新城疫病毒基因组生物信息分析及Mukteswar株毒力增强分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫是一种重要的家禽传染病,该病病原体为新城疫病毒(Newcastle disease virus, NDV),又称禽副粘病毒1型(Avian paramyxovirus-1, APMV-1),属于副粘病毒科Avulavirus病毒属中的一员。尽管NDV只有一个血清型,但却存在多个基因型。按不同分离株基因组之间的分歧度大小,NDV被分为11个基因型(Ⅰ-Ⅺ);根据最新提议的分类标准,该病毒进一步被分成16个基因型(Ⅰ-ⅩⅥ)和更多的基因亚型。作为副粘病毒科一员的NDV其主要进化动力是米源于RNA依赖性的RNA聚合酶缺乏校对功能而造成的RNA复制错配率高,但也有学者表示不同分离株之间也会发生重组现象,使该病毒能以一种更迅速的方式进化。在这两种进化动力中,RNA依赖性的RNA聚合酶的高变异率是毋庸置疑的,但是对于负链RNA病毒来讲同源重组似乎并不多见。本研究通过对NDV基因组一系列的数据集进行生物信息学分析来估测影响NDV变异的主要进化动力。另外,根据不同分离株的毒力差异,NDV又可以分为低毒力、中等毒力和强毒力三种致病型。本研究在全基因组比对分析时发现一株基因Ⅲ型强毒分离株JS/7/05/Ch的基因组与Ⅰ系苗Mukteswar株相似度高达99%以上,但其毒力却明显高于后者,为了探究影响这两株Ⅲ型NDV毒力差异的关键性基因,本文详细比对了两株病毒基因组之间的差异,并对主要差异基因的生物学意义进行了研究。
     1非自然重组对新城疫病毒遗传进化分析的影响
     通过对本实验室于2005年到2009年间分离的100多株NDV的F和HN基因进行遗传进化分析,我们并未发现同源重组事件的存在,但近几年越来越多的关于NDV的同源重组的案例被报道,其中有些基因组甚至发生多重重组现像。鉴于同源重组在NDV遗传进化过程中所起的作用存在不同的观点,本研究首先从GenBank数据库中下载到80条NDV的全基因组序列(2011年4月18日之前释放的序列)并使用重组分析软件(Recombination Detection Program, RDP)进行分析。结果显示有8条全基因组序列具有重组现象,在这8株预测的同源重组子代病毒中有5株病毒发生了多重重组现象。本研究对其中的两条含有重组片段的全基因组序列(China/Guangxi09/2003和NDV/03/018)进行遗传进化分析,结果同样显示GenBank数据库中的全基因组序列均含有两种不同基因型的DNA片段。为确保重组事件的真实性,我们对这两株NDV进行空斑纯化后重新测序并再次进行重组分析。结果显示,新获得的全基因组并不存在同源重组片段,我们分析认为原始数据中的重组现象很可能是测序者对混合感染的分离样品或者实验室污染的样品测序时造成的人为重组事件。为证实人为重组存在的可能性,我们将两株不同基因型的NDV进行人为混合,然后使用一对引物对该混合样品扩增M基因并测序,结果表明这对引物不仅可以扩增出两种不同基因型的M基因片段,而且还可以在同一段PCR产物中同时扩增出两种基因型的DNA片段。这充分证实对NDV基因组进行PCR时Taq酶存在模板转换的现象,导致不同基因型的序列被扩增到一起而产生非自然的人为重组现象。以上结果充分表明GenBank数据中NDV全基因组序列中的同源重组并非都是自然重组事件,而这些非自然的人为重组现象会对NDV遗传进化动力学分析造成一定的误导作用。
     2鸽副粘病毒1型进化动力学特点分析
     鸽源NDV,又称鸽副粘病毒1型(pigeon paramyxo virus-1, PPM V-1),是APMV-1的变异分支,20世纪80年代中期该变异株病毒通过鸽群开始向世界各国蔓延。虽然PPMV-1的F蛋白裂解位点是典型的强毒类型,但多数PPMV-1对鸡的致病力却是中等毒力或低毒力。基于这个特点我们推断PPMV-1应该具有其独特的进化动力学基础。遗传进化分析显示几乎所有分离于鸽群的NDV均聚拢在同一个分支—-Genotype Ⅵ b,说明PPMV-1很可能已经在鸽群中获得适应性变异导致该分支对鸽子具有明显的宿主特异性;与之相对的是基因Ⅶd型,该分支的NDV却具有最广的宿主谱。731株已知宿主来源的NDV的F基因编码区序列的遗传关系进一步的证实了PPMV-1对鸽子的特嗜性和基因Ⅶd亚型具有最广的宿主范围。通过125株不含重组片段的全基因组序列比对我们发现PPMV-1在整个基因组水平上与经典的APMV-1相比有19个氨基酸位点的差异。贝叶斯方法估算结果显示M基因的年平均进化率都高于其他5个基因,并且.通过最近共同祖先分析推断PPMV-1最早可能出现于20世纪60年代,要早于有记载的第一株PPMV-1的分离时间。适应性分析表明虽然PPMV-1的6个基因均处在负向选择的模式下进化,但各基因均存在不同数口的正向选择位点。PPMV-1的HN基因中的正向选择位点是6个基因中最少的,这预示着该基因受到的宿主免疫压最小。历史种群大小重建显示PPMV-1在其进化过程中有两个较大的拐点,20世纪80年代PPMV-1经历爆炸式增长过程,而到了最近几年PPMV-1的种群大小又开始逐渐下降。总之,本研究结果显示PPMV-1已经与其主要宿主鸽子形成了相互适应的关系,并推断其具有相对独特的进化特点。
     3基因Ⅲ型强毒株JS/7/05/Ch与同型Ⅰ系苗Mukteswar株全基因组比对分析
     基因Ⅲ型NDV临床分离株JS/7/05/Ch为典型的强毒,但其基因组却与Ⅰ系苗Mukteswar株具有99%以上的相似性,据此我们分析该强毒应该由Ⅰ系苗Mukteswar株进化而来。本研究分别对JS/7/05/Ch与Mukteswar两株NDV分别进行空斑纯化,并对得到的四株空斑纯化株JS-7122、JS-1217、Muk-4和Muk-5进行IVPI值的测定。结果显示JS-7122和JS-1217的IVPI值分别是2.2和2.15,而Muk-4和Muk-5的IVPI值分别为0.03和0.09。为了探索影响Mukteswar株NDV毒力增强的关键性基因,我们对JS-7122和Muk-4进行全基因组测序并对所测序列进行比对分析,结果显示两株病毒的差异位点主要集中在NP、 HN和L基因上,P、M和F基因则完全一致。NP基因有3个核甘酸的差异,其中第1433nt变异引起氨基酸位点的变化;HN基因有6个核苷酸位点的差异并均引起氨基酸的变化;L基因有5个核苷酸位点的差异,但均未引起氨基酸的突变。通过三维结构模拟可以发现HN蛋白的4个差异位点(第19位和29位无法进行模拟)均在HN蛋白的表面,并且494和495位的氨基酸止处于HN蛋白的抗原表位site12内,我们推测该基因很可能是导致这两株Ⅲ型NDV毒力差异主要因素。
     4Mukteswar株毒力增强分子机制研究
     参照JS-7122和Muk-4株NDV的全基因组设计8对引物,经RT-PCR方法从两株Ⅲ型NDV感染的尿囊液中扩增得到目的片段。首先将扩增的NP、PM依次克隆到pCR2.1载体中构建上游中间质粒pNPM;然后将MF、FH和HL片段依次克隆到pCR2.1载体中构建中游中间质粒pMFHL;最后将L1、L2和L3片段依次克隆到pCR2.1载体中构建下游中间质粒pL123。上、下游中间质粒经Spe Ⅰ和FspAⅠ酶切后,各自回收目的片段后进行连接,获得中间质粒pNPML;将该质粒使用Age Ⅰ和FspAⅠ进行酶切后,回收目的片段与同样酶切的pMFHL进行连接,获得两株Ⅲ型NDV的全长克隆质粒,然后通过特异性酶切反应将NDV的基因组全长质粒转移到TVT7R(0.0)载体中,成功构建两株Ⅲ型NDV的全长转录质粒。在上述基础上,利用Age Ⅰ和FspAⅠ两个酶切位点将两株Ⅲ型NDV的HN基因进行互换,共得到四个感染性全长质粒,分别是含有母本病毒基因组的TVT/JS-7122、TVT/Muk-4和HN基因互换的感染性质粒JS/MHN、Mu/JHN。将这四个感染性全长质粒与三个辅助质粒(pCI-L、pCI-NP和pCI-P)共转染能稳定表达T7RNA聚合酶的BSR-T7/5细胞,成功拯救出了四株NDV。MDT和IVPI测定结果显示拯救的病毒与原始母本病毒相似,但表达JS-7122株HN蛋白病毒的IVPI值要明显高于表达Muk-4株HN蛋白的毒株,该实验结果表明HN基因是Mukteswar株毒力增强的主要分子基础。
Newcastle disease (ND) is one of the most devastating diseases in poultry. The causative agent, Newcastle disease virus (NDV), is a member of the Avulavirus genus in the Paramyxoviridae family. Although NDV has only one serotype, substantial antigenic and genetic diversity have been previously recognized. At least11genotypes (genotypes I to XI) have been described for NDVs. According to the latest proposed classification, NDV have been divided into16genotypes and more sub-genotypes. The main dynamics of evolution in nonsegmented RNA viruses is due to the inherent error rate of RNA replication associated with the RNA-dependent RNA polymerase. and some researchers consider recombination may play an important role in the evolution of NDV. While polymerase error is believed to be the main driving force for NDV evolution, it has been established that recombination in nonsegmented negative-sense RNA viruses, including NDV. is rare. In this study. A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Furthermore, NDV strains can be categorized according to their virulence into low (lentogenic), intermediate (mesogenic) or highly (velogenic) virulent strains. Base on the alignment of genomes, we found that two genotype III viruses, JS/7/05/Ch and Mukteswar possessing significant difference in virulence, shared more than99%identities in nucleotide sequence. The IVPI score of JS/7/05/Ch was remarkably higher than that of Mukteswar, even they shared the consistent cleavage site of virulent NDV strains. In order to elucidate the molecular mechanism responsible for the increased virulence of JS/7/05/Ch. the genomic difference between these two strains were thoroughly analyzed and identified.
