、不同炭黑分散剂配比、龄期等对轻集料导电混凝土导电性的影响,确定了炭黑轻集料导电混凝土的制备方法。配制的导电混凝土具有渗流导电特征,滤渗阈值约为0.83vol%。抗压强度随着炭黑掺量的增加呈现先增大后降低的趋势,而密度随着炭黑体积掺量的增加而减小。当炭黑掺量为1.94vol%,胶砂比为2.43-5.2时,抗压强度能达到34~38MPa,电阻率稳定,但是拌合物加工困难,和易性较差。
     (2)为进一步提高导电混凝土的力学性能,通过研究比较5种不同的炭黑/碳纤维轻集料导电混凝土的制备工艺,得出了采用水溶性碳纤维薄毡制备碳纤维/炭黑轻集料导电混凝土的较好工艺。炭黑轻集料混凝土的电阻率都随着碳纤维的增加而降低。导电相总体积比单掺炭黑的量要少,而且拌合物具有更好的和易性。
     (3)研究了炭黑/碳纤维轻集料导电混凝土的抗弯折性能,表明碳纤维对炭黑轻集料混凝土有一定的增强增韧作用。抗折强度随着胶砂比的增大而增大,当胶砂比达到2.0时,抗折强度达到5.7MPa,此后抗折强度变化变得很小。结合抗折、抗压和导电性要求,得出能基本满足融雪化冰路面材料要求的轻集料导电混凝土配合比。
     (4)炭黑/碳纤维轻集料导电混凝土单调加载试验表明,在达到弯曲极限载荷之前,电阻变化率呈逐渐线性减小的趋势。胶砂比越大,电阻率越小,电阻变化率的幅度也逐渐的减小。
Conductive concrete can apply for both deicing or melt snowing of road,airport runways and for heating, structural monitoring and so on.It is very real significant to carry out the work of conductive concrete materials.To adapt to the needs of social development and conservation resource.This thesis construct two new conductive concrete-black lightweight aggregate concrete and re-doped carbon black/carbon fiber lightweight aggregate concrete.Preparation processs,mechanical and electrical prop-erties and resistance variation with load of the two new conductive concrete were researched systematicly. The main researching content and results are as follows:
     (1) A better preparation process of carbon black lightweight aggregate concrete was obtained by comparing the effect of the different kinds of conductive carbon black, carbon black dispersions in different ratio, age on the electrical conductivity of the lightweight aggregate concrete. Carbon black lightweight aggregate concrete had electrical percolation phenomena and percolation threshold was about 0.83vol%. Compressive strength increased with increasing carbon content at first and then decreased, while the material density decreased with increasing the volume content of carbon black. When the carbon black content was 1.94vol%, cement-sand ratio of 2.43 to 5.2, the compressive strength can reach 34 to 38MPa, and resistivity was stabile, but the poor workability and processing difficulty.
     (2) To further enhance the mechanical properties of conductive concrete, a good process that using water-soluble carbon fiber Thin felt to prepare carbon fiber/ carbon black conductive lightweight aggregate was obtained by comparing 5 different preparation process of carbon black/carbon fiber conductive lightweight aggregate concrete. The resistivity of black lightweight aggregate concrete was decreased with the increase of carbon fiber. The total volume amount of carbon black and carbon fiber is less than that of single-doped carbon black, and mixing has better workability.
     (3) The bending properties of carbon black/carbon fiber lightweight conductive was studied. The result indicated that carbon fiber has a certain role in strengthening and toughening to black lightweight aggregate concrete. The bending strength of concrete increases with increasing cement/sand ratio, when the cement/sand ratio is 2.0, the bending strength reach 5.7MPa,but then become a very small change in bending strength. A mix of meeting the requirement of deicing or snow melting material was obtained according the requirements of bending, compression, and electrical conductivity.
     (4) The experiment that carbon/carbon fiber conductive lightweight aggregate concrete was loaded monotonously show that the resistance change rate decreased linearly before reaching limit load. The larger cement/sand ratio and the smaller the resistance,the smaller the range of resistance change rate.
引文
[1]崔素萍,刘永肖等.导电混凝土研究现状及发展前景[J].建材,2004:321-325.
    [2]Chung DDL. Electrical conduction behavior of cement-matir composites[J]. journal of materials and performance,2002,11(2):194-204.
