水泥基材料的自愈合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基材料在大范围应用的同时也伴随着自然环境、灾难破坏、人为因素的作用而引起水泥基材料的诸多病害,而开裂问题是这些灾害中最严重的也是急需要解决的问题。传统的解决方案是重新修补,但是这种被动的修复方法已经不能完全满足人们的需求,本文针对的是水泥基材料自愈合特性的研究,探讨水泥基材料的自愈合技术。
     (1)加入粉煤灰等掺合料后,水泥基材料的养护自修复效果有所降低,其中以粉煤灰的愈合效果最差,其次为矿渣、偏高岭土和硅灰;水泥基材料在经受一定的损伤后能够进行自愈合,而且随着养护龄期的增加,自愈合现象持续作用,但前期自愈合作用显著,后期趋于平缓;在热养护条件下可以最大程度的提高水泥基材料的自愈合效果;随着前期养护时间的增加,压损再标准养护后抗压强度值恢复逐渐减小;随着压损值的增大,试件受损伤的程度加深,试件再养护修复后的抗压强度值比基准试件明显减小。
     热水养护拥有最大电通量回复率,标准养护其次,冷水养护的效果最差,其中热水养护的效果与无压损的状态最接近;随着水灰比的升高,电通量回复率在总体上呈现不断下降的趋势。
     (2)渗透密封剂和硅酸钠溶液都能改善试件的抗压性能,在一定程度上修复砂浆试件在冻融循环中产生的孔隙和裂缝,增强砂浆试件本身的密实性。
     (3)电化学沉积方法用于水泥基材料试样裂缝的修复是可行的,电流密度是影响裂缝愈合效果的一个重要因素。采用较小的电流密度作用时,Mg(OH)2晶体的沉积速度减慢,所生成叶片状晶体结构排列紧密,强度较高。
     (4)本文通过正交实验制备得到了一种新型水泥基渗透结晶型修复剂。这些组分中间,作用最为突出的是活性剂,它起到了修复的主要作用;最佳方案配方为:助剂4%,硫铝酸盐水泥40%,活性剂1.5%,水泥35%。
Cement based materials in a wide range of applications with the natural environment, disaster damage, the role of human factors caused by many diseases of cement based materials, and the cracking problem is the most serious of these disasters which are urgently needed to solve the problem.The traditional solution is to repair, but this passive method can not completely meet the needs of the people. This paper is the cement-based materials self-healing properties research, discussing the self-healing technology.
     (1) After adding admixtures, self-repairing effect of cementitious materials reduced, which the healing effects of the worst is fly ash, followed by slag, metakaolin and silica fume.Cementitious materials have self-healing characteristic when they are damaged, and along with the increasing of curing period, self-healing phenomenon is continued, but the early healing effect is remarkable, then later leveled off.When the cement based materials is in the heat curing condition, self-healing effect has the best results.As early maintenance time increaseing, pressure loss and standard curing strength value is restored gradually decreasing. With the pressure loss increases, injury degree is deepened, maintenance after repairing of compressive strength value decreases than the reference specimen.
     Hot water conservation has the largest flux recovery rate, standard curing secondly, water conservation is the worst, in which hot water conservation effect is the closest to no pressure loss stat.With the water cement ratio rising, flux recovery rate in general showes a declining trend.
     (2) Penetrating sealants and sodium silicate solution can improve the compressive performance, they can partly repair mortar specimen pores and cracks when mortar specimens are damsged under cyclic freezing and thawing and penetrating sealants and sodium silicate can reinforce mortar compactness.
     (3) Electrochemical deposition method for cement base material specimen fracture repairing is feasible and the current density is an important factor for the impact of crack healing effect. When the current density function is small, Mg (OH)2crystals deposition velocity are down and generating leaf-shaped crystals which have closely arranged structure and high strength.
     (4) Through the orthogonal experiment, this paper gets a new type of cement-based permeable crystallization repairing agent.The most prominent effect of these components is active agent, it has played a major role in repair. The optimal formula:4%auxiliaries,40%sulfur aluminate cement,1.5%active agents and35%cement.
引文
[1].张誉.混凝土结构基本原理[M].中国建筑工业出版社,2000:2-3.
    [2].曹双寅,邱洪兴,王恒华.结构可靠性鉴定与加固技术[M].北京:中国水利水电出版社.
    [3].吴人洁,冯春祥,杜善义等.复合材料.天津:天津大学出版社,2000:214-22102(2):序.
    [4]. Dry Carolyn. Adhesive liquid core optical fibers for crack detection and repairs in polymer and concrete matrices.Proceedings of SPIE-The International Society for OpticalEngineering, 1995,244:410-413.
