粉末高温合金中非金属夹杂物的遗传特征及损伤力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了三种典型非金属夹杂物(Al_2O_3、SiO_2及两者的混合物)在两种广泛应用的粉末高温合金(FGH95和FGH96)中的遗传特征,并从实验和计算机模拟两方面研究了非金属夹杂物对基体材料损伤力学行为的影响,并提出了改善合金中非金属夹杂物的措施。
     研究结果表明,三种夹杂物在FGH96合金中经不同工艺状态后,表现出了不同的行为特征:Al_2O_3由于其较高的硬度和热稳定性,在整个工艺过程中,形状、尺寸和成分等都没发生变化;而SiO_2经热等静压后,与合金中的Al和Ti等元素发生了反应,改变了基体/夹杂物之间的界面结合方式,影响了SiO_2周围基体中γ′相的数量和尺寸,形成贫γ′相区;Al_2O_3和SiO_2与合金粉末混合后,在热等静压(HIP)过程中,在高温、高压同时作用下,两种非金属夹杂物之间发生了化学反应,生成另外一种非金属夹杂物—莫来石。莫来石在高温下可能发生软化,在周围球形粉末颗粒的挤压下变形,界面呈圆弧状,形成尖锐的棱角。该种夹杂物也与基体之间发生了化学作用,表现出了与SiO_2相似的行为特征,但反应区的作用范围较窄。由于三种夹杂物与基本材料在热膨胀系数方面的差异,经淬火(油淬或盐淬)处理后,界面处易于萌生微裂纹。时效处理对两种反应型夹杂的影响不大。在等温锻造过程中,由于以上行为特征的差异性,使Al_2O_3完全被破碎,呈“链状”分布于基体中;SiO_2在其周围塑性区的缓冲下,发生局部断裂;而莫来石因其在高温时的软化,呈“薄膜状”分布。尽管FGH95和FGH96合金在成分及热工艺制度方面存在着一定的差异,三种夹杂物在合金处理的各工艺过程中表现出了相同的行为特征。基于镍基粉末高温合金在成分种类方面的相似性,可将三种夹杂物在上述两种合金中的遗传特性推广应用到所有镍基粉末高温合金中。
     在原位拉伸和原位疲劳实验中,夹杂物处是裂纹萌生的择优位置。裂纹萌生方式分为两种:夹杂物本身开裂和基体/夹杂界面开裂,通常为基体/界面开裂。扩展初期,裂纹在夹杂物尖角应力集中处沿与主应力成45o向基体中扩展,之后沿与最大正应力垂直的方向扩展至断裂。由于SiO_2和莫来石与基体之间的化学作用,改变了其周围基体的塑性,使断口表现出了特定的行为特征。夹杂物对基体力学性能的影响是很复杂的,主要取决于其位置和尺寸。在同一位置,夹杂物的尺寸越小,或同一尺寸,夹杂物距表面的距离越远,都会降低夹杂物对基体材料的危害性。
     用计算机模拟了夹杂物对基体材料损伤力学行为的影响。当夹杂物的形状,位置及取向等发生变化时,夹杂周围的应力场分布情况会发生相应的变化,尤其在疲劳过程中,夹杂物周围的应力场会随加载历程的不同而出现周期性变化。为提高模拟结果的准确性,应引入夹杂物的特性参数,除形状和位置外,还应考虑夹杂物在不同温度时的变形性及自身相变引起的体积变化等。
     合金中的实际夹杂物主要来源于母合金及其熔炼与雾化制粉过程,主要为Al、Si、Ti、Mg和Ca的氧化物。人工加入的三种非金属陶瓷夹杂物与合金中的实际夹杂物相比,具有一定的代表性,所表现出的遗传特征涵盖了合金中各夹杂物的基本特性。针对夹杂物的来源及与合金粉末的不同特点,提出了粉末高温合金盘件制备各工艺环节中夹杂物的控制措施及鉴别方法。根据各夹杂物在合金中的遗传特性,结合计算机数值模拟技术,并对模拟结果进行验证,以指导合金中夹杂类损伤容限的确定。
The genetic characteristic of three kinds of typical non-metallic inclusions—Al_2O_3, SiO_2 and their mixture—mullite, in two widely used superalloy—FGH95 and FGH96, was investigated. The effect of non-metallic inclusions on damage mechanical behavior of the matrix materials was studied by experimental tesing and computer simulation. Simultaneously, the methods of removing the non-metallic inclusion from the superalloys were advanced.