    [3]A. Katz, A. Bentur. Mechanical properties and pore structure of carbon fiber reinf-orced cementitious composites[J].Cement and Concrete Research,1994,24(2): 214-220.
    [4]S. B. Park, B. I. Lee, Y. S. Lim. Experimental study on the engineering properties of carbon fiber reinforced cement composites[J]. Cement and Concrete Research, 1991,21(4):589-600.
    [5]吴寅.碳纤维增强混凝土的力学性能[J].纤维复合料,1995,9(3):47-50.
    [6]余辉.碳纤维增强混凝土力学性能试验分析[J].常州工学院报,2006.10,19(5):26-30.
    [7]Xie ping. Electrical percolation phenomena in cement composites containing conductive fibers[J]. journal of materials science1996,(31):4093-4097.
    [8]王秀峰.碳纤维增强水泥复合材料的电导性能及其应用[J].复合材料学报1998.8,15(3):75-80.
    [9]沈刚,董发勤.碳纤维导电混凝土的性能研究[J].公路,2004,(12):178-182.
    [10]唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究[D].武汉:武汉理工大学,2002.
    [11]Xie,P, P. Gu, and J. J. Beaudion. Condutive concrete cement-based compositions, U. S.Patent,5447564,1995.
    [12]杨久俊,张海涛,李磊.干燥处理对碳纤维水泥基材料导电性能的影响[J].混凝土与水泥制品,2006,(3):43-45.
    [13]D.D. L. chun, Strain sensors based on the electrical resistance change accomp-anying the reversible pull-out of conducting short fibers in a less conductive matrix smart material structure [J]. Journal of materials science,1995,4:59-61.
    [14]Sihai Wen, D. D. L chun. Damage monitoring of cement paste by electrical resista-nce measurement[J]. cement and concert research,2000,30:1979-1982.
    [15]Zeng-Qiang Shi, D, D, L, Chun. Carbon fiber reinforced concert for traffic moni-toring and weighting in motion[J]. Cement and concrete research,1999,29 (3): 435-439.
    [16]Farhad Reza, Gordon B. Batson, Jerry A. Yamamuro, Jong S.Lee. Volume Electrical Resistivity of Carbon Fiber Cement Composites[J]. ACI Material Journal,2001, 98(1):25-35.
    [17]唐祖全,李卓球,徐东亮.CFRC路面材料的温敏性研究[J].武汉理工大学学报,2001,23(3):5-8.
    [18]Sun Mingqing, Li Zhongqiu, Mao Qizhao, Shen Darong. A study on thermal Self- monitoring of carbon fiber reinforced concrete[J]. Cement and Concrete Res-earch,1999,29(5):769—771.
    [19]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用[D].武汉:武汉理工大学,2003.4
    [20]Sherif Y, ChristopherY Tuan. David ferdon. Conductive concrete overlay for Bridge deck deicing:Mixture proportioning optimization and properties[J]. ACI Materials Journal 2000,97(2):172-181
    [21]沈刚,董发勤.石墨导电混凝土的研究[J]混凝土.2004,(2):21-25.
    [22]叶青,胡国君,张泽南.掺石墨水泥基导电材料的物理性能研究[J].硅酸盐通报,1995(6):37-40.
    [23]王勇,黄锐.炭黑复合导电高分子材料成型加工研究进展[J].工程塑料应用,2003,31(3):63-65.
    [24]Kida K. Reflection characteristics of electromagnetic waves by lossy concrete [J].Memoirs Chubu Institute of Technology,1983(19):45-54.
    [25]Xie P, J. J. Beaudoin. Electrically Conductive Concrete and It's Application in Deicing. Advances in Concrete Technology, Proceedings, Second CANMET/ACI International Symposium, SP-154, American Concrete Institute, Farmington Hills, Mich.1995,399-411.
    [26]刘军.碳纤维水泥基复合材料电性能及其改善的研究[D].汕头:汕头大学,2004.6.
    [27]李旭,康青,王德水.3mm波段混凝土屏蔽材料的研究[J].后勤工程学院学报,2004,(1):26-29.
    [28]李惠.水泥基纳米复合材料压敏特性研究[J].功能材料,2004,(35):2653-2656.
