黄土破裂特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土体在外力作用下会发生各种各样的破坏,包括拉裂破坏、剪切破坏及塑性流变软化等。发育于汾渭盆地黄土体中的地裂缝,其成因复杂多样,实质上也是土体在应力—渗流—损伤耦合作用下的一种破裂行为。本文以汾渭盆地地裂缝为研究背景,以三原县双槐树村地裂缝试验场为试验场地,通过对地裂缝发育的介质环境—黄土(包括裂隙性黄土)进行抗拉、抗剪、流变特性力学试验研究,以及各种作用下的数值试验研究,分析了与地裂缝有关的黄土破裂特性及破裂行为,并在此基础上讨论了黄土地区地裂缝的成因机制与扩展机理。
     黄土的单轴拉伸试验表明,黄土的抗拉强度与极限拉应变值均很小,地质环境下发育的黄土地裂缝与黄土的弱抗拉特性有着密切的关系,当黄土体内拉应力储备大于其抗拉强度时,拉应力便会寻找一种可以释放能量的通道,于是在土中产生拉张裂缝;黄土的蠕变试验表明,土体达到破坏性蠕变阶段时的极限应变与围压及含水率大小有关,高湿度黄土具有更明显的流变软化特性,三原地表张开的地裂缝与突降暴雨的短期浸泡作用直接相关,属于浸润作用下的短期流变软化—开裂问题,深部地裂缝则存在长期应力作用下的蠕变现象;裂隙性黄土的抗拉破裂及抗剪破裂特性表明,其破裂主要受控于所处的应力状态及土体中原有的宏观结构面,在低围压情况下,裂隙性黄土更容易沿原有裂隙结构面产生裂缝而破坏,黄土体中多数地裂缝是在土体中原有的结构面上发育起来的;借助数值分析软件RFPA,真实地再现了土体中裂纹的萌生、扩展至贯通过程,并且确定出了各种因素作用下的起裂应力及裂纹扩展路径。
     黄土在各种作用下的破裂特性试验研究表明,汾渭盆地的构造应力场是引发地裂缝的主控因素,其他一些作用则为附加因素。
The soil would generate all sorts of broken under the function of external force, such as the tensile broken, the shear broken and the plastic rheology. The ground fissure developed in Fen-Wei basin had the complex genesis, and was a kind of soil broken under the coupling function of stress, seepage flow and impairment. The author in this paper researched the mechanism of ground fissures in Fen-Wei basin according to the ground fissures in Sanyuan testing field. Based on a series of mechanical test of loess, such as tensile test, shear test, creep test and numerical test, analyzed the rupture characteristics and behavior related to loess ground fissures. Based on this, discussed the genesis and expansion mechanism of ground fissures developed in loess.
     The tensile test indicated that the ground fissures developed in loess were concerned to the very small tensile strength and limit strain of loess. When the tensile stress in loess was bigger than tensile strength, the tensile cracks would come into being to release the tensile stress. The creep test indicated that the limit strain in destructive creep stage was related to the confining pressure and water content, and the high water content loess had the more obvious rheological softening character. The Sanyuan ground fissure developed on the ground surface was nearly connected with dump rainstorm, and ground fissure developed in deep layer was related to creep under the function of long-term stress. The test of fissured loess indicated that, the stress state and the original structural plane controlled the rupture of fissures loess, and the fissured loess was easier to produce cracks under low confining pressure. By using the numerical analyzing software RFPA, the initiation, the expansion and the penetrating of fissures in loess were reappeared, and the stress and expansion path of cracks were determined.
     The broken test of loess showed that the tectonic stress field of Fen-Wei basin was the controlling factor to ground fissures, and other factors were additional factors.
引文
[1]王景明等.地裂缝及其灾害的理论与应用[M].西安:陕西科学技术出版社,2000
    [2]彭建兵等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007,15(4):433-440
    [3]徐光黎.西安地裂缝灾害研究[D].武汉:中国地质大学,1996
    [4]彭建兵等.渭河盆地活动断裂与地质灾害[M].西安:西北大学出版社,1992
    [5]张家明.西安地裂缝研究[M].西安:西北大学出版社,1990
    [6]刘国昌.西安地裂缝[J].西安地质学院学报,1986,(4):9-22
    [7]王景明.渭河地震带地裂与地震活动的周期性[J].地震学报,1985,7(2):190-201
    [8]王兰生等.浅生时效构造与人类工程[M].北京:地质出版社,1994
    [9]李永善等.西安地裂及渭河盆地活断层研究[M].北京:地震出版社,1992
    [10]Michael C.Carpenter.Earth fissures and subsidence complicate development of desert water resources[J].U.S.Geological Survey,Tucson,Arizona,1999,pp.65-78
    [11]Ayres,James E.Two Clovis Fluted Points from Southern Arizona.Kiva,1970,(36):44-48.
