飞龙岛大桥承台大体积混凝土温度与裂缝控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国交通事业的发展,桥梁工程建设规模的增大,大体积混凝土水化热的控制问题已经引起桥梁工程界的高度重视。大体积混凝土在固化过程中释放的水化热会产生较大的温度变化和收缩而导致裂缝。而在桥梁施工中,常因防裂措施不当,导致混凝土温度应力超过其抗裂强度,造成混凝土开裂,影响混凝土的使用。虽然在混凝土大坝的设计、施工中对于大体积混凝土水化热温度场的研究有了长足的进步,但是目前能够结合桥梁的自身特点把各种因素对温度场的影响情况给较精确的计算出来的研究仍然是很必要的。
     本文以江西赣州飞龙岛大桥主塔承台大体积混凝土温度监测和裂缝控制为研究内容,系统开展了承台大体积混凝土温度控制研究。通过浇筑混凝土材料的选择,冷却循环水管的设置,控温保温养护措施的实施,对整个施工过程实时监控,实现了大体积混凝土施工的有效控制。承台混凝土浇筑完成后,未出现裂缝,达到了预期的监控目的。
     针对上述情况本文主要内容如下:
     (1)介绍水化热分析的理论基础以及一些主要参数的取值方法。从热传导基本原理出发,考虑大体积混凝土温度应力的主要影响因素,分析大体积混凝土结构中的温度作用原理,温度裂缝的产生机理、危害和控制方法,总结选取各种热学指标。
     (2)以飞龙岛大桥为工程背景,介绍大体积混凝土承台进行水化热温度控制的详细过程,并对其实测与计算的数据结果进行比较和分析。
     (3)运用三维有限元软件MIDAS/Civil对承台大体积混凝土,按照实际冷却水管的布置、水流情况、边界条件、实际施工过程等因素进行全程水化热温度场的仿真分析。通过对实测温度场和计算温度场的分析得出了许多有益结论。
     (4)提出并论证在夏季施工时,采用有效的温度监控措施可以更加有效的降低大体积混凝土中部的温度,使混凝土内温度变化更加均匀,减少混凝土内外的温差。
In recent years,with the development of the national traffic and the expansion of bridge construction,the issue about the hydration heat control of mass concrete has attracted great attention of bridge engineering.Releasing steam heat from the mass concrete structures while solidifying leads to produce the temperature change and contraction.In bridge construction,inappropriate measures lead to thermal stress of concrete over the anti-crack strength,resulting in concrete cracking and impact the concrete work.Although the concrete dam design and construction of mass concrete in the heat of hydration temperature field of research has made substantial progress, but it is very necessary that the study which we combine the characteristics of a bridge between the various factors gives a more accurate calculation on the temperature field.
     This paper introduced systematically the temperature control program and monitor analysis of the results on mass concrete construction of main tower bank pier of feilong-island bridge in Jiangxi province.The project has achieved effective control of mass concrete construction through the choice of pouring concrete,the set of cooling pipes,the implementation of conservation measures and the real-time monitoring throughout the construction process.After the concrete was moulded, there was no crack in the bank pier.Practice shows that the temperature control method is effective.
     The main research work of this paper includes such aspects:
     (1) This paper introduces the basic theory of the heart of hydration analysis and considers the main influence factor of mass concrete temperature stress on the basic theory.This paper also analysis the temperature function principle,temperature crack development mechanism,danger,method of crack control in mass concrete and summaries the choose of different calorific indexes in mass concrete.
     (2) This paper introduces the detailed process what the temperature control about heat of hydration in mass concrete,analyzing and comparing the measured data with calculation results trough the feilong-island bridge project.
     (3) This paper has simulation analysis with the bank pier mass concrete by the finite element software,in accordance with the actual layout of the cooling pipes, water flow situation,the boundary conditions,the actual construction process factors. This paper has gotten many useful conclusions through the analysis about the data and the calculating results in temperature field.
     (4) This paper proposes and demonstrates the Effective temperature control measures can be more effective to lower the center of mass concrete temperature, making concrete a more uniform temperature change,reducing the temperature difference between inside and outside the concrete.