    [28]王玉林.纳米炭黑水泥砂浆力学性能和压敏性研究.[汕头大学硕士学位论文],2005.6.
    [30]Hui Li, Hui-gang Xiao, Jin-ping Ou. Effect of compressive strain on electrical receptivity of carbon black-filled cement-based composites[J]. Cement and Concrete Composites,2006,28:824-828.
    [31]龙曦,孙明清.纳米炭黑水泥基复合材料的压敏性研究[J].武汉理工大学学报2008,3.30(3):57-59.
    [32]王小英.炭黑水泥砂浆的电热性能及在室内采暖中的应用研究[D].武汉:武汉理工大学2007.
    [33]Sihai Wen, D. D. L. Chung. Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix composites[J]. Carbon,2007, (45):505-513.
    [34]韩宝国.乙炔炭黑水泥基复合材料的压敏性[J].复合材料学报2008.6,25(3):39-44.
    [35]Hui Li. Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition[J]. Composites Science and Technology 2008(68):2114-2119.
    [36]中华人民共和国行业标准.JGJ51-2002.轻集料混凝土技术规程[S].北京:中国建筑工业出版社,2002.
    [37]龚洛书.积极研究与开发高性能轻集料混凝土[J].混凝土与水泥制品,2000,3:8-12.
    [38]M. N. Haque, H. Al-Khaiat,0. Kayali. Strength and durability of lightweight concre-te [J]. Cement and Concrete ComPosites,2004,26(4):307-314.
    [39]刘德强,丁建彤,郭玉顺.普通混凝土与采用不同陶粒的轻质混凝土的水渗性和氯离子渗透性比较[J].混凝土,2005,(2):36-38.
    [40]范锦忠.论陶粒及陶粒制品的优势:性优,价廉,节能,适应性强,用途广[M].北京:中国建筑东北设计研究院,1997.
    [41]李建华.国外轻骨料混凝土应用[M].北京:中国建筑工业出版社.1982:416-425.
    [42]杨秋玲,马克栓.轻骨料混凝土的现状与发展[J].铁道建筑,2006(6).
    [43]Holm TA. Ries J P. Benefits of lightweight HPC[J]. HPC bridge views.2001,17:317-317.
    [44]丁建彤,郭玉顺,木村薰.结构轻骨料混凝土的现状与发展趋势[J].混凝土,2000,9:23-25.
    [45]张其颖.连续碳纤维增强轻骨料混凝土机械性能的研究[J].纤维复合材料.1995,12(4):38-40.
    [46]杨雨山,石建军,黄志刚.碳纤维增强轻骨料混凝土的试验研究[J].混凝土与水泥制品.2007(1):46-48
    [47]何建,石建军.碳纤维增强轻骨料(陶粒)混凝土的单轴力学性能和断裂机理[J].邵阳学院学报(自然科学版)2007,3.4(1):78-81.
    [48]石建军,杨雨山,周立科.轻骨料碳纤维混凝土的力学性能[J].混凝土.2009(4):70-74.
    [49]中华人民共和国建设部.GB/T50081-2002.普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003.
    [50]S.Kirkpatrick, Rev. Mod. Phys.45,574(1973).
    [51]R.Zallen,The Physics of Amorphous Solids(Wiley, New York,1983)Chap.4
    [52]Strumpler R, Glatz-Reichenbach J. Conducting polymer composites. J Electroceram 1999;3(4):329-46.
    [53]杨元霞,毛起熠,沈大荣,李卓球.碳纤维水泥基复合材料中纤维分散性的研究[J].建筑材料学报,2001,4(1):84—88.
    [54]Chen Puwoei, chun DDL. Carbon fiber reinforced concrete for smart structures capable of non-destructive flow detection[J]. Smart Mater Struct,1993, (2): 20-30.
    [55]Sihai Wen, DDL Chung. Carbon Fiber-reinforced Cement as a Thermistor. Cement and Concrete Research[J].1999, (26):961-965.
    [56]黄龙男:张东兴.碳纤维增强混凝土的拉敏特性及梁构件的机敏监测[J].材料工程.2005,(2):26-29.
    [57]姚武,钟文慧.CFRC梁在三点弯曲荷载作用下电阻与CMOD关系[J].同济大学学报(自然科学版).2008,2.36(2):227-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700