     1. Non-natural Recombination may influenced the evolutionary analysis of NDV
     During2005to2009. we characterized more than100NDV strains in our laboratory, but no recombinant strains were detected on the basis of the analysis of F and HN gene sequences. However, in recent years, more and more recombination events have been reported for NDVs. with the recombination occurring throughout the whole genome, even some recombinants of NDVs involved multiple genotypes have been reported. This controversy has prompted us to investigate whether the recombination events in NDVs are as common as has been reported. Eighty complete genomic sequences of NDV retrieved from GenBank (released before18Apr2011) were analyzed using RDP program. Our analysis indicated at least8strains were predicted to be recombinants in the80NDVs, including5strains generated from multi-recombination. Phylogenetic tree also confirmed the existence of recombination events in two available NDVs NDV/03/018and China/Guangxi09/2003. Using strains China/Guangxi09/2003and NDV/03/018as examples, we attempted to validate whether the unexpected high recombination rate was due to inaccuracy of some of the NDV sequences deposited in GenBank. The two viruses were plaque purified three times on primary chicken embryo fibroblasts and resequenced in this study. Surprisingly, the putative recombinations detected with the old versions of sequences in GenBank (DQ485230and GQ338310) did not exist with new seqences from purified sequences, indicating the artificial natue of the recombinations caused by polymerase template switching in these samples or laboratory-generated recombinants. To provide evidence for a potential non-natural recombinations resulting in a mosaic sequence, we performed reverse transcription-PCR (RT-PCR) amplification of the M gene from a mixed sample of different La Sota and ZJ1viruses, which represent genotypes Ⅱ and Ⅶ. respectively. PCR products were cloned into pGEM-T vector (Promega). and multiple clones were sequenced. Clones carrying either genotype Ⅱ or Ⅶ sequences were identified. Notably, the two genotype sequences could also be identified in the same clone. These results suggest that non-natural recombination events can be induced with samples containing mixed virus genotypes or strains, probably through polymerase template switching during the PCR procedure. Collectively, some recombinant genome sequences in the GenBank are not nature-recombinations, which will influence the evolution analysis of NDV.
     2. The evolutionary dynamics of pigeon paramyxovirus-1
     Pigeon NDV. also named Pigeon paramyxovirus-1(PPMV-1). is an antigenic variant of avian paramyxovirus type1(APMV-1) of chickens that is responsible for an autonomous Newcastle disease (ND)-like entity in pigeons. During the1980s, this virus variants spread worldwide among racing and show pigeons. The F proteins of PPMV-1strains bear a poly-basic cleavage site motif characteristic of virulent NDV strains. However, most of the PPMV-1strains show low virulence based on the pathogenicity assays in chickens. Considering the unique feature of the PPMV-1. a comprehensive dataset of avian paramyxovirus-1(APMV-1) were evaluated using bioinformatics to characterize the evolutionary forces affecting PPMV-1genomes. Phylogenetic analysis of142full-length Newcastle disease virus genomes indicated that Pigeon paramyxo virus-1(PPMV-1) isolates all clustered to the same clade (sub-genotype VIb), suggesting that PPMV-1have a high host specificity to the pigeon (Columba livia). Phylogenetic analysis of731sequences of the complete coding region of F genes reinforced the suggestion that PPMV-1is host-specific to pigeons, while genotype Ⅶd owns the widest range of host. According to the alignment of genome sequences without recombination,19specific amino acid residues were identified to differentiate PPMV-1from "classical" APMV-1. Matrix protein gene displayed higher yearly rates of change than the other five genes and the Time to Most Recent Common Ancestry (TMRCA) analysis showed that PPMV-1may appear early in1960s. The population history of PPMV-1displayed two major inflexion points, indicating its population size fluctuations. In1980s, the population size of PPMV-1underwent an explosive growth, whereas it showed a sudden decline in recent years. Additionally, compared to the other five genes, less positive selection sites were present in the HN gene, suggesting that HN gene suffered less immune pressure from the host. Result in this study showed that pigeon paramyxovirus-1is host-specific to pigeons and assumes a unique evolutionary history.
     3. Comparative analysis of the entire genomes of JS/7/05/Ch and Mukteswar
     During the genome alignment, we found that two genotype III viruses, JS/7/05/Ch and Mukteswar showed significant difference in virulence while they shared more than99%identities in their genome sequences. The IVPI scores of the two cloned strains of JS/7/05/Ch JS-7122and JS-1217were2.2and2.15. while those of the two cloned strains of Mukteswar Muk-4and Muk-5were0.03and0.09, respectively. To elucidate the crtical genetic regions responsible for the incresed virulence of JS/7/05/Ch, the cloned strains JS-7122and Muk-4were selected for their entire genome sequence analysis. The alignment result showed that the main differences between these two NDV genomes were located in NP. HN and L genes while their P, M and F gene sequences were completely the same. There are3nucleotide mutations in NP gene with one site (1433nt) inducing the amino acid (AA) change and5mutations in L gene without involvement of AA substitutions. Notably, all the6mutations in HN gene caused the A A substitutions. The three-dimensional structures of HN protein of the two strains showed that there were4mutations on the surface of the protein. Furthermore, the AA substitutions at positions494and495are included in antigenic site12, which is also an important receptor-binding site of HN protein. Therefore, we surmised that HN gene may play a key role in the virulence increase of Mukteswar strain.