     The results indicate that the three kinds of non-metallic inclusions show different behavior characteristic in FGH96 superalloy after hot-working processes. The morphology, size and composition of Al_2O_3 are not changed due to its hardness and thermal stability. While, SiO_2 reacts with Al and Ti elements in FGH96 superalloy, and the thinγ′phases zone is formed in the matrix around the inclusion. Theγ′phases around SiO_2 particles become smaller in size, and few in amount. Because of the synchronous effect of high temperature and pressure during HIP, the mixed inclusions––Al_2O_3 and SiO_2––are turned into mullite. The mullite is apt to be soften at high temperature to form arc boundary. The mullite also reacts with the matrix and has the same thing with SiO_2, but the width of reaction zone is narrower than that of SiO_2’s. The micro-cracks usually initiate at interface between the matrix and the inclusion after being quenched—oil quenched or salt quenched, because of their difference in thermal expanding modulus. The effect of aging treatment on the characteristic of the tow kinds of reacting inclusions—SiO_2 and mullite, is not evident. As the high hardness, low ductility and coefficient of thermal expansion, the three kinds of non-metallic inclusions could not be deformed with the matrix during HIF simultaneously, and tend to be broken into pieces. Al_2O_3 particle is completely broken as a chain along deforming direction; SiO_2 particle is partly broken due to the protection of reaction zone. And the mullite becomes narrow like film. The characteristic of the three kinds of inclusions in the two kinds of superalloys—FGH95 and FGH96, is the same although the difference in compositions and processes between them. Thus, the above characteristic could be applied in all PM superalloys because of their similarity in compositions.
     The cracks tend to be initiated at inclusions during in-situ tension and in-situ fatigue experiments. The cracks are usually initiated at the interface between inclusion and the matrix, and seldom at the inclusion itself. At the beginning, the crack propagates into the matrix from the corner of the inclusion about 45°with the main stress axis, and then, normally until the matrix is ruptured. The fracture surface shows special characteristic because of the reaction zone generated by SiO_2 and mullite. The effect of non-metallic inclusions on the mechanical properties is rather complicated, and lies on the location and size of the inclusion. The smaller in size and the further from the surface, the less effect of non-metallic inclusion on the mechanical properties of the matrix is.
     The influence of non-metallic inclusion on damage mechanical behavior of the matrix was studied by computer simulation. The distribution of stress field around a non-metallic inclusion will be changed accordingly when the shape , location and orientation of the inclusion are varied. Especially, during LCF. The diagnostic parameter of the inclusion—deformable capability at different temperature, the size variety due to phase transformation other than shape and location, should be introduced to improve the veracity of the simulation results.
     The actual non-metallic inclusions in superalloys are oxides of Al, Si, Ti, Mg and Ca those come from original alloy melting and argon atomization. The three kinds of artificial non-metallic inclusions may be on behalf of the actual inclusions in PM superalloys. And the characteristic shown by them could be applied in all the inclusions in PM superalloys. Remove and discriminate methods for the inclusions are advanced for respective process according to the source and different characteristic with the metal powders. The criterion of damage tolerance can be established based on the characteristic of the non-metallic inclusions in PM superalloy applied with computer simulation technology.
引文
[1].颜鸣皋主编.航空材料学.上海:上海科学技术出版社,1985,6.
    [2]. S.戈康达著,颜鸣皋,刘才穆译.金属的疲劳与断裂.上海:上海科学技术出版社,1983,11
    [3].邹金文,汪武祥.粉末高温合金研究进展与应用.航空材料学报,26(3),2006:244-250
    [4].张丽娜等.粉末高温合金Rene95中夹杂物行为的研究.金属学报,vol.35,Suppl.2
    [5].热等静压FGH95粉末涡轮盘研制与应用研究.粉末高温合金文集(二).北京航空材料研究院,1997,10
    [6].黄乾尧,李汉康等.高温合金.北京:冶金工业出版社,2000,4
    [7]. C. T. Sims, N. S. Stoloff , W. C. Hagel,赵杰等译.高温合金—宇航和工业动力用的高温材料.大连:大连理工出版社,1992
    [8].陈国良,谢锡善等编.高温合金学.北京:冶金工业出版社,1987:241
    [9]. Jon R. Groh, David P. Mourer. Alternate Material for Elevated Temperature Turbine Cooling Plate Applications. Superalloys 2004, TMS 2004: 101-108
    [10].汪武祥.航空发动机涡轮盘材料应用与研究.中国航空工业第一集团公司发动机事业部内部资料55
    [11].汪武祥,何峰,邹金文.粉末高温合金的应用与发展.航空工程与维修,2002.6
    [12].李为镠编译.钢中非金属夹杂物[M].北京:冶金工业出版社,1998:461
    [13].国为民. -100μm FGH95粉末合金盘坯件的力学性能和热强性能.材料科学和工艺,2000,8(1):68
    [14].国为民,陈金生.直接HIP成形FGH95合金组织和性能的研究.材料科学与工艺,2000,8(1):68
    [15].汪武祥,周瑞发. Rene95粉末高温合金的缺陷与粉末盘的可靠性. FGH95粉末高温合金论文集,1990,8
    [16].李晓,张麦仓,张丽娜,谢锡善.夹杂物对粉末冶金高温合金力学性能的影响.特殊钢, 22(1),2001,2:25-28
    [17].毛健,俞克兰,周瑞发.粉末预热处理对Rene95粉末高温合金组织及性能的影响. FGH95粉末高温合金论文集.北京航空材料研究院,1990,8
    [18].王盘鑫主编.粉末冶金学.北京:冶金工业出版社,1997
    [19].某高推重比发动机用涡轮盘的研究.专业组内部资料.