    [12]Heidke,James M.The Earliest Tucson Basin Pottery[J].Archaeology in Tucson,1997,11(3):9-10
    [13]Heilen,Michael P.An Archaeological Theory of Landscapes[D].Ph.D.dissertation,Department of Anthropology,University of Arizona,Tucson,2005
    [14]Huckell,Bruce B.The Paleo-Indian and Archaic Occupation of the Tucson Basin:An Overview[J].Kiva,1984,49(3-4):133-145
    [15]Kreitler C.W..Fault control of subsidence[J].Houston,Texas,Ground Water,1977,15(3):203
    [16]耿大玉,李忠生.中美两国的地裂缝灾害[J],地震学报,2000(4):433-441.
    [17]Ray Harris and M.Lee Allison.Hazardous Cracks Running Through Arizona.Geotimes[A],2006,8
    [18]姜振泉等.临汾地裂缝的成因及发育环境研究[M].徐州:中国矿业大学出版社,1999
    [19]冯希杰.西安地裂缝活动成灾评估[J].西安地质学院学报,1990,12(4):44-48
    [20]李新生.西安地面沉裂环境问题研究[D].西安:西安地质学院,1994
    [21]王景明,常丕兴.汾渭地裂缝与地震活动[J].地震学报,1989,11(1):57-67
    [22]王景明.渭河地震带地裂与地震活动的周期性[J],地震学报,1985,7(2):190-201
    [23]王景明.黄土沟槽网络与新构造应力场[J].地理科学,1987,7(2):139-146
    [24]陈志新.地裂缝成灾机理及防御对策[J].西安工程学院学报,2002,24(2):17-25
    [25]李树德,袁仁茂.大同地裂缝灾害形成机理[J].北京大学学报(自然科学版),2002,38(1):104-108
    [26]陈志新等.渭河盆地地裂缝发育基本特征[J].工程地质学报,2007,15(4):441-447
    [28]宋彦辉等.山西地堑系一类特殊的剪切—挤压型地裂缝[J].工程地质学报,2007,15(4):448-452
    [29]门玉明等.山西清徐县地裂缝灾害现状及类型分析[J].工程地质学报,2007,15(4):453-457
    [30]卢全中等.陕西三原双槐树地裂缝的发育特征[J].工程地质学报,2007,15(4):458-462
    [31]李新生等.西安地铁二号线沿线地裂缝特征、危害及对策[J].工程地质学报,2007,15(4):463-468
    [32]黄强兵等.西安地铁二号线沿线地裂缝未来位错量估算及工程分级[J].工程地质学报,2007,15(4):469-474
    [33]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997
    [34]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报,1990,12(4):1-9
    [35]张茂花,谢永利等.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):11-16
    [36]邢义川.黄土力学性质研究的发展和展望[J].水力发电学报,2000,(71):54-65
    [37]谢定义.黄土力学特性与应用研究的过去、现在与未来[J].地下空间,1999,10(4):273-284
    [38]吴侃,郑颖人.黄土结构性研究[A].第六届全国土力学及基础工程学术会议论文集[C].同济大学出版社,1999:93-96
    [39]郑建国,张苏民.湿陷性黄土的结构强度特性[J].水文地质与工程地质,1990,(4):22-25
    [40]邢义川,刘祖典等.黄土的破坏条件[J].水力学报,1992,(1):12-20
    [41]邢义川,骆亚生等.黄土的断裂破坏强度[J].水力发电学报,1999,(4):36-44
    [42]李广信.高等土力学[M].北京:清华大学出版社,2004
    [43]黄文熙.土的工程性质[M].北京:水利水电出版社,1983
    [44]华南理工大学,东南大学等.地基及基础[M].北京:中国建筑工业出版社,1998
    [45]Tschebatorioff,F.P.,Ward,E.R.and De Phillipe,A.A..The tensile strength of disturbed and recompacted soils[J].Proc.3rd Int.Conf.on SMFE,1953(1):207-210