    [5]. Dry Carolyn. Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete.Smart Materials and Structures,1996,5(3):297-300.
    [6]. Abrams A. Concrete.Vol.10, pp.50,Aug.1925.
    [7]. Jae-Suk,Ryu,Nobuaki otsuki. Crack Closure of Reinforced Concrete by Electrodeposition Technique. Cementand Research,Vol.32,No.l,pp.159-164,2002.
    [10].Dry Carolyn, Nancy Sottos. Passive Smart Self-Repair in Polymer matrix Composites Materials. Conference of Adaptive Materials, Albuquerque, New Mexico, Jan.,1993.
    [11].杨大钾.智能材料与智能系统.天津大学出版社,2000.
    [12].赵晓鹏.具有自修复行为的智能材料模型.材料研究学报.1996,10(1):101-104.
    [13].Dry Carolyn. Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibers into Cement Matrices. Smart Materials and Structures.1994,3(2):118-123.
    [14].Dry Carolyn. Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fiber. Proceedings of SPIE-The International Society for Optical Engineering 1996,2718:26-28.
    [15].Dry Carolyn. Biomimetic bone-like polymer cimentitious composite. Proceedings of SPIE-The International Society for Optical Engineering 1997,3040:251-256.
    [16]. Dry Carolyn. Repair and prevention of damage due to transverse shrinkage cracks in bridge decks. Proceedings of SPIE-The International Society for Optical Engineering 1999,3671:253-256.
    [17].H.Hiraishi, Smart Structure System, Concrete Journal,Vol.36,No.l,pp.11-12,1998.
    [18].S.M.Bealy, C.B.Loader. A Smart system for Polymer Matrix Composites. Composites:Part A Vol.32,pp.1767-1776,2001.
    [19].杨红.空心光纤用于智能结构自诊断、自修复的研究:[博十学位论文].南京:南京航空航天大学,2001.03.
    [20].陶宝祺,梁大开,熊克,袁慎芳.形状记忆合金增强智能耦合材料结构的自诊断、自修复功能的研究.航空学报.1998,19(2):251-253.
    [21].宋小杰.纳米材料在新型混凝土材料中的应用[J].安徽建筑工业学院学报(自然科学版),2007,15(4):31-36.
    [22].汤华,李相国.水泥基材料裂缝自愈合效应的研究[J].武汉理工大学学报2008,30(4):12-15.
    [23].杨振杰,齐斌,刘阿妮,刘延强等.水泥基材料微裂缝自修复机理研究进展[J].石油钻探技术,2009,37(3):5-9.
    [24].李鹏辉,陈凤岐.水泥基渗透结晶性防水材料自愈性能研究[J].中国科技论文在线,2006,1(2):23-26.
    [25].刘鹏,贾平,周宗辉,程新.自修复混凝土研究进展[J].济南大学学报(自然科学版),2006,20(4):19-23.
    [26].孙凌,张福华,崔巍.自愈合水泥砂浆修复性能的研究[J].低温建筑技术,2008,23(5):34-36.
    [27].林宗寿.无机非金属材料工学.武汉:武汉理工大学出版社,2006.
    [28].王培铭.无机非金属材料工学.上海:同济大学出版社,1999.
    [29].袁润章.胶凝材料学.武汉:武汉理工大学出版社,1990.
    [30].L.A. Bisby, V.K.R. Kodur and M.F. Green. Numerical parametric studies on the fire endurance of fibre-reinforced-polymer-confined concrete columns. Canadian Journal of Civil Engineering 31 (2005) (6):1091-1100.
    [31].L.H. Han and J.S. Huo.Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard. Journal of Structural Engineering, ASCE 129 (2003) (1):68-78.
    [32].Mehta P K.Durability—Critical issues for the future[J].Concrete International,1997,19:1-12.
    [33].Neville A,Aitcin P C.High performance concrete—An overview[J].Materials and Structures,1998,31 (3):111-117.
    [34]. Sun M,Li Z,Liu Q,et al.Astudy on thermal self-diagnostic and self-adaptive smart concrete structures[J]. Cement and Concrete Re-search,2000,30(8):1251-1253.
    [35].Jacobsen S,Sellevold E J.Self healing of high strength concrete after deterioration by freeze/thaw[J]. Cement and Concrete Research,1996,26(1):55-62.
    [36].王德库,黄如卉,刘凯,等.混凝土裂缝调查与修补技术[J].混凝土,2000,(9):14-16.