    [20].Yokomaku T., et al. Effects of Defects and Microstructure on the Elevated Temperature Fatigue Property of P/M Superalloy MERL76. J. Soc. Mater, Sci., JPN, 1990, 39(437):188
    [21].Laitinen A. and Hanniner H., Effect of Non-Metallic Inclusion on Corrosion Fatigue Resistance of P/M Duplex Stainless Steel, Duplex Stainless Steels. 1996, 19:1045
    [22].阮中慈,郑运荣.高温合金粉末的显微组织分析. FGH95粉末高温合金论文集.北京航空材料研究院,1990,8
    [23]. C. E. Shamblen, D. R. Chang. Effect of Inclusion on LCF Properties of AS-HIP Rene95, Conference: High Temperature Alloys Committee of AIME, Philadephia, 1983
    [24]. W. H. Chang, H. M. Green, et al., Defect Analyses of P/M Superalloys Rapid Solidification Processing Principle and TechnologyⅢ. Proceeding of the Third Conference on Rapid Solidification Processing, 1982:500
    [25].何景素,王燕文编著.金属的超塑性.北京:科学出版社,1986
    [26]. Li W. L., Non-Metallic Inclusion in Steel. Beijing:Metallurgical Industry Press, 1988:75
    [27]. P. G. Roth, J. C. Murray, et al. Heavy Liquid Separation : a Reliable Method to Characterize of Inclusions in Metal Powder. Conference : Advance in Powder Metallurgy and Particulate Metals , Canada, 1994:1~12
    [28]. Mark G. Benz, William T. Carter, Felix G. Müller, et al. Electroslag Refining as a Clean Liquid Metal Source for Atomization and Spray Forming of Superalloy. Superalloy 1996, MMMC,1996:723-728
    [29]. J. M. Stencel, T.-X. Li, J. K. Neathery and L. W. Lherbier. Removal of Ceramic Defects from a Superalloy Powder Using Triboelectric Processing. TMS, Superalloys 2000, 95-99
    [30]. D. R. Chang, D. D. Krueger, et al. Superalloy Powder Processing—Properties and Turbine Disk Applications. Conference:Superalloys,1984:245
    [31].A. Bruckner-Foit, et al. Prediction of the Lifetime Distribution of High-Strength Components Subjected to Fatigue Loading . Fatigue Fract. Engng Mater. Struct.,Vol 16,1993,891
    [32]. Kenneth R. Bain and Regis M. Pelloux. Effect of Oxygen on Creep Crack Grogth in PM/HIPNickel-base Superalloys. Conference : Superalloy 1996:359
    [33].北京科技大学粉末涡轮盘研制组. FGH95各种状态合金中夹杂来源及其遗传关系,2000.6
    [34].何峰. PREP FGH95粉末高温合金初始组织的遗传特征及显微组织模拟.北京航空材料研究院博士后研究工作报告,2002.2
    [35].粉末高温合金中的非金属夹杂物.专业组内部资料.
    [36].邹金文,汪武祥.粉末高温合金中夹杂物特性及其对材料断裂行为的影响.金属学报,Vol.35,1999,10:S381
    [37].Kissinger R. D., Proceedings of the English International Symposium on Superalloys[C], Warrendale, Penn, USA: TMS Society, 1996:359.
    [38].Antolouich S. D., Proceeding of the Seventh International Symposium on Superalloys[C], Warrendale, Penn, USA: TMS Society, 1992:13.