引文
[1]陈仲先,汤雷.大型桥梁中大体积混凝土的温度控制[J].桥梁建设,2001.1
    [2]王梦铁.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997
    [3]陈明宪等.斜拉桥建造技术[M].北京:人民交通出版社,2003.6
    [4]史凤香.大体积混凝土裂缝控制研究:[硕士学位论文].武汉:武汉理工大学,2003.5
    [5]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999
    [6]Wilson E.L.The Determination of Temperature within Mass Concrete Structures(SME Report No.68-17),Structures and Material Research.Department of Civil Engineering,University of California,Berkeley,Dec.1968.87-91
    [7]Bofang Zhu,Ping Xu.Thermal stress and temperature control of roller-compacted concrete gravity dams[J].Dam Engineering,1995.(3):199-220
    [8]Emanuel,J.H and Hulsely,J.L.Temperature distributions in composite-bridges.Journal of Structural Division,ASCE,1978.104(1):65-78
    [9]Berwanger,C.Transient thermal behavior of bridge,Structural Engineering,ASCE,1983.109(10):2325-2339
    [10]Elbadry,M.and Ghali,A.Thermal stresses and cracking of concrete bridges,ACI Journal,November-December,1986.1001-1009
    [11]Elbadry,M.and Ghali,A.Control of thermal cracking of Concrete structures,ACI Journal,1995,7.435-450
    [12]Mats Emborg and Stig Bernander.Assessment of Thermal Cracking in Harding Concrete,Journal Engineering.Oct,1994
    [13]Frank J.Vecchio,A.Sato.Thermal Gradient Effects in Reinforced Concrete Frame Structure,ACI Structural Journal.May-June,1990
    [14]朱伯芳.多层混凝土结构仿真应力分析的并层算法[J].水力发电学报,1994(03):21-30
    [15]朱伯芳.不稳定温度场数值分析的分区异步长算法lJ].水利学报,1995(08):46-51
    [16]王建江,陆述远等.RCCD温度应力分析的非均匀单元方法力学与实践[J].武汉水利电力大学学报,1995(03):41-44
    [17]王建江,陆述远.碾压混凝土浇筑层的温度计算fJ].武汉水利电力大学学报,1996(01):32-37
    [18]陈尧隆,何劲.用二维有限元浮动网格法进行碾压混凝士重力坝施工期温度场和温度应力分析[J].水利学报,1998(07).(增刊):2-5
    [19]解宏伟,陈尧隆.混凝土坝冷却水管冷却效果研究现状及趋势[J].青海大学学报(自然科学版),2004(05):27-31
    [20]李守义,陈尧隆等.高碾压混凝土坝温度应力研究[J].西安理工大学学报,1997(03):226-231
    [21]姜忠.预埋循环水管降低大体积混凝土温度之探索[J].工程建设与设计,2004(12):51-52
    [22]刘宁,刘光廷等.水管冷却效应的有限元子结构模拟技术[J].水利学报,1997(12):43-48
    [23]朱岳明,徐之青,严飞.含有冷却水管混凝土结构温度场的三维仿真分析[J].水电能源科学,2003.21(1):83-85
    [24]朱岳明,徐之青等.混凝土水管冷却温度场的计算方法[J].长江科学院院报,2003.20(02):19-21
    [25]朱岳明,贺金仁等.混凝土水管冷却试验与计算及应用研究[J].河海大学学报(自然科学版),2003.31(6):626-630
    [26]梅普良,曾德顺.一期水管冷却效应的数值模拟新方法[J].计算力学学报,2003.20(4):508-510
    [27]杨秋玲,马可栓.人体积混凝土水化热温度场三维有限元分析[J].哈尔滨工业大学学报,2004.35(2):261-263
    [28]麦家煊.水管冷却理论解与有限元解的计算方法[J].水力发电学报,1998.63(4):31-41
    [29]刘勇军.水管冷却计算的部分白适应精度法[J].水利水电技术,2003.34(7):33-35
    [30]张宏祥,王丕祥,李明.长新桥大体积混凝土施工温度裂缝监控与分析[J].东北林业大学学报,2006.34(2):115-116
    [31]杨磊.混凝土坝施工期冷却水管降温及温控优化研究:[武汉大学博士学位论文].武汉:武汉大学水利水电学院,2005.32-39
    [32]Francis A.Oluokun,Edwin G.Burdette,J.Harold Deathe Elastic Modulus,Poisson's Ratio and Compressive Strength Relationships at Early-age.ACI Structural Journal,1991.103(1):3-10
    [33]N.J.Gardner.Effect of Temperature on the Early-Age Properties of Type I,Type Ⅲ and Type I Fly ash Concrete.ACI Material Journal,1990.89(6):68-78.