     4. The molecular mechanism in the virulence increase of Muktswar strain
     Eight fragments from genomes of JS-7122and Muk-4were amplified and cloned into pCR2.1vector with the designed primers. The two fragments, NP and PM, were subcloned into pCR2.1vector sequentially to construct the plasmid pNPM. As the clone strategy mentioned above, the plasmid pMFHL composed fragments of MF, FH and HL while the plasmid pL123composed fragments L1, L2and L3. The plasmids pNPM and pL123were digested with Spe I and FspA I, and the targeted fragments from pNPM were purified and ligated into the pL123to construct the plasmid pNPML. The resultant plasmid was digested with Age I and FspA I, and then the fragment of interest was cloned into plasmid pMFHL, digested with the same enzymes, to construct the plasmid pALL which contained the full-length cDNA of NDV. Finally, the full-length cDNA was transferred to TVT7R(0.0) vector to construct full-length NDV infectious clone using specific enzymes. With the above clone steps, two infectious clones TVT/Muk-4, TVT/JS-7122were obtained. According to the genomic difference between the NDVs JS-7122and Muk-4, The HN genes of them were exchanged via molecular manipulations, resulting in two chimeric infectious clones Mu/JHN and JS/MHN, respectively. The four infectious clones (TVT/Muk-4, TVT/JS-7122, Mu/JHN and JS/MHN) with three helper plasmids, pCI-NP, pCI-P and pCI-L, were cotranfected into BSR-T7/5cell expressing T7RNA polymerase. After inoculation of transfected cell culture into embroynated chicken eggs from one specific pathogen free (SPF) flock, four NDV strains (rJS-7122, rMuk-4, rJS/MHN and rMu/JHN) were rescued successfully. The pathogenicity of the newly generated NDVs were characterized and the results showed that the virulence of rJS-7122and rMu/JHN were much higher than that of rMuk-4and rJS/MHN, suggesting that HN gene is the key factor for virulence increase of Mukteswar strain.
引文
1. Aldous EW, Alexander DJ (2001) Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30:117-128.
    2. Alexander DJ. Senne DA (2008) Newcastle disease virus, other avian paramyxovirus, and pneumovirus infections, p.75-115. In Y M Saif (ed). Diseases of poultry.12th ed Blackwell Publishing. Oxford, United Kingdom.
    3. Kim LM. King DJ, Curry PE, Suarez DL, Swayne DE, et al. (2007) Phylogenetic diversity among low-virulence newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J Virol 81:12641-12653.
    4. Aldous EW, Mynn JK, Banks J, Alexander DJ (2003) A molecular epidemiological study of avian paramyxovirus type I (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol 32:239-256.
    5. Cattoli G, Fusaro A, Monne I, Molia S, Le Menach A, et al. (2010) Emergence of a new genetic lineage of Newcastle disease virus in West and Central Africa--implications for diagnosis and control. Vet Microbiol 142:168-176.
    6. Snoeck CJ, Ducatez MF, Owoade AA, Faleke OO, Alkali BR, et al. (2009) Newcastle disease virus in West Africa:new virulent strains identified in non-commercial farms. Arch Virol 154:47-54.
    7. Czegledi A, Ujvari D, Somogyi E, Wehmann E, Werner O, et al. (2006) Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 120:36-48.
    8. Miller PJ. Decanini EL, Afonso CL (2010) Newcastle disease:evolution of genotypes and the related diagnostic challenges. Infect Genet Evol 10:26-35.
    9. Seal BS, King DJ, Bennett JD (1995) Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. J Clin Microbiol 33:2624-2630.
    10. Kim LM, King DJ. Suarez DL. Wong CW. Afonso CL (2007) Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR. J Clin Microbiol 45:1310-1314.
    11. Maminiaina OF, Gil P, Briand FX. Albina E, Keita D. et al. (2010) Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV. PLoS One 5:e13987.
    12. Tsai HJ. Chang KH. Tseng CH. Frost KM. Manvell RJ, et al. (2004) Antigenic and genotypical characterization of Newcastle disease viruses isolated in Taiwan between 1969 and 1996. Vet Microbiol 104:19-30.
    13. Liu XF, Wan HQ. Ni XX, Wu YT, Liu WB (2003) Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001. Arch Virol 148:1387-1403.
    14. Wu S. Wang W. Yao C, Wang X, Hu S. et al. (2010) Genetic diversity of Newcastle disease viruses isolated from domestic poultry species in Eastern China during 2005-2008. Arch Virol.
    15. Wehmann E, Czegledi A, Werner O, Kaleta EF. Lomniczi B (2003) Occurrence of genotypes Ⅳ, Ⅴ, Ⅵ and Vila in Newcastle disease outbreaks in Germany between 1939 and 1995. Avian Pathol 32:157-163.
    16. Chare ER, Gould EA. Holmes EC (2003) Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84:2691-2703.
    17. Chong YL, Padhi A, Hudson PJ. Poss M (2010) The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1. PLoS Pathog 6:e1000872.
    18. Han GZ, He CQ,Ding NZ, Ma LY (2008) Identification of a natural multi-recombinant of Newcastle disease virus. Virology 371:54-60.
    19. Miller PJ, Kim LM. Ip HS, Afonso CL (2009) Evolutionary dynamics of Newcastle disease virus. Virology 391:64-72.
    20. Qin Z, Sun L, Ma B. Cui Z. Zhu Y. et al. (2008) F gene recombination between genotype Ⅱ and Ⅶ Newcastle disease virus. Virus Res 131:299-303.
    21. Zhang R, Pu J, Su J. Zhao J, Wang X, et al. Phylogenetic characterization of Newcastle disease virus isolated in the mainland of China during 2001-2009. Vet Microbiol 141:246-257.
    22. Zhang R, Wang X, Su J. Zhao J, Zhang G (2010) Isolation and analysis of two naturally-occurring multi-recombination Newcastle disease viruses in China. Virus Res 151:45-53.
    23. Afonso CL (2008) Not so fast on recombination analysis of Newcastle disease virus. J Virol 82:9303.
    24. Singh VK. Mangalam AK, Dwivedi S, Naik S (1998) Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques 24:318-319.
    25. Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 132:71-91.
    26. Clewley JP, Arnold C (1997) MEGALIGN. The multiple alignment module of LASERGENE. Methods Mol Biol 70:119-129.
    27. Posada D (2008) jModelTest:phylogenetic model averaging. Mol Biol Evol 25:1253-1256.
    28. Kattenbelt JA, Stevens MP, Gould AR (2006) Sequence variation in the Newcastle disease virus genome. Virus Res 116:168-184.
    29. Munir M. Linde AM, Zohari S. Stahl K, Baule C, et al. (2010) Complete genome analysis of an avian paramyxovirus type 1 strain isolated in 1994 from an asymptomatic black-headed gull (Larus ridibundus) in southern Sweden. Avian Dis 54:923-930.
    30. de Leeuw O, Peeters B (1999) Complete nucleotide sequence of Newcastle disease virus:evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 80 (Pt 1):131-136.
    31. Nakaya T, Cros J, Park MS, Nakaya Y, Zheng H, et al. (2001) Recombinant Newcastle disease virus as a vaccine vector. J Virol 75:11868-11873.
    32. Cho SH, Kwon HJ, Kim TE, Kim JH, Yoo HS, et al. (2008) Characterization of a recombinant Newcastle disease virus vaccine strain. Clin Vaccine Immunol 15:1572-1579.
    33. Perozo F, Villegas P, Dolz R, Afonso CL, Purvis LB (2008) The VG/GA strain of Newcastle disease virus: mucosal immunity, protection against lethal challenge and molecular analysis. Avian Pathol 37:237-245.
    34. Mohamed MH, Kumar S, Paldurai A, Megahed MM, Ghanem IA, et al. (2009) Complete genome sequence of a virulent Newcastle disease virus isolated from an outbreak in chickens in Egypt. Virus Genes 39: 234-237.
    35. Paldurai A, Kumar S, Nayak B, Samal SK (2010) Complete genome sequence of highly virulent neurotropic Newcastle disease virus strain Texas GB. Virus Genes 41:67-72.
    36. Romer-Oberdorfer A, Mundt E, Mebatsion T, Buchholz UJ, Mettenleiter TC (1999) Generation of recombinant lentogenic Newcastle disease virus from cDNA. J Gen Virol 80 (Pt 11):2987-2995.
    37. de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BP (2005) Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol 86:1759-1769.