    [46]Hiroshi Hasegawa and Masayuki Ikeuti.On the tensile strength test of disturbed soil[J].Rheology and Soil Mechanics,IUTAM Symposium,Grenoble,1964
    [47]Bishop,A.W.and Garga,V.K..Drained tension test on London clays[J].Geotechnique,1969,16(2)
    [48]Ajaz,A.and Parry,R.H.G..Analysis of bending stresses in soil beams[J].Geotechnique,1975,25(3): 586-591
    [49]Ajaz,A.and Parry,R.H.G..Stress-strain behavior of two compacted clays in tension and compression[J].Geotechnique,1975,25(3):495-512
    [50]Ajaz,A.and Parry,R.H.G..Bending test for compacted clays[J].Proc.ASCE,JGED,1976,Vol.102,No.GT9
    [51]清华大学水利工程系土石坝抗裂研究小组.粘性土抗拉特性的测量和对土石坝裂缝的初步研究[J].清华大学学报,1975,No.1
    [52]武汉水利水电学院土坝裂缝研究小组.三轴应力作用下的抗拉强度[J].武汉水利电力学院院报,1976,No.2
    [53]段福贵.三轴拉伸破坏的破坏形式[A].山东省水利科学研究所,1981,2
    [54]钮泽明,陆士强.粘性填土单轴抗拉强度的几个影响因素[J].岩土工程学报,1983,(2):35-43
    [55]周鸿逵.三轴拉伸试验中试样的断裂机理[J].岩土工程学报,1984,6(3):11-23
    [56]李德琴.土的直立式单轴抗拉仪的研制及试验[J].大坝与土工测试,1988,(5):9-12
    [57]Fang,H.Y.and Fernandez,J..Determination of tensile strength of soils by unconfined-penetration test[J].Laboratory Shear Strength of Soil,ASTM STP 740,1981,130-144.
    [58]Mosaid,A..Tensile properties of compacted soils[J].Laboratory Shear Strength of Soil,ASTM STP 740,1981,207-225
    [59]Tang,G.X.and Graham,J..A method for testing tensile strength in unsaturated soils[J].Geotechnical Testing Journal,GTJODJ,2000,23(3),377-382
    [60]S.Y.Ibarra,E.McKyes,and R.S.Broughton.Measurement of tensile strength of unsaturated sandy loam soil[J].Soil & Tillage Research,2005,(81):15-23
    [61]沈忠言,彭万巍等.冻结黄土抗拉强度的试验研究[J].冰川冻土,1995,17(4):315-321
    [62]彭万巍.冻结黄土抗拉强度与应变率和温度的关系[J].岩土工程学报,1998,20(3):31-33
    [63]马芹永.人工冻土单轴抗拉、抗压强度的试验研究[J].岩土力学,1996,17(3):76-81
    [64]刘菀茹,何昌荣等.轴压法测定黏性土抗拉强度的若干问题探讨[J].水电站设计,2005,21(2):69-71
    [65]党进谦,张伯平等.单轴土工拉伸仪的研制[J].水利水电科技进展,2001,21(5):31-32
    [66]党进谦,郝月清等.非饱和黄土抗拉强度的研究[J].河海大学学报,2001,29(6):106-108
    [67]张少宏,郭敏霞等.三轴拉伸试验技术研究[J],西北水资源与水工程,2001,(6):24-27
    [68]党进谦,李靖等.黄土单轴拉裂特性的研究[J].水利发电学报,2001,(4):44-48
    [69]孙明星,党进谦等.原状黄土单轴抗拉特性研究[J].水利与建筑工程学报,2006,4(3):43-48
    [70]骆亚生等.黄土的抗拉强度[J].陕西水力发电,1998,(4):6-10
    [71]李守存.黄土抗拉特性研究[D].杨陵:西北农林科技大学,2005
    [72]徐永福,刘松玉.非饱和土强度理论及其工程应用[M].南京:东南大学出版社,1999
    [73]沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18(2):1-9
    [74]汤连生.从粒间吸力特性再认识非饱和土抗剪强度理论[J].岩土工程学报,2002,23(4):412-417
    [75]汤连生,张鹏程等.土体饱和度确定的两个问题[J].水文地质工程地质,2002,(5):1-3