    [34]J.J.Brooks,A.E AI-kaisi.Early Strength Development of Portland and Slag Cement Concretes Cured at Elevated Temperature.ACI Material Journal,1990.89(10):503-507.
    [35]Bazant Z R Constructive equation for concrete creep and shrinkage based on thermodynamics of multi-phase system[M].RILEM,Paris:Materials and Structures,1970.134-146
    [36]Bazant Z P.Prediction of concrete creep effects using age-adjusted effective modulus method,ACI Journal,1972(69):212-217
    [37]Bazant Z P.Wu S T.Thermoviscoelasticity of Aging-concrete,J.Eng.Mech,1974(100):575-597
    [38]张子明,张研,宋智通.水化热引起的大体积混凝土墙温度分析[J].河海大学学报,2002.30(4):22
    [39]刘有志,朱岳明,刘桂友等.周公宅拱坝混凝土温控防裂水管冷却效果研究[J].水利水电科技进展,2006.26(2):46-47
    [40]吴文武,瞿明,姜友生等.阳逻长江大桥大体积混凝土温升有限元分析[J].武汉理大学学报,2006.28(4):95-96
    [41]唐卫平.鄂州特大桥墩身裂纹分析[J].铁道勘测与设计,2005(3):13-14
    [42]陈辉,韩芳垣.大体积混凝土温度裂缝的成因分析及控制措施[J].混凝土,2006.196(2):74-75
    [43]陈林生.金水沟特大桥承台大体积混凝土施工技术[J].公路工程与运输,2006(152):139-140
    [44]屈涛.大体积混凝土温度应力及裂缝扩展的研究:[硕士学位论文].武汉:武汉理工大学,2007.09
    [45]陈久宇,林见.观测数据的处理方法[M].上海:上海交通大学出版社,1987
    [46]张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[J].河海大学学报(自然科学版),2002.30(3):1-6
    [47]安明哲,覃维祖,朱金锉.高强混凝土的自收缩试验研究[J].山东建材学院学报,1998.12(1):139-143
    [48]张献辉.大体积混凝土结构的抗裂可靠性[J].西安建筑科技大学学报,1999.31(3):15-19
    [49]迟培云,钱强,高昆.大体积混凝土开裂的起因及防裂措施[J].混凝土,2001.22(12):29-33
    [50]A.B.阿力克山大.徐变计算混凝土及钢筋混凝土结构的温度及湿度的应力[M].北京:中国建筑工业出版社,1989
    [51]曹晨光等.外加剂对混凝土早期水化温升影响[J].低温建筑技术,2001(04)
    [52]戴镇潮.大体积混凝土的防裂[J].混凝土,2001(09)
    [53]刘长河.大体积混凝土施工温度场及温度应力研究[J].低温建筑技术,1997.1
    [54]葛建华等.大体积混凝土施工的温升控制措施[J].交通科技,2002(05)
    [55]R.M.Bittencourt and J.T.F.Fontoura,Mass Concrete Mixtures Based on Fineness Modulus And Geometrical Gradation,Journal of Material in civil engineering,2001.1
    [56]张少锋.大体积混凝土温度裂纹的控制[J].土木工程,2002(06)
    [57]蔡正咏.混凝土性能[M].北京:中国建筑工业出版社,1979
    [58]朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数[J].水利学报,1985.9
    [59]姜福田.碾压混凝土[M].北京:中国铁道出版社,1991
    [60]汪峰.广州黄埔大桥锚碇大体积混凝土温度监测与温度控制:[硕士学位论文].武汉:武汉理工大学,2007
    [61]罗国强,罗刚,罗诚.混凝土与砌体结构裂缝控制技术[M].北京:中国建材工业出版社,2006
    [62]谢宏伟.混凝土坝冷却水管冷却效果仿真计算研究:[博士学位论文].西安:西安理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700