    [39]. M. Chang, A. K. Koul, C. Cooper. Damage Tolerance of P/M Turbine Disc Materials. Superalloys 1996, MMMS 1996:677-685
    [40]. A. Hynn?, V. T. Kuokkala, P. Kettunen. Crack Initiation Studies of MA 760 During High Temperature Low Cycle Fatigue. Superalloys 1996, MMMS 1996:369-374
    [41]. H. C. Fiedler, T. F. Sawyer, R. W. Kopp, Spray Formed Rene95, GE Corporate Research and Development Center Report 87CRD034.1987
    [42]. J. C. Lautridou. Effect of Inclusions on LCF Life of P/M Superalloy for Tuerboengine Disks. Conference :High Temperature Materials for Powder Engineer , 1990, PartⅡ:1163
    [43]. Aviation Week Apace Technology, 1980,9,113
    [44].高德平,送迎东.粉末冶金涡轮盘疲劳寿命确定方法研究.航空动力学报,11(2),1996:126
    [45].送迎东,温卫东,高德平.粉末冶金涡轮盘的应用和寿命研究.航空动力学报,11(2),1996:294~298
    [46]. A. de Bussac and Jc. Lautridou. SNECMA, 1993
    [47].J. S. Cargirl, et al. Disk Residual Life Studies, PartⅠ:F100 1st—stage turbine disc(IN100),1979
    [48].C. H. Cosk, et al. Damage Tolerance Design Method for Engine Disc. ASME 82—GT—311
    [49].T. T. King. United States Air Force Engine Damage Tolerance Requirement. AIAA—85—1209
    [50].A. K. Koul, et al. Damage Tolerance Based Life Prediction of Discs. International J. Fatigue, No.51990
    [51].H. Hoff , G. W. Konig.用地坑内低循环旋转试验评定盘的损伤容限. ADA 169693
    [52].J. Gay, T. P. Gabb, R. V. Miner. Crack growth of Rene95. NASA—TM—87150,1985
    [53].R. M. Pllux, G. R. Romanoski and J. Feng. Study of the Fatigue Behavior of Short Cracks Nickel—Based Superalloys. AFOSR—TR—86—0224,1986
    [54].R. M. Pelloux. Study of Fatigue Behavior of Small Cracks in Nickel—Based Superalloys. AFOSR—TR—86—0457,1988
    [55].张学仁,聂景旭,丁英俊,粉末冶金涡轮盘蠕变/疲劳寿命预测中的几个问题,北京航空航天大学405教研室.
    [56] W. R. Prouts, C. E. Shamblen, J. S. Mosier, et al. Powder Metallurgy Rene95 Rotating Turbine Enging Parts NASA-CR-159802
    [57]. Cremisio R. S., Sims C .T., Hagel W. C., The Superalloys , New York: Wilew, 1972,373
    [58]. W. Betz and W. Track; Powder Metallurgy International,13(4),1981,195
    [59]. J. K. Tien; W. J. Boesch; International Powder Metallurgy Conference ,USA, 1980,3
    [60]. J. C. Lautridou ;“Effect of Inclusions on LCF Life of P/M Superalloy for Tuerboengine Disks”, Conference :High Temperature Materials for Powder Engineer , 1990, PartⅡ,1163
    [61]. Shailesh J. Patel, IanC. Elliott;“Production of High-Strength P/M Disk Alloys by Superclean Cast/wrough Technology”, Conference :Superalloy 1992,13
    [62].尹双增主编.断裂、损伤理论及应用.北京:清华大学出版社,1992
    [63]余天庆,钱济成编著.损伤理论及其应用.北京:国防工业出版社,1993,10
    [64] J.勒迈特著,倪金刚,陶春虎译.损伤力学教程.北京:科学出版社,1996,1
    [65].张丽娜,粉末高温合金盘材中非金属夹杂物的微观力学行为研究,北京科技大学博士论文,2001.11
    [66]. D. A. JABLONSKI, the Effect of Ceramic Inclusions on the Low Cycle Fatigue of Low Carbon Astroloy Subjected to Hot Isostatic Pressing, Materials Science and Engineering, 48,1981, 189-198.
    [67]. W. B. Pearson and W. Hume-Rothery, J. Inst. Met., 80, 641.
    [68].果世驹编著,粉末烧结理论,北京:冶金工业出版社,2002
    [69]. Skorohod V V. Proceeding of the Institute for the Science of Sintering. VI World Round TableConference on Sintering, New York Plenum Press.1987:81
    [70].高振昕,平增福,张战营等编著,耐火材料显微结构,冶金工业出版社,2002,6:66.
