用户名: 密码: 验证码:
煤层气储层压裂数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用煤层气地质学、石油天然气地质学和渗流力学等学科的理论和方法,在前人的基础上,研究了考虑启动压力梯度项的低渗透煤储层中煤层气的储集、运移和产出机理,概化出了其储层模拟的地质模型,并用IMPES方法进行数值求解;正确预测煤层气压裂井产能是煤层甲烷资源开发的关键,在研究水力压裂对煤层气的增产措施时,建立了双重介质煤层气藏三维两相渗流数学模型;最后,以单井作为研究对象,从渗流力学基本理论出发,在总结继承前人成果的基础上,对压裂井试井问题进行了广泛的研究,建立并求解了均质煤层气三线性流的压裂井试井模型,编制了相应的程序,并绘制了相应的试井曲线。
     本文主要研究成果:
     (1)在大量国内外文献调研的基础上,对煤岩储层特征、煤层气的储集、运移及产出机理进行了系统深入地分析研究,为煤层气藏的开发动态研究奠定了地质基础。
     (2)基于低渗透煤层气藏的特点,建立并求解了考虑启动压力梯度项的双重介质煤层气储层模拟的数学模型,详细推导了该数学模型的IMPES数值求解方法,利用实例绘制了相应的参数敏感曲线。结果表明:低渗透煤层气藏启动压力梯度项不容忽视。
     (3)在煤层气藏地质特征研究的基础上,针对煤层气开采经历的解吸、扩散以及渗流等复杂流动过程,建立了双重介质煤层气藏三维、非平衡吸附、拟稳态条件下气—水两相耦合流动数学模型,并定量分析了水力压裂对煤层气产量的影响。
     (4)建立并求解了均质煤层气藏三线性流有限导流垂直裂缝试井模型,考虑了外边界为无穷大地层、矩形封闭地层的情况,考虑了井储表皮效应以及变井储效应,绘制了相应的样板曲线;
Based on the theories and methods of many subjects such as oil-gas geology and mechanics of flow through porous media, the mechanisms of coalbed methane considering starting pressure gradient generation storage, migration and production are studied, also a simplified geologic model of coalbed container rock is established in this paper; then a two-phase, 3-D flow model of dual-porosity media is established when researching on the hydraulic fracturing on the stimulation of coalbed methane; finally, homogenous coalbed methane reservoir trilinear flows finite-conductivity vertical fracture well test model has been established and worked out. Following results have been presented:
     (1) This study includes the characteristics of coalbed methane reservoir and the mechanisms of the storage, migration and production for coalbed methane, which helps further studies on dynamic exploitation of coalbed methane.
     (2) A two-phase, 3-D flow model considering the starting pressure gradient of dual-porosity media and coalbed methane was established and worked out. The IMPES numerical method of the mathematical model was given in detail.
     (3) A three-dimensional, dual-porosity, pseudo-steady, non-equilibrium sorption, two-phase mathematical model has been established, which includes complex processes of desorption, diffusion and seepage during the exploiting procedure of coalbed methane. This model also considers the influence of hydraulic fracturing on the coalbed methane production.
     (4) Homogenous reservoir trilinear flows finite-conductivity vertical fracture well test model has been established and worked out. Outside boundaries are considered. Effects of wellbore storage, skin and changing wellbore storage are included. Type curves are plotted.