    38. Wei D, Yang B, Li YL, Xue CF, Chen ZN, et al. (2008) Characterization of the genome sequence of an oncolytic Newcastle disease virus strain Italien. Virus Res 135:312-319.
    39. Ujvari D (2006) Complete nucleotide sequence of IT-227/82, an avian paramyxovirus type-1 strain of pigeons (Columba livia). Virus Genes 32:49-57.
    40. Dortmans JC, Koch G, Rottier PJ, Peeters BP (2009) Virulence of pigeon paramyxovirus type 1 does not always correlate with the cleavability of its fusion protein. J Gen Virol 90:2746-2750.
    41. Zou J, Shan S, Yao N, Gong Z (2005) Complete genome sequence and biological characterizations of a novel goose paramyxovirus-SF02 isolated in China. Virus Genes 30:13-21.
    42. Cho SH, Kim SJ, Kwon HJ (2007) Genomic sequence of an antigenic variant Newcastle disease virus isolated in Korea. Virus Genes 35:293-302.
    43. Martin D, Rybicki E (2000) RDP:detection of recombination amongst aligned sequences. Bioinformatics 16:562-563.
    44. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218-225.
    45. Martin DP, Williamson C, Posada D (2005) RDP2:recombination detection and analysis from sequence alignments. Bioinformatics 21:260-262.
    46. Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126-129.
    47. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757-13762.
    48. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning:a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573-582.
    49. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035-1047.
    50. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0. Syst Biol 59: 307-321.
    51. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696-704.
    52. Harper DR (1989) A novel plaque assay system for paramyxoviruses. J Virol Methods 25:347-350.
    53.J.萨姆布鲁克,E.F.弗里奇,曼尼阿蒂斯著.,金冬雁,黎孟枫译(1995)分子克隆实验指南.第二版北京:科学出版社:1-69.
    54. Jansen R, Ledley FD (1990) Disruption of phase during PCR amplification and cloning of heterozygous target sequences. Nucleic Acids Res 18:5153-5156.
    55. Marton A, Delbecchi L, Bourgaux P (1991) DNA nicking favors PCR recombination. Nucleic Acids Res 19:2423-2426.
    56. Meyerhans A, Vartanian JP, Wain-Hobson S (1990) DNA recombination during PCR. Nucleic Acids Res 18: 1687-1691.
    57. Odelberg SJ, Weiss RB, Hata A, White R (1995) Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res 23:2049-2057.
    58. Paabo S, Irwin DM, Wilson AC (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265:4718-4721.
    59. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491.
    60. Shafikhani S (2002) Factors affecting PCR-mediated recombination. Environ Microbiol 4:482-486.
    61. Zaphiropoulos PG (1998) Non-homologous recombination mediated by Thermus aquaticus DNA polymerase 1. Evidence supporting a copy choice mechanism. Nucleic Acids Res 26:2843-2848.
    1. Meulemans G, Gonze M, Carlier MC, Petit P, Burny A, et al. (1986) Antigenic and biological characterization of avian paramyxovirus type 1 isolates from pigeons. Arch Virol 87:151-161.
    2. Kattenbelt JA, Stevens MP, Gould AR (2006) Sequence variation in the Newcastle disease virus genome. Virus Res 116:168-184.
    3. de Leeuw O, Peeters B (1999) Complete nucleotide sequence of Newcastle disease virus:evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 80 (Pt 1):131-136.
    4. Miller PJ, Estevez C, Yu Q. Suarez DL. King DJ (2009) Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Dis 53:39-49.
    5. Alexander DJ, Parsons G (1984) Avian paramyxovirus type 1 infections of racing pigeons:2 pathogenicity experiments in pigeons and chickens. Vet Rec 114:466-469.
    6. Dortmans JC, Fuller CM, Aldous EW. Rottier PJ, Peeters BP (2010) Two genetically closely related pigeon paramyxovirus type 1 (PPMV-1) variants with identical velogenic fusion protein cleavage sites but with strongly contrasting virulence. Vet Microbiol 143:139-144.
    7. Alexander DJ, Russell PH, Collins MS (1984) Paramyxovirus type 1 infections of racing pigeons:1 characterisation of isolated viruses. Vet Rec 114:444-446.
    8. Collins MS, Strong I, Alexander DJ (1994) Evaluation of the molecular basis of pathogenicity of the variant Newcastle disease viruses termed "pigeon PMV-1 viruses". Arch Virol 134:403-411.
    9. Collins MS, Strong I. Alexander DJ (1996) Pathogenicity and phylogenetic evaluation of the variant Newcastle disease viruses termed "pigeon PMV-1 viruses" based on the nucleotide sequence of the fusion protein gene. Arch Virol 141:635-647.
    10. Kaleta EF, Alexander DJ, Russell PH (1985) The first isolation of the avian PMV-1 virus responsible for the current panzootic in pigeons? Avian Pathol 14:553-557.
    11. Alexander DJ (2001) Gordon Memorial Lecture. Newcastle disease. Br Poult Sci 42:5-22.
    12.佘柏荣(1987)鸽的Ⅰ型副粘病毒.上海畜牧兽医通讯2:46-50.
    13. Guo H, Liu X. Han Z, Shao Y, Chen J, et al. (2013) Phylogenetic analysis and comparison of eight strains of pigeon paramyxovirus type 1 (PPMV-1) isolated in China between 2010 and 2012. Arch Virol.
    14. Wu S, Wang W, Yao C, Wang X, Hu S, et al. (2010) Genetic diversity of Newcastle disease viruses isolated from domestic poultry species in Eastern China during 2005-2008. Arch Virol.
    15. Liu H, Wang Z, Son C, Wang Y, Yu B, et al. (2006) Characterization of pigeon-origin Newcastle disease virus isolated in China. Avian Dis 50:636-640.
    16. Alexander DJ (1991) Newcastle disease and other Paramyxovinis Infections. In:CalilekB.W.. B. W.. Barnes H. J., Beard C.W., Reid W. M., Yorder H. W. Jr(eds) Disease of Poultry. Iowa State University Press, Ames:pp496-519.
    17. Alexander DJ, Manvell RJ, Lowings JP, Frost KM, Collins MS, et al. (1997) Antigenic diversity and similarities detected in avian paramyxovirus type 1 (Newcastle disease virus) isolates using monoclonal antibodies. Avian Pathol 26:399-418.
    18. Fuller CM, Collins MS, Easton AJ, Alexander DJ (2007) Partial characterisation of five cloned viruses differing in pathogenicity, obtained from a single isolate of pigeon paramyxovirus type 1 (PPMV-1) following passage in fowls' eggs. Arch Virol 152:1575-1582.
    19. de Leeuw OS, Hartog L. Koch G, Peeters BP (2003) Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus:non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol 84:475-484.
    20. de Leeuw OS, Koch G, Hartog L, Ravenshorst N. Peeters BP (2005) Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol 86:1759-1769.
    21. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M. et al. (2002) Sequence and phylogenetic analysis of the fusion protein cleavage site of Newcastle disease virus field isolates from Iran. Acta Virol 46: 247-251.
    22. Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK (2004) Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 36:1-10.
    23. Alexander DJ, Russell PH. Parsons G, Elzein EM, Ballouh A, et al. (1985) Antigenic and biological characterisation of avian paramyxovirus type I isolates from pigeons--an international collaborative study. Avian Pathol 14:365-376.
    24. Alexander DJ, Parsons G (1986) Pathogenicity for chickens of avian paramyxovirus type 1 isolates obtained from pigeons in Great Britain during 1983-85. Avian Pathol 15:487-493.
    25. Kim LM. King DJ. Guzman H, Tesh RB. Travassos da Rosa AP, et al. (2008) Biological and phylogenetic characterization of pigeon paramyxovirus serotype 1 circulating in wild North American pigeons and doves. J Clin Microbiol 46:3303-3310.
    26. Meulemans G, van den Berg TP, Decaesstecker M, Boschmans M (2002) Evolution of pigeon Newcastle disease virus strains. Avian Pathol 31:515-519.
    27. Terregino C, Cattoli G, Grossele B, Bertoli E, Tisato E. et al. (2003) Characterization of Newcastle disease virus isolates obtained from Eurasian collared doves (Streptopelia decaocto) in Italy. Avian Pathol 32: 63-68.