    [76]熊承仁,刘宝琛等.重塑非饱和粘土抗剪强度参数与饱和度的关系研究[J].岩土力学,2003,Vol.24Supp.,195-198
    [77]殷宗泽,周建等.非饱和土本构关系及变形计算[J].岩土工程学报,2006,28(2):137-146
    [78]吴礼舟,黄润秋等.非饱和土中的饱和度的求解方法[J].工程地质学报,2006,14(6):788-791
    [79]贾其军,赵成刚等.低饱和度非饱和土的抗剪强度理论及其应用[J].岩土力学,2005,26(4):580-585
    [80]党进谦.非饱和黄土的结构强度及其应用[J],西北农业大学学报,1998,26(5):48-51
    [81]胡再强.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,(6):775-779
    [82]张引科,杨林德.非饱和土的结构强度[J].西安建筑科技大学学报,2003,35(1):33-36
    [83]袁龙蔚.含缺陷体流变性材料破坏理论及其应用[M].北京:科学出版社,2001
    [84]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [85]钱家欢,殷宗泽.土工原理与计算[M](第2版),北京:水利电力出版社,1993
    [86]谢宁,姚海明.土流变研究综述[J],云南工业大学学报,1999,15(1):52-56
    [87]GeuzeECW A,Tan Tjong Kie.The mechanical behavior of clays[J].Oxford:Proc.2nd.Int,Congress on Rheology,1953:67-71
    [88]陈宗基.Structure mechanics of clay[J].中国科学,8(1):41-45
    [89]李四光.地质力学方法[M].北京:科学出版社,1976
    [90]Savage,W.Z.,and Chleborad,A.F..A model for creeping flow in landslides[J].Bull,Assoc.Engrg.Geotogists,ⅩⅠⅩ,1982,(4):333-338
    [91]Ter-Stepanian,G..and Ter-Stepanian,H..Back analyses for determining the landslide pressure on a bridge abutment[J].Proc.,5th Int.Symp,on Landslides,Lausanne,Switzerland,1988,331-336
    [92]Yen,B.C..Stability of slopes undergoing creep deformation[J].J.Soil Mech.and Found.Div.,ASCE,1969,95(4):1075-1096
    [93]Lu,K.M.,and Wang,L.S..On the sliding-bending model of rock mass deformation and failure of slope[J].Proc.,5th Int.Symp,on Landslides,Lausanne,Switzerland,1988,219-224
    [94]Ting,J.M..On the nature of the minimum creep rate-time correlation for soil,ice and frozen soil[J].Can.Geotech.J.,1983,(20):176-182
    [95]Wijeweera,H.Creep and strength behavior of fine-grained frozen soils[D].PhD thesis,University of Calgary,Alberta,Canada.1990
    [96]Wijeweera,H.,and Joshi,R.C..Temperature-independent relationships for frozen soils[J].J.Cold Regions Engrg.,ASCE,1992,6(1):1-21
    [97]Aboshi,H..An experimental investigation on the similitude in the consolidation of a soft clay,including the secondary creep settlement[J].Proc.,8th Int.Conf.on Soil Mechanics and Foundation Engineering,Moscow,Specialty Session 2,1973,4.3,88.
    [98]Barden,L..Time-dependent deformation of normally consolidated clays and peats[J].J.Soil Mech.Found.Div.,1969,95(SM1):1-31.