引文
[1]赵庆波等.世界煤层气发展现状[M].北京:地质出版社,1998
    [2] Bumb A.C, McKee C.R. Gas-well testing in the presence of desorption for coalbed methane and Devonian shale[R].SPE15227,l986
    [3] King et al. Numerical Simulation of the Transient Behavior of Coal-Seam Degasification wells.SPE Formation Evaluation,1986
    [4] Ertekin, Sung Schwerer. Production Performance Analysis of Horizontal Drainage Wells for Degasification of Coal-Seams. SPE paper 15433
    [5] Ertekin et al. Dynamic Gas Slippage :A Unique Dual-Mechanism Approach to the Flow of Gas in Tight Formations SPE Form. Eval.(Feb,1985):43-52
    [6] Smith D.M and Williams F.L. Diffusional effects in the recovery of methane from coalbeds [J ] . SPE J., 1984: 529-535
    [7] Kolesar J.E., Ertekin T, Obut S.T. The unsteady stature of sorption and diffusion phenomena in the micropore structure of coal: Part 1-Theory and mathematical formulation[J]. SPE. Form.Eval., 1990
    [8] Kolesar J.E., Ertekin T, Obut S.T. The unsteady stature of sorption and diffusion phenomena in the micropore structure of coal: Part 2- Solution. SPE Form.Eval., 1990
    [9] Seidle J.P. Arri L.E. Use of Conventional Reservoir Models for Coalbed Methane Simulation. CIM/SPE Paper 90118
    [10] Thomas Advanced Large-Scale Coalbed Methane Modeling Using Conventional Reservo -ir Simulator. SPE Paper 75672
    [11] Arri L.E.,Yee D.et al. Modeling Coalbed Methane Production With Binary Gas Sorption. SPE Paper 24363
    [12] Scott Reeves. Advanced Reservoir Modeling In Desorption-Controlled Reservoirs. SPE Paper 71090
    [13] King G.R. and Ertekin T. M. A survey of mathematical models related to methane produ -ction from coal seams, Part I: Empirical & equilibrium sorption models[C]. Proceedings of the 1989 Coalbed Methane Symposium, the University of Alabama/ Tuscaloosa, April 17-20, 1989: 125-138
    [14] Airey E.M. Gas emission from broken coal: an experimental and theoretical investigation [J]. International Journal of Rock Mechanics and Mining sciences, 1968:475-494
    [15] Price H.S., McCulloch R.C. et al. A computer model study of methane migration in coalbeds[C]. The Canadian Mining and Metallurgical Bulletin, 1973,66(737): 103-112
    [16] Pavone A.M. and Schwerer F.C. Development of coal gas production simulators and mathematical models for well test strategies[R]. Final Report under GRI Contract Number 5081-321-0457, April, 1984
    [17] ICF Lewin Energy. Coalbed methane reservoir modeling [R].Short Course for GRI,1987
    [18] Paul G.W, Sawyer W.K, Dean R H. Validation of 3D coalbed simulators[C].Paper SPE2 -0733
    [19]煤吸附特性的研究[J].太原理工大学学报,2001,32 (4):449-451
    [20] Ancell K.L., Lambert S. Analysis of the coalbed degasification on process at a seventeen well pattern in the Warrior basin of Alabama. SPE Paper 8971
    [21] Micguire W J, Sikora V J. The effect of vertical fracture on well productivity.Trans. AIME, 1960, v219: 401-403
    [22] Tannich J D and Nierode D E. The effect of vertical fractures on gas well productivity. SPE 15902
    [23] Prats M. Effect of vertical fractures on reservoir behavior-incompressible fluid case. SPEJ, June 1961:105一108
    [24] Remond L R & Binder G G. Productivity of wells in v ertically fractured damaged formations. JPT, Jan. 1967
    [25] J Van Dum. Planning of optimum production for a Matural Gas Reservoir.J. of the institute of Petroleum 54, March, 1968: 531:55-67