    28. Kommers GD, King DJ, Seal BS, Brown CC (2001) Virulence of pigeon-origin Newcastle disease virus isolates for domestic chickens. Avian Dis 45:906-921.
    29. Kommers GD, King DJ, Seal BS, Brown CC (2003) Pathogenesis of chicken-passaged Newcastle disease viruses isolated from chickens and wild and exotic birds. Avian Dis 47:319-329.
    30. Dortmans JC, Rottier PJ, Koch G, Peeters BP (2011) Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence. J Gen Virol 92:336-345.
    31. King DJ (1996) Avian paramyxovirus type 1 from pigeons:isolate characterization and pathogenicity after chicken or embryo passage of selected isolates. Avian Dis 40:707-714.
    32. Kommers GD, King DJ, Seal BS, Brown CC (2003) Virulence of six heterogeneous-origin Newcastle disease virus isolates before and after sequential passages in domestic chickens. Avian Pathol 32:81-93.
    33.许茹苏(1988)鸽1型副粘病毒病的研究.华南农业大学学报9:37-45.
    34. Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 132:71-91.
    35. Clewley JP, Arnold C (1997) MEGALIGN. The multiple alignment module of LASERGENE. Methods Mol Biol 70:119-129.
    36. Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. (2010) RDP3:a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462-2463.
    37. Martin DP (2009) Recombination detection and analysis using RDP3. Methods Mol Biol 537:185-205.
    38. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696-704.
    39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739.
    40. Martin D, Rybicki E (2000) RDP:detection of recombination amongst aligned sequences. Bioinformatics 16:562-563.
    41. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218-225.
    42. Martin DP, Williamson C, Posada D (2005) RDP2:recombination detection and analysis from sequence alignments. Bioinformatics 21:260-262.
    43. Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126-129.
    44. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757-13762.
    45. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning:a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573-582.
    46. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035-1047.
    47. Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289.
    48. Drummond AJ, Rambaut A (2007) BEAST:Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.
    49. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229-1236.
    50. Perozo F, Marcano R, Afonso CL (2012) Biological and phylogenetic characterization of a genotype VII Newcastle disease virus from Venezuela:efficacy of field vaccination. J Clin Microbiol 50:1204-1208.
    51. Huang Y, Wan HQ, Liu HQ, Wu YT, Liu XF (2004) Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese:a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene. Brief Report. Arch Virol 149:1445-1457.
    52. Zou J, Shan S, Yao N, Gong Z (2005) Complete genome sequence and biological characterizations of a novel goose paramyxovirus-SF02 isolated in China. Virus Genes 30:13-21.
    53. Jinding C, Ming L, Tao R, Chaoan X (2005) A goose-sourced paramyxovirus isolated from southern China. Avian Dis 49:170-173.
    54. Zou J, Gong ZX (2003) Inhibition of replication of goose paramyxovirus SF02 by hammerhead ribozyme targeting to the SF02 F mRNA in chicken embryo fibroblasts. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:801-805.
    55. Zou J, Shan SH, Yao LT, Gong ZX (2002) Sequence analysis of F gene of SF02 isolate of goose paramyxovirus and its identification by multiplex RT-PCR. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34:439-444.
    56. Miller PJ, Kim LM, Ip HS, Afonso CL (2009) Evolutionary dynamics of Newcastle disease virus. Virology 391:64-72.
    57. Padhi A, Poss M (2009) Population dynamics and rates of molecular evolution of a recently emerged paramyxovirus, avian metapneumovirus subtype C. J Virol 83:2015-2019.
    58. Pomeroy LW, Bjornstad ON, Holmes EC (2008) The evolutionary and epidemiological dynamics of the paramyxoviridae. J Mol Evol 66:98-106.
    59. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, et al. (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122-1125.
    1. Aldous EW, Mynn JK. Banks J, Alexander DJ (2003) A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol 32:239-256.
    2. Aldous EW, Alexander DJ (2001) Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30:117-128.
    3. Kattenbelt JA, Stevens MP, Gould AR (2006) Sequence variation in the Newcastle disease virus genome. Virus Res 116:168-184.
    4. Duncan R, Murphy FA, Mirkovic RR (1995) Characterization of a novel syncytium-inducing baboon reovirus. Virology 212:752-756.
    5. de Leeuw O, Peeters B (1999) Complete nucleotide sequence of Newcastle disease virus:evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 80 (Pt 1):131-136.
    6. Steward M, Vipond IB, Millar NS, Emmerson PT (1993) RNA editing in Newcastle disease virus. J Gen Virol 74 (Pt 12):2539-2547.
    7. Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77:8676-8685.
    8.仇旭升,孙庆,姚春峰,董丽,吴艳涛,等.(2009)两株基因Ⅲ型强毒新城疫的全基因组测序及其与Ⅰ系苗的亲缘性分析.微生物学报49:302-308.
    9.石跃,刘怀然,刘培欣,李东伟,杨煦,等.(2011)一株野鸭源基因Ⅲ型新城疫病毒主要生物学特性及基因组序列测定分析.中国预防兽医学报33:391-394.
    10. Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 132:71-91.
    11. Clewley JP, Arnold C (1997) MEGALIGN. The multiple alignment module of LASERGENE. Methods Mol Biol 70:119-129.
    12. Singh VK, Mangalam AK, Dwivedi S, Naik S (1998) Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques 24:318-319.
    13. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, et al. (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1-13.
    14. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Res 31:3381-3385.
    15. Sayle RA, Milner-White EJ (1995) RASMOL:biomolecular graphics for all. Trends Biochem Sci 20:374.
    16. Harper DR (1989) A novel plaque assay system for paramyxoviruses. J Virol Methods 25:347-350.
    17.仇旭升,孙庆,王伟伟,董丽,吴双,等.(2009)简化cDNA末端快速扩增技术测定基因Ⅲ、Ⅵb和Ⅶd型新城疫病毒基因组末端序列及分析.微生物学报7.
    18. Bordoli L, Schwede T (2012) Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol 857:107-136.
    19. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer:a historical perspective. Electrophoresis 30 Suppl 1:S162-173.
    20. Iorio RM, Glickman RL, Riel AM, Sheehan JP, Bratt MA (1989) Functional and neutralization profile of seven overlapping antigenic sites on the HN glycoprotein of Newcastle disease virus:monoclonal antibodies to some sites prevent viral attachment. Virus Res 13:245-261.
    21. Shengqing Y, Kishida N, Ito H, Kida H, Otsuki K, et al. (2002) Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. Virology 301:206-211.
    22. Dortmans JC, Koch G, Rottier PJ, Peeters BP (2009) Virulence of pigeon paramyxovirus type 1 does not always correlate with the cleavability of its fusion protein. J Gen Virol 90:2746-2750.
    23. Estevez C, King D, Seal B, Yu Q (2007) Evaluation of Newcastle disease virus chimeras expressing the Hemagglutinin-Neuraminidase protein of velogenic strains in the context of a mesogenic recombinant virus backbone. Virus Res 129:182-190.
    24. de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BP (2005) Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol 86:1759-1769.
    25. Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK (2004) Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 36:1-10.
    26. Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, et al. (2004) The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 78:4176-4184.
    27. Iorio RM, Bratt MA (1983) Monoclonal antibodies to newcastle disease virus:delineation of four epitopes on the HN glycoprotein. J Virol 48:440-450.
    28. Iorio RM, Borgman JB, Glickman RL, Bratt MA (1986) Genetic variation within a neutralizing domain on the haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Gen Virol 67 (Pt 7): 1393-1403.
    29. Iorio RM, Syddall RJ, Sheehan JP, Bratt MA, Glickman RL, et al. (1991) Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus:domains recognized by monoclonal antibodies that prevent receptor recognition. J Virol 65:4999-5006.
    1. Huang Z, Elankumaran S, Panda A, Samal SK (2003) Recombinant Newcastle disease virus as a vaccine vector. Poult Sci 82:899-906.