    [99]Bishop,A.W.,and Lovenbury,H.T..Creep characteristics of two undisturbed clays[J].Proc.,7th ICSMFE,Mexico,1969,(1):29-37
    [100]Lade,P.V.,and Liu,C.T.Experimental study of drained creep behavior of sand[J].J.Eng.Mech.,1981,124(8):912-920
    [101]肖树芳,阿基诺夫K,泥化夹层的组构及强度蠕变特性[M].长春:吉林科学技术出版社,1991
    [102]马莉英,肖树芳等.黄土的流变特性模拟与研究[J].实验力学,2004,19(2):178-182
    [103]郭增玉,冯同新.高湿度Q2黄土的试验流变特性[J].地下水,2004,26(1):70-73
    [104]罗汀,姚仰平等.黄土的蠕变试验研究[J].西安建筑科技大学学报,1995,27(3):304-308
    [105]吴燕开,陈红伟等.饱和黄土的性质与非饱和黄土流变模型[J].岩土力学,2004,25(7):1143-1146
    [106]詹美礼,钱家欢.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62
    [107]郭志.软岩流变过程与强度研究[J].工程地质学报,1996,(1):75-79
    [108]陈铁林,李国英等.结构性粘土的流变模型[J].水利水运工程学报,2003,(2):7-11
    [109]刘颖.黄土的流变性质[A].中国科学土木建筑研究报告集13号[R],1961:125-133
    [110]王常明.土流变学研究现状与趋势[J].世界地质,1998,17(4):33-37
    [111]赵明华,肖燕等.软土流变特性的室内试验与改进的西原模型[J].湖南大学学报(自然科学版),2004,31(1):48-51
    [112]胡华.粘粒含量对淤泥质软土流变参数的影响及其机理分析[J].岩土工程界,2005,8(11):34-36
    [113]施斌,姜洪涛.粘性土的微观结构分析技术研究[J].岩石力学与工程学报,2001,20(6):864-870
    [114]C.C维亚洛夫.土力学的流变原理[M].杜余培译.北京:科学出版社,1987
    [115]朱鸿鹄,陈晓平等.考虑排水条件的软土蠕变特性及模型研究[J].岩土力学,2006,27(5):695-698
    [116]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报,2006,28(5):626-630
    [117]胡再强,沈珠江等.结构性黄土的本构模型[J].岩石力学与工程学报,2005,24(4):566-569
    [118]何开胜.结构性粘土的微观变形机理和弹粘塑损伤模型研究[D].南京:南京水利科学研究院,2001
    [119]D G Fredlund,H Rhardjo.非饱和土力学[M].北京:中国建筑工业出版社,1997
    [120]华南理工大学,东南大学等.地基及基础[M].北京:中国建筑工业出版社,1998
    [121]濮家骝,李广信.土的本构关系及其验证与应用[J].岩土工程学报,1986,8(1):47-82
    [122]李世平.岩石力学简明教程[M].中国矿业学院出版社,1986
    [123]赵锡宏等.损伤土力学[M].上海:同济大学出版社,2000
    [124]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4
    [125]蒋建平,章杨松等.土体宏观结构面及其对土体破坏的影响[J].岩土力学,2002,23(4):482-485
    [126]谢和平.孔隙与破断岩体的宏细观力学研究[J].岩土工程学报,1998,20(4):113-114
    [127]卢全中,彭建兵,陈志新,等.黄土高原地区黄土裂隙的发育特征及其规律研究[J].水土保持学报,2005,19(5):191-194.
    [128]Tae-Hyung Kim,changsoo Hwang.Modeling of tensile strength on moist granular earth material at low water content[J].Engineering Geology,2003(69):233-244
    [129]S.Y.Ibarra,E.McKyes,R.S.Broughton.Measurement of tensile strength of unsaturated sandy loam soil[J].Soil & Tillage Research,2005,(81):15-23
    [130]T.-H.Kim,S.Sture,and J.-M.Yun.Investigation of moisture effect on tensile strength in granular soil[J].Earth & Space.2004,pp.57-64
    [131]李晓军,张登良等.路基填土抗拉强度测定的试验研究[J].西安公路交通大学学报,2000,20(2):20-22
    [132]Skempton,A.W..Long-term stability of clay slope[J].Geotechnique,London,England,1964,14(2):77-101
    [133]Skempton,A.W.,Schuster,R.L.,and Petley,D.J..Joints and fissures in the London clay at Wraysburg and Edgware[J].Geotechnique,London,England,1969,19(2):205-217
    [134]Skempton,A.W.,and Vaughan,P.R..The failure of Carsington dam[J].Geotechnique,London,England,1993,43(1):151-173
    [135]Simons,N.E..Field studies of the stability of embankments on clay foundations[J].Bjerrum Memorial Voulme,NGI,Oslo,Norway,1976,pp.183-209