    [71].束德林著.金属力学性能)(2)[M].北京:冶金工业出版社,1995:26-38.
    [72].颜鸣皋.金属疲劳裂纹扩展规律及其微观机制.中国航空研究院. 1980,2
    [73].颜鸣皋.结构材料疲劳裂纹的扩展机制及其工程应用.航空材料. 4(1),1984,9
    [74]. Beevers C. J., Metal Sci., 1977, 8:362
    [75]. Bussac. A. DE., Prediction of the competition Between Surface and Internal Fatigue Crack Initiation in PM Alloy. Fatigue and Fracture of Engineering Materials & Structure. 1994, 17:1319
    [76].张丽娜,张麦仓,李晓等. Ni基P/M Rene95合金中非金属夹杂物导致裂纹萌生和扩展的扫描电镜原位观察.稀有金属材料与工程,30(2),2001,4:123-126
    [77]. Eric S. Huron, Paul G. Roth, the Influences on Low Cycle Fatigue Life in a P/M Nickel-Base Disk Superalloy, Superalloys 1996:359-367
    [78]. Shamblen C. E. and Chang D. R., Effect of Inductions on LCF Life of HIP Plus Heat Treatment Powder Metal Rene95[J] . Metallurgical Transaction, 16B, 1985, 775.
    [79].赖祖涵主编.金属的晶体缺陷与力学性质.北京:冶金工业出版社. 1988,5
    [80].中国航空材料手册(2).北京:中国标准出版社.1999,2
    [81]. Goodier J. N., Concentration of Stress Around Spherical and Cylindrical Inclusions and Flaws, Dec. 1996,1
    [82].陈火红编著. Marc有限元实例分析教程.北京:机械工业出版社,2002,2
    [83].陈火红,于军泉,席源山编著. MSC.Marc/ Mentat 2003基础与应用实例.北京:科学出版社. 2004,1
    [84]周传月,郑红霞,罗慧强等编著. MSC.Fatigue疲劳分析应用与实例.北京:科学出版社,2005,3
    [85]. J. F. Barker, E. H. VanDerMolen.,“Effect of Processing Variables on Powder Metallurgy Rene95”, Superalloys—Processing( Proceedings of the Second International Conference), Sept., 18-20,1972:AA
    [86]. Ofitserov, A A, Zavolosnov, B S,“Ceramic Foam Filter for Filtering High Temperature Nickel Alloys”, Lifeinoe Proiavodstvo 4, 1993,19
    [87].赵先国,劳日玲,刘金波.提高FGH95母合金锭纯净度的途径. FGH95粉末高温合金论文集,北京航空材料研究所.1990,8:37-41
    [88].“Clean PM Superalloy”, James D.,Destefam Advanced Materials and Process ,9.1989 pp63-6,
    [89].傅杰.电渣重熔过程中氧化物夹杂去除机理的探讨.金属学报,15(4),1979,3:526-538
    [90]. Carter, W. T, Benz, M. G.,et al;“Electroslag Remelting as a Liquid Metal Source for Spray Forming”, Conference : Advance in Powder Metallurgy & Particulate Materia, USA 1995,721
    [91]. Cockcrof T. S., Degawa T., et al;“Inclusions and the BE Refining of Superalloys”, Conference: Electron Beam Melting and Refining—State of the Art, USA 1992,143
    [92]. Mark G. Benz, et al;“Electroslag Refiningas a Clean Liquid Metal Source for Atomization and Spray Forming of Superalloys”, Conference : Superalloy 1992,13
    [93].真空系统与技术. ALD资料.
    [94].张义文,陈生大,张宏,冯涤.静电分离去除高温合金粉末中陶瓷夹杂物的研究,金属学报,35(2),1999,10:S331-S333.
    [95].胡本芙,何承群,李慧英.水淘析管结构参数对分离Rene95粉末中陶瓷夹杂的影响.金属学报,35,1999,10:S352-S354
    [96]. Tanaka-Y; Sassa-K; et al;“Separation of Nonmetallic Inclusions from Molten-Metal Using Traveing Magnetic-Field”, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, Vol. 81, 1995, 1120
    [97]. Elkaddah N., Patel A .D., et al;”The Electromagnetic Filtration of Molten Aluminum Using an Induced-Current Separator”, JOM-Journal of the Materials Metals & Materials Society, Vol. 47, 1995,46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700