    2. Neumann G, Whitt MA, Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned? J Gen Virol 83:2635-2662.
    3. Aldous EW, Alexander DJ (2001) Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30:117-128.
    4. Huang Y, Wan HQ, Liu HQ, Wu YT, Liu XF (2004) Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese:a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene. Brief Report. Arch Virol 149:1445-1457.
    5.仇旭升,孙庆,姚春峰,董丽,吴艳涛,等.(2009)两株基因Ⅲ型强毒新城疫的全基因组测序及其与Ⅰ系苗的亲缘性分析.微生物学报49:302-308.
    6.石跃,刘怀然,刘培欣,李东伟,杨煦,等.(2011)一株野鸭源基因Ⅲ型新城疫病毒主要生物学特性及基因组序列测定分析.中国预防兽医学报33:391-394.
    7.胡顺林,吴艳涛,刘文博,刘玉良,刘秀梵(2005)鹅源新城疫病毒单克隆抗体的研制及其与不同NDV毒株的反应性.中国兽医科技35:341-345.
    8. Johnson KN, Zeddam JL, Ball LA (2000) Characterization and construction of functional cDNA clones of Pariacoto virus, the first Alphanodavirus isolated outside Australasia. J Virol 74:5123-5132.
    9. Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 132:71-91.
    10. Clewley JP, Arnold C (1997) MEGAL1GN. The multiple alignment module of LASERGENE. Methods Mol Biol 70:119-129.
    11. Singh VK, Mangalam AK, Dwivedi S, Naik S (1998) Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques 24:318-319.
    12.J.萨姆布鲁克,E.F.弗里奇,曼尼阿蒂斯著.,金冬雁,黎孟枫译(1995)分子克隆实验指南.第二版北京:科学出版社:1-69.
    13.郑明球等(2002)家畜传染病学实验指导.中国农业出版社第三版:108-109.
    14. IYER SG, DOBSON N (1940) A successful method of immunization against Newcastle disease of fowls. Vet Rec 52:891-894.
    15. Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, et al. (2004) The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 78:4176-4184.
    16. McGinnes LW, Wilde A, Morrison TG (1987) Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin-neuraminidase protein and comparisons of paramyxovirus hemagglutinin-neuraminidase protein sequences. Virus Res 7:187-202.
    17. Dortmans JC, Koch G, Rottier PJ, Peeters BP (2009) Virulence of pigeon paramyxovirus type 1 does not always correlate with the cleavability of its fusion protein. J Gen Virol 90:2746-2750.
    18. Estevez C, King D, Seal B, Yu Q (2007) Evaluation of Newcastle disease virus chimeras expressing the Hemagglutinin-Neuraminidase protein of velogenic strains in the context of a mesogenic recombinant virus backbone. Virus Res 129:182-190.
    19. de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BP (2005) Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol 86:1759-1769.
    20. Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK (2004) Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 36:1-10.
    21. Collins PL, Mottet G (1991) Homooligomerization of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3 occurs before the acquisition of correct intramolecular disulfide bonds and mature immunoreactivity. J Virol 65:2362-2371.
    22. Mahon PJ, Deng R, Mirza AM, lorio RM (1995) Cooperative neuraminidase activity in a paramyxovirus. Virology 213.241-244.
    23. Morrison TG (1988) Structure, function, and intracellular processing of paramyxovirus membrane proteins. Virus Res 10:113-135.
    1. Yu U, Lee SH, Kim YJ, Kim S (2004) Bioinformatics in the post-genome era. J Biochem Mol Biol 37: 75-82.
    2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2003) GenBank. Nucleic Acids Res 31: 23-27.
    3. Kulikova T, Aldebert P, Althorpe N, Baker W, Bates K, et al. (2004) The EMBL Nucleotide Sequence Database. Nucleic Acids Res 32:D27-30.
    4. Miyazaki S, Sugawara H, Gojobori T, Tateno Y (2003) DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31:13-16.
    5. Roos DS (2001) Computational biology. Bioinformatics--trying to swim in a sea of data. Science 291: 1260-1261.
    6.顾坚磊,周雁(2008)中国基因组生物信息学回顾与展望.中国科学C辑38:882-890.
    7.科技部基础研究司编(2006.3)系列研究报告之五——世界科学中的中国.
    8. Sugawara H, Ogasawara O, Okubo K, Gojobori T, Tateno Y (2008) DDBJ with new system and face. Nucleic Acids Res 36:D22-24.
    9. Sugawara H, Ikeo K, Fukuchi S, Gojobori T, Tateno Y (2009) DDBJ dealing with mass data produced by the second generation sequencer. Nucleic Acids Res 37:D16-18.
    10. Pham HM, Chang KS, Mase M, Ohashi K, Onuma M (2004) Molecular characterization of the nucleocapsid protein gene of Newcastle disease virus strains in Japan and development of a restriction enzyme-based rapid identifying method. Arch Virol 149:1559-1569.
    11. Jung E, Veuthey AL, Gasteiger E, Bairoch A (2001) Annotation of glycoproteins in the SWISS-PROT database. Proteomics 1:262-268.
    12. Gasteiger E, Jung E, Bairoch A (2001) SWISS-PROT:connecting biomolecular knowledge via a protein database. Curr Issues Mol Biol 3:47-55.
    13. Bairoch A, Apweiler R (1997) The SWISS-PROT protein sequence database:its relevance to human molecular medical research. J Mol Med (Berl) 75:312-316.
    14. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365-370.
    15. Bairoch A (1991) PROSITE:a dictionary of sites and patterns in proteins. Nucleic Acids Res 19 Suppl: 2241-2245.
    16. Hulo N, Sigrist CJ, Le Saux V, Langendijk-Genevaux PS, Bordoli L, et al. (2004) Recent improvements to the PROSITE database. Nucleic Acids Res 32:D134-137.
    17. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, et al. (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245-249.
    18. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The Protein Data Bank and structural genomics. Nucleic Acids Res 31:489-491.
    19. Jo S, Im W (2013) Glycan fragment database:a database of PDB-based glycan 3D structures. Nucleic Acids Res 41:D470-474.
    20. Meslamani J, Rognan D, Kellenberger E (2011) sc-PDB:a database for identifying variations and multiplicity of 'druggable' binding sites in proteins. Bioinformatics 27:1324-1326.
    21. Higurashi M, Ishida T, Kinoshita K (2009) PiSite:a database of protein interaction sites using multiple binding states in the PDB. Nucleic Acids Res 37:D360-364.
    22. Hsing M, Cherkasov A (2008) Indel PDB:a database of structural insertions and deletions derived from sequence alignments of closely related proteins. BMC Bioinformatics 9:293.
    23. Szabadka Z, Grolmusz V (2006) Building a structured PDB:the RS-PDB database. Conf Proc IEEE Eng Med Biol Soc 1:5755-5758.
    24. Kellenberger E, Muller P, Schalon C, Bret G, Foata N. et al. (2006) sc-PDB:an annotated database of druggable binding sites from the Protein Data Bank. J Chem Inf Model 46:717-727.
    25. von Grotthuss M, Plewczynski D, Ginalski K, Rychlewski L, Shakhnovich El (2006) PDB-UF:database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics 7:53.
    26. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, et al. (1998) Protein Data Bank (PDB):database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 54:1078-1084.
    27. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, et al. (1997) PDBsum:a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488-490.
    28. Pattabiraman N, Namboodiri K, Lowrey A, Gaber BP (1990) NRL-3D:a sequence-structure database derived from the protein data bank (PDB) and searchable within the PIR environment. Protein Seq Data Anal 3:387-405.
    29. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1: Unitl 12.
    30. Aoki KF, Kanehisa M (2005) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1: Unit 112.
    31. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91-101; discussion 101-103,119-128, 244-152.
    32. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, et al. (2002) DIP, the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30: 303-305.
    33. Xenarios 1, Fernandez E, Salwinski L, Duan XJ, Thompson MJ, et al. (2001) DIP:The Database of Interacting Proteins:2001 update. Nucleic Acids Res 29:239-241.
    34. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, et al. (2000) DIP:the database of interacting proteins. Nucleic Acids Res 28:289-291.