    [136]Potts,D.M.,Dounias,G.T.,and Vaughan,P.R..Finite element analysis of progressive failure of Carsington embankment[J].Geotechnique,London,England,1990,40(1):79-101
    [137]F.Tun(?)demir,and M.U.Ergun.A laboratory study into fracture grouting of fissured Ankara Clay[J].Innovations in Grouting and Soil Improvement,2005,pp.1-12
    [138]J.K.Kodikara,and X.Choi.A simplified analytical model for desiccation cracking of clay layers in laboratory tests[J].Unsaturated Soils,2006,pp.2558-2569
    [139]Abbas Elzein.Contaminant transport in fissured soils by three-dimensional boundary elements[J].International Journal of Geomechanics,2003,3(1):75-83
    [140]Timothy D.Stark,and Hisham T.Eid.Slope stability analyses in stiff fissured clays[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(4):335-343
    [141]Shahid Azam,and G.Ward Wilson.Volume change behavior of a fissured expansive clay containing anhydrous calcium sulfate[J].Unsaturated Soils,2006,pp.906-915
    [142]孔德坊等.裂隙性粘土[M].北京:地质出版社,1994
    [143]胡卸文,李群丰,赵泽三等.裂隙性粘土的力学特性[J].岩土工程学报,1994,16(4):81-88
    [144]邓京萍,张惠英.成都粘土的裂隙性对力学性能的控制作用[J].水文地质工程地质,1988(2):42-46
    [145]张慧英,田金花.成都粘土的胀缩特征[J].成都地质学院学报,1990,17(2):25-30
    [146]田金花,张慧英.成都粘土固结特征的初步研究[J].四川地质学报,1987,7(1):36-41
    [147]陈铁林,邓刚等.裂隙对非饱和土边坡稳定性的影响[J].岩土工程学报,2006,28(2):210-215
    [148]袁俊平,殷宗泽.考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟[J].岩土力学,2004,25(10):1581-1586
    [149]袁俊平.非饱和膨胀土的裂隙模型与边坡稳定分析[D].南京:河海大学,2003
    [150]赵中秀,王小军.超固结状态下裂隙粘土的强度特性[J].中国铁道科学,1995,16(4):56-62
    [151]黄质宏,朱立军等.裂隙发育红粘土力学特征研究[J].工程勘察,2004,(4):9-12
    [152]韩贝传,曲永新,张永双.裂隙型硬粘土的力学模型及其在边坡工程中的应用素[J].工程地质 学报,2001,9(2):204-208
    [153]卢全中,彭建兵等.大尺寸裂隙性黄土的直剪试验[J].公路,2006(5):184-187
    [154]卢全中,裂隙性黄土的力学特性及其工程灾害效应研究[D].西安:长安大学,2007
    [155]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97
    [156]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111
    [157]谢富仁等.中国大陆地壳应力环境研究[M].北京:地质出版社,2003
    [158]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003
    [159]唐春安,杨天鸿等.孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,(24):17-20
    [160]冷雪峰,唐春安等.非均匀孔隙水压力下水压致裂的数值试验[J].东北大学学报(自然科学版),2003,24(3):287-291
    [161]赵根模等.注水诱发地震研究[M].北京:地震出版社,1995
    [162]Griffith,A.A..Theory of Rupture[A].Proceeding of the First International Congress for Applied Mechanics.1964,pp.55-63
    [163]范天佑.断裂理论基础[M].北京:科学出版社,2003
    [164]McClintock,F.A.,and J.B.Walalsh.Friction on Griffith cracks in rocks under pressure[A].Proceedings of the Fourth U.S.National Congress of Applied Mechanics.1962,p.1015
    [165]关德斌.土的Griifith-Mohr联合抗裂强度理论,山东省水利科学研究所,1983
    [166]杨天鸿等.岩石破裂过程的渗流特性-理论、模型与应用[M].北京:科学出版社,2004
    [167]殷宗泽等.土工原理[M].北京:中国水利水电出版社,2006
    [168]D G Fredlund,H Rhardjo.非饱和土力学[M].北京:中国建筑工业出版社,1997
    [169]朱珍德,胡定.裂隙水压力对岩体强度的影响[M].岩土力学,2000,121(1):64-67
    [170]唐春安.岩石破裂过程的灾变[M].北京:煤炭工业出版社,1993
    [171]赵锡宏等.损伤土力学[M].上海:同济大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700