    [26] Hoditch S A et al. The optimization of wells pacing and fracturing length in low-permeab -ility gas reservoirs. SPE 7496
    [27] P F Lemen and H J Patel. Effects of fracture and reservoir parameters on recovery from low-permeability gas reservoir. SPE 5111
    [28] D N Meehan & B F Pennijgton. Numerical simulation results in t he Carthage Cotton Valley Field. J PT,3 49 838,Jan.19 82
    [29] Soliman M Y. modification to production increase calculation for a hydraulic fracturedwell. OGJ, Oct. 1986
    [30] Tinsley J M et al. Vertical fracture height-Its effect on steady-state production increase. JPT, May 1969: 633-6381
    [31]何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态.石油大学学报,1990, Vol 14, No4
    [32] Agarwal R G et al. Evaluation and performance prediction of low-permeability gas well stimulated by massive hydraulic fracturing. JPT, March 1979: 262-372
    [33]张士诚.水力压裂参数对采收率影响的研究.低渗透油藏开发技术,1994
    [34]杨兆中.西南石油学院博士论文,1996
    [35]杨能字,张士诚,王鸿勋.整体压裂水力裂缝参数对采收率的影响.石油学报,1995
    [36]赵金洲,郭建春.水力压裂效果动态预测.石油钻采工艺,17(6),1995年,55-61,88
    [37]赵金洲,郭建春,陈汉斌,李青山.裂缝性低渗透油藏整体压裂数值模拟技术及应用.1998年9月,西安,会议论文1-12
    [38] Dyes, etc.Effect of Fractures on Sweep-Out Patern”Trans. AIME(1958)Vol-213,245-24 9
    [39] Heber Cinco-Ley.Transient Pressure Analysis for Fractured Wells.SPE7-490,1978
    [40] Economides,M.J.,Mclennan,J.D.,Brown,E.and Roegiers, J.C.P performance and stimulati -on of horizontal well.World Oil (June 1989), 41
    [41] Karcher B.J.Giger F.M.etal.Some Practical Formulas to Predict Horizontal Well Behavior.SPE15430
    [42]张学文,宏长,泽楠,长杉.低渗透油藏压裂水平井产能影响因素.石油学报.1999,20 (4):51-55
    [43]郝艳丽,王河清,李玉魁.煤层气井压裂施工压力与裂缝形态简析.煤田地质与勘探,2001,29(3):20-22
    [44]张金成,王小剑.煤层气压裂裂缝动态法检测技术研究.天然气工业,2004,25(5):107-109
    [45]袁志亮,孟小红.井间地震层析成像技术在煤层气压裂检测的应用.中国煤田地质,2007,19(2):69-74
    [46] Michael D.zuber and Vello A.kuuskaraa and Watter K.Sawyer.optimizing well spacing and Hydraulic-Fracture Design for Economic Recovery of coalbed Methan.Mathematicaland computer services,SPE17726:98-102
    [47] B.W.McDariec.Hydraulic Fracturing Techniques Used for stimulation of Coalbed Methane Wells.Society of Petroleum Engineers,SPE21292:1-7
    [48]刘方槐,颜婉荪编著.油气田水文地质学原理.北京:石油工业出版社,1991
    [49]安欧.构造应力场,地震出版社,1992.4
    [50]李先炜.岩块力学性质,煤炭工业出版社,1983.1
    [51]戴金星,戚厚发等著.我国煤系的气油地球化学特征.煤成气藏形成条件及资源评价,北京:石油工业出版社,2001
    [52]张群,李建武等.高煤级煤的煤层气开发潜力一以沁水煤田为例.煤田地质与勘探,2001,vol29(6): 26-29
    [53]钱凯等.煤层甲烷气勘探开发理论与实验测试技术.北京:石油工业出版社,1996
    [55]赵庆波等著.煤层气地质与勘探技术.石油工业出版社,1999
    [54] Kolesar J E,Ertekin T.The Unsteady-state Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal.SPE 15233,1986
    [55] King G R,Ertekin T.Numerical simulation of the transient behavior of Coal seam degasification Wells.SPE 12258,1983
    [56] Boyer C M.Methane Modeling-predicting the Inflow of Methane Gas into Coal Mines.Final Report,DOE Contract Number DE-AC22-80PC30123,1982
    [57] Ancell K.L., Lambert S. Analysis of the coalbed degasification on process at a seventeen well pattern in the Warrior basin of Alabama. SPE Paper 8971
    [58]刘慧卿.油藏数值模拟方法专题.东营:石油大学出版社,2001
    [59] Young G B. C., McElhiney J. E,Paul GW. An analysis of Fruitland coalbed methane production, Cedar Hill field, Northern San Juan basin. SPE Paper 22913

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700