    35. Dralyuk I, Brudno M, Gelfand MS, Zorn M, Dubchak I (2000) ASDB:database of alternatively spliced genes. Nucleic Acids Res 28:296-297.
    36. Gelfand MS, Dubchak I, Dralyuk I, Zorn M (1999) ASDB:database of alternatively spliced genes. Nucleic Acids Res 27:301-302.
    37. Kuo HC, Lin PY, Chung TC, Chao CM, Lai LC, et al. (2011) DBCAT:database of CpG islands and analytical tools for identifying comprehensive methylation profiles in cancer cells. J Comput Biol 18: 1013-1017.
    38. Mount DW (2008) Using PAM Matrices in Sequence Alignments. CSH Protoc 2008:pdb top38.
    39. Mount DW (2008) Using BLOSUM in Sequence Alignments. CSH Protoc 2008:pdb top39.
    40. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624-626.
    41. King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788-798.
    42. Miyata T, Yasunaga T (1980) Molecular evolution of mRNA:a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16:23-36.
    43. Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150-174.
    44. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418-426.
    45. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167-170.
    46. Tsunoyama K, Gojobori T (1998) Evolution of nicotinic acetylcholine receptor subunits. Mol Biol Evol 15: 518-527.
    47. Kosakovsky Pond SL, Frost SD (2005) Not so different after all:a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208-1222.
    48. Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585-1592.
    49. Suzuki Y, Nei M (2002) Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites. Mol Biol Evol 19:1865-1869.
    50. Massingham T, Goldman N (2005) Detecting amino acid sites under positive selection and purifying selection. Genetics 169:1753-1762.
    51. Suzuki Y, Nei M (2004) False-positive selection identified by ML-based methods:examples from the Sigl gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol 21:914-921.
    52. Hughes AL, Ota T, Nei M (1990) Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol 7:515-524.
    53.张成岗,贺福初(2001)生物信息学方法与实践.北京:科学出版社.
    1. Aldous EW, Alexander DJ (2001) Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30:117-128.
    2. Yusoff K, Nesbit M, McCartney H, Meulemans G, Alexander DJ, et al. (1989) Location of neutralizing epitopes on the fusion protein of Newcastle disease virus strain Beaudette C. J Gen Virol 70 (Pt 11): 3105-3109.
    3. Alexander DJ (2000) Newcastle disease and other avian paramyxoviruses. Rev Sci Tech 19:443-462.
    4. Duncan R, Murphy FA, Mirkovic RR (1995) Characterization of a novel syncytium-inducing baboon reovirus. Virology 212:752-756.
    5. de Leeuw O, Peeters B (1999) Complete nucleotide sequence of Newcastle disease virus:evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 80 (Pt 1):131-136.
    6. Kattenbelt JA, Stevens MP, Gould AR (2006) Sequence variation in the Newcastle disease virus genome. Virus Res 116:168-184.
    7. Steward M, Vipond IB, Millar NS, Emmerson PT (1993) RNA editing in Newcastle disease virus. J Gen Virol 74 (Pt 12):2539-2547.
    8. Yusoff K, Tan WS (2001) Newcastle disease virus:macromolecules and opportunities. Avian Pathol 30: 439-455.
    9. Conzelmann KK (1998) Nonsegmented negative-strand RNA viruses:genetics and manipulation of viral genomes. Annu Rev Genet 32:123-162.
    10. Seal BS, King DJ, Bennett JD (1995) Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. J Clin Microbiol 33:2624-2630.
    11. Krishnamurthy S, Samal SK (1998) Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence. J Gen Virol 79 (Pt 10):2419-2424.
    12.韦平,秦爱建(2008)重要动物病毒分子生物学.科学出版社第一版.
    13. Huang Y, Wan HQ, Liu HQ, Wu YT, Liu XF (2004) Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese:a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene. Brief Report. Arch Virol 149:1445-1457.
    14. Czegledi A, Ujvari D, Somogyi E, Wehmann E, Werner O, et al. (2006) Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 120: 36-48.
    15. Phillips RJ, Samson AC, Emmerson PT (1998) Nucleotide sequence of the 5'-terminus of Newcastle disease virus and assembly of the complete genomic sequence:agreement with the "rule of six". Arch Virol 143:1993-2002.
    16. Peeters BP, Gruijthuijsen YK, de Leeuw OS, Gielkens AL (2000) Genome replication of Newcastle disease virus:involvement of the rule-of-six. Arch Virol 145:1829-1845.
    17. Myers TM, Smallwood S, Moyer SA (1999) Identification of nucleocapsid protein residues required for Sendai virus nucleocapsid formation and genome replication. J Gen Virol 80 (Pt 6):1383-1391.
    18. Kho CL, Tan WS, Tey BT, Yusoff K (2003) Newcastle disease virus nucleocapsid protein:self-assembly and length-determination domains. J Gen Virol 84:2163-2168.
    19. Abenes G, Kida H, Yanagawa R (1986) Antigenic mapping and functional analysis of the F protein of Newcastle disease virus using monoclonal antibodies. Arch Virol 90:97-110.
    20. Pham HM, Chang K.S, Mase M, Ohashi K, Onuma M (2004) Molecular characterization of the nucleocapsid protein gene of Newcastle disease virus strains in Japan and development of a restriction enzyme-based rapid identifying method. Arch Virol 149:1559-1569.
    21.王同燕(2009)新城疫病毒NP基因不同区域与毒力的相关性[D].扬州大学.
    22. Kolakofsky D. Le Mercier P, Iseni F, Garcin D (2004) Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 318:463-473.
    23. Bowman MC, Smallwood S, Moyer SA (1999) Dissection of individual functions of the Sendai virus phosphoprotein in transcription. J Virol 73:6474-6483.
    24. Rahaman A, Srinivasan N, Shamala N, Shaila MS (2004) Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function. A structural insight. J Biol Chem 279:23606-23614.
    25. Horikami SM, Curran J, Kolakofsky D, Moyer SA (1992) Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol 66:4901-4908.
    26. Curran J (1996) Reexamination of the Sendai virus P protein domains required for RNA synthesis:a possible supplemental role for the P protein. Virology 221:130-140.
    27. Errington W, Emmerson PT (1997) Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein. J Gen Virol 78 (Pt 9):2335-2339.
    28. Bhella D, Ralph A, Murphy LB, Yeo RP (2002) Significant differences in nucleocapsid morphology within the Paramyxoviridae. J Gen Virol 83:1831-1839.
    29. Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77:8676-8685.
    30. Mebatsion T, Verstegen S, De Vaan LT, Romer-Oberdorfer A, Schrier CC (2001) A recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J Virol 75:420-428.
    31. Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, Nagai Y (1983) Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex. Virology 128:105-117.
    32. Hunt DM, Mehta R, Hutchinson KL (1988) The L protein of vesicular stomatitis virus modulates the response of the polyadenylic acid polymerase to S-adenosylhomocysteine. J Gen Virol 69 (Pt 10): 2555-2561.
    33. Chambers P, Millar NS, Emmerson PT (1986) Nucleotide sequence of the gene encoding the fusion glycoprotein of Newcastle disease virus. J Gen Virol 67 (Pt 12):2685-2694.
    34. Chambers P, Millar NS, Bingham RW, Emmerson PT (1986) Molecular cloning of complementary DNA to Newcastle disease virus, and nucleotide sequence analysis of the junction between the genes encoding the haemagglutinin-neuraminidase and the large protein. J Gen Virol 67 (Pt 3):475-486.
    35. Ishida N, Taira H, Omata T, Mizumoto K, Hattori S. et al. (1986) Sequence of 2,617 nucleotides from the 3'end of Newcastle disease virus genome RNA and the predicted amino acid sequence of viral NP protein. Nucleic Acids Res 14:6551-6564.
    36. Yan Y, Samal SK (2008) Role of intergenic sequences in newcastle disease virus RNA transcription and pathogenesis. J Virol 82:1323-1331.
    37. Kattenbelt JA, Meers J. Gould AR (2006) Genome sequence of the thermostable Newcastle disease virus (strain 1-2) reveals a possible phenotypic locus. Vet Microbiol 114:134-141.