    [37]. WANG De-ku,HUANG Yu-hui,LIU Kai,et al.Investigation and re-pair techniques of concrete cracks[J].Concrete,2000,(9):14-16.
    [38].Ramm W,Biscoping M.Autogenous healing and reinforcement corro-sion of water-penetrated separation cracks in reinforced concrete[J]. Nuclear Engineering and Design,1998,179(2):191-200.
    [39].Otsuki N,Ryu J S.Use of electrodeposition for the repair of concrete with shrinkage cracks[J],Journal of Materials in Civil and Engineer-ing(ASCE),2001,13(2):136-142.
    [40].Edvardsen C.Water permeability and autogenous healing of cracks inconcrete[J].ACI Materials Journals,1999,96(4):448-454.
    [41].Nobuaki Otsuki,Makoto Hisada,Ryu Jae-Suk,et al.Rehabilitation of concrete cracks by electrodeposition[J].Concrete International,1999,21(6):58-63.
    [42]. Wolf Hilbertz.Repair of reinforced concrete structures by mineral ac-cretion[P].US Patent.4440605,1984-04-13.
    [43].Wolf Hilbertz,Mineral accretion of large surface structure,building components and elements[P].US Patent:4246075,1981-01-20.
    [44]. Ryu Jae-Suk,Nobuaki Otsuki.Crack closure of reinforced concrete by electrodeposition technique[J].Cement and Concrete Research,2002,32(1):159-164.
    [45].查全性.电极过程动力学导论[M].北京:科学出版社,2002.
    [46].ZHAQuan-xing.Introduction of dynamics electrode process[M].Bei-jing:Science Press,2002.
    [47].袁大伟.世纪之交谈我国防水材料.中国建筑防水.1998,2:5-6.
    [48].孙庆祥.百年防水回眸与展望.中国建筑防水.2001,1:3-6.
    [49].姚武,吴科如.智能混凝土的研究现状及其发展趋势.建筑石膏与胶凝材料.2000,10:22-24.
    [50].Day C M. First European Conference on Smart Structures and Materials. Glasgow UK,1992 May.
    [51].翁在龙,世伟,扬仲家,黄然.表面渗透涂封剂对混凝土特性影响之研究[J].防蚀工程,2002,26(3):181-190.
    [52].Dry Carolyn, Nancy Sottos. Passive Self-Repair in Polymer Matrix Composites Materials. Conference of Adaptive Materials, Albuquerque, New Mexico, January 1993.
    [53].周培杰,谷青华.水泥基渗透结晶型防水涂料性能研究.新型建筑材料.
    [54].薛绍祖.国外水泥基渗透结晶型防水材料的研究与发展.中国建筑防水.2001,6:9.
    [55].夏富洲,黄道宏,端木凌云.水泥基渗透结晶型防水材料的性能及试验研究.中国农村水利水电.2003,1:47-50.
    [56].袁大伟.再谈渗透结晶型防水剂.中国建筑防水.2003,5:1-3.
    [57].袁大伟.渗透结晶型防水剂剖析.中国建筑防水.2001,6:13-16.
    [58].章宗友.也谈水泥基渗透结晶型防水材料的应用.中国建筑防水.2004,3:8-11.
    [59].孟凡斌.混凝土中钢筋的锈蚀和预防.安徽建筑工业学院学报(自然科学版).2(10).
    [60].游宝坤.也谈渗透结晶型防水材料.中国建筑防水.2003,7:6-7.
    [61].张永春.渗透结晶型防水材料在建筑中的运用.材料工程.2003,4(21):25-26.
    [62].王祥连.微晶水泥砂浆防水剂的研制与应用.新型建筑材料.1999,2:29-31.
    [63].张雄,陈国忠.复合型混凝土防水剂的研究.
    [64].杨斌.水泥基渗透结晶型防水材料及其标准.新型建筑材料.2003,9:50.
    [65].蒋正武.国外混凝土裂缝的自修复技术.建筑技术.2003,4(34):261.
    [66].C.M.Dry. Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cement and Concrete Research 30(2000): 1969-1977.
    [67].Stefan Jacobsen, Jacques Marchand, Luc Boisvert. Effect of cracking and healing on chloride transport in opc concrete. Cement and Concrete Research.1996,6(26):869-881.
    [68].Byung Hwan Oh, Soo Won Cha, Bong Seok Jang, Seung Yup Jang. Development of high-performance concrete having high resistance to chloride penetration. Nuclear Engineering and Design 212(2002):221-231
    [69].现行防水材料标准及施工规范汇编(第二版).北京:中国建筑工业出版社.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700