    38. Yoshida T, Nagai Y, Maeno K, Iinuma M, Hamaguchi M, et al. (1979) Studies on the role of M protein in virus assembly using a ts mutant of HVJ (Sendai virus). Virology 92:139-154.
    39. Peeples ME, Bratt MA (1984) Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity. J Virol 51:81-90.
    40.闻晓波(2006)新城疫病毒样颗粒的构建及其出芽机制的研[D].
    41. Coleman NA, Peeples ME (1993) The matrix protein of Newcastle disease virus localizes to the nucleus via a bipartite nuclear localization signal. Virology 195:596-607.
    42. Peeples ME, Wang C, Gupta KC, Coleman N (1992) Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J Virol 66:3263-3269.
    43. Mohamed MH, Kumar S, Paldurai A, Samal SK (2011) Sequence analysis of fusion protein gene of Newcastle disease virus isolated from outbreaks in Egypt during 2006. Virol J 8:237.
    44. Peeters BP, de Leeuw OS, Koch G, Gielkens AL (1999) Rescue of Newcastle disease virus from cloned cDNA:evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73: 5001-5009.
    45. Collins MS, Bashiruddin JB, Alexander DJ (1993) Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity. Arch Virol 128:363-370.
    46. Collins MS, Strong I, Alexander DJ (1996) Pathogenicity and phylogenetic evaluation of the variant Newcastle disease viruses termed "pigeon PMV-1 viruses" based on the nucleotide sequence of the fusion protein gene. Arch Virol 141:635-647.
    47. Werner O, Romer-Oberdorfer A, Kollner B, Manvell RJ, Alexander DJ (1999) Characterization of avian paramyxovirus type 1 strains isolated in Germany during 1992 to 1996. Avian Pathol 28:79-88.
    48. Tan LT, Xu HY, Wang YL, Qin ZM, Sun L, et al. (2008) Molecular characterization of three new virulent Newcastle disease virus variants isolated in China. J Clin Microbiol 46:750-753.
    49. Toyoda T, Sakaguchi T, Hirota H, Gotoh B, Kuma K, et al. (1989) Newcastle disease virus evolution.Ⅱ. Lack of gene recombination in generating virulent and avirulent strains. Virology 169:273-282.
    50. Ballagi-Pordany A, Wehmann E, Herczeg J, Belak S, Lomniczi B (1996) Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from the F gene. Arch Virol 141: 243-261.
    51. Lomniczi B, Wehmann E, Herczeg J, Ballagi-Pordany A, Kaleta EF, et al. (1998) Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a novel genotype (VII). Arch Virol 143:49-64.
    52. Young JK, Li D, Abramowitz MC, Morrison TG (1999) Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J Virol 73:5945-5956.
    53. Zhu J, Li P, Wu T, Gao F, Ding Y, et al. (2003) Design and analysis of post-fusion 6-helix bundle of heptad repeat regions from Newcastle disease virus F protein. Protein Eng 16:373-379.
    54. McGinnes LW, Wilde A, Morrison TG (1987) Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin-neuraminidase protein and comparisons of paramyxovirus hemagglutinin-neuraminidase protein sequences. Virus Res 7:187-202.
    55. Gould AR, Hansson E, Selleck K, Kattenbelt JA, Mackenzie M, et al. (2003) Newcastle disease virus fusion and haemagglutinin-neuraminidase gene motifs as markers for viral lineage. Avian Pathol 32: 361-373.
    56. Tan WS, Lau CH, Ng BK, Ibrahim AL, Yusoff K (1995) Nucleotide sequence of the haemagglutinin-neuraminidase (HN) gene of a Malaysian heat resistant viscerotropic-velogenic Newcastle disease virus (NDV) strain AF2240. DNA Seq 6:47-50.
    57. Sakaguchi T, Toyoda T, Gotoh B, Inocencio NM, Kuma K, et al. (1989) Newcastle disease virus evolution. Ⅰ. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene. Virology 169:260-272.
    58. Romer-Oberdorfer A, Werner O, Veits J, Mebatsion T, Mettenleiter TC (2003) Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol 84:3121-3129.
    59. de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BP (2005) Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol 86:1759-1769.
    60. Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK (2004) Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 36:1-10.
    61. Mahon PJ, Deng R, Mirza AM, lorio RM (1995) Cooperative neuraminidase activity in a paramyxovirus. Virology 213:241-244.
    62. Deng R, Wang Z, Mahon PJ, Marinello M, Mirza A, et al. (1999) Mutations in the Newcastle disease virus hemagglutinin-neuraminidase protein that interfere with its ability to interact with the homologous F protein in the promotion of fusion. Virology 253:43-54.
    63. Stone-Hulslander J, Morrison TG (1997) Detection of an interaction between the HN and F proteins in Newcastle disease virus-infected cells. J Virol 71:6287-6295.
    64. Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, et al. (2004) The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 78:4176-4184.
    65. Pitt JJ, Da Silva E, Gorman JJ (2000) Determination of the disulfide bond arrangement of Newcastle disease virus hemagglutinin neuraminidase. Correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins. J Biol Chem 275:6469-6478.
    66. McGinnes LW, Morrison TG (1994) The role of the individual cysteine residues in the formation of the mature, antigenic HN protein of Newcastle disease virus. Virology 200:470-483.
    67. McGinnes LW, Morrison TG (1997) Disulfide bond formation is a determinant of glycosylation site usage in the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Virol 71:3083-3089.
    68. Alamares JG, Li J, lorio RM (2005) Monoclonal antibody routinely used to identify avirulent strains of Newcastle disease virus binds to an epitope at the carboxy terminus of the hemagglutinin-neuraminidase protein and recognizes individual mesogenic and velogenic strains. J Clin Microbiol 43:4229-4233.
    69. lorio RM, Syddall RJ, Sheehan JP, Bratt MA, Glickman RL, et al. (1991) Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus:domains recognized by monoclonal antibodies that prevent receptor recognition. J Virol 65:4999-5006.
    70. Crennell S, Takimoto T, Portner A, Taylor G (2000) Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat Struct Biol 7:1068-1074.
    71. Westbury H (2001) Newcastle disease virus:an evolving pathogen? Avian Pathol 30:5-11.
    72. Seal BS, King DJ, Locke DP, Senne DA, Jackwood MW (1998) Phylogenetic relationships among highly virulent Newcastle disease virus isolates obtained from exotic birds and poultry from 1989 to 1996. J Clin Microbiol 36:1141-1145.
    73. Alexander DJ, Manvell RJ, Frost KM, Pollitt WJ, Welchman D, et al. (1997) Newcastle disease outbreak in pheasants in Great Britain in May 1996. Vet Rec 140:20-22.
    74. Yang CY, Chang PC, Hwang JM, Shieh HK (1997) Nucleotide sequence and phylogenetic analysis of Newcastle disease virus isolates from recent outbreaks in Taiwan. Avian Dis 41:365-373.
    75. Herczeg J, Wehmann E, Bragg RR, Travassos Dias PM, Hadjiev G, et al. (1999) Two novel genetic groups (Ⅶb and Ⅷ) responsible for recent Newcastle disease outbreaks in Southern Africa, one (Ⅶb) of which reached Southern Europe. Arch Virol 144:2087-2099.
    76. Liu XF, Wan HQ, Ni XX, Wu YT, Liu WB (2003) Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001. Arch Virol 148:1387-1403.
    77. Locke DP, Sellers HS, Crawford JM, Schultz-Cherry S, King DJ, et al. (2000) Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells. Virus Res 69:55-68.
    78. Seal BS, King DJ, Meinersmann RJ (2000) Molecular evolution of the Newcastle disease virus matrix protein gene and phylogenetic relationships among the paramyxoviridae. Virus Res 66:1-11.
    79. Seal BS, Crawford JM, Sellers HS, Locke DP, King DJ (2002) Nucleotide sequence analysis of the Newcastle disease virus nucleocapsid protein gene and phylogenetic relationships among the Paramyxoviridae. Virus Res 83:119-129.
    80.黄文林(2002)病毒学.分子病毒学.人民卫生出版社.
    81.龚非力(2001)医学免疫学.人民卫生出版社.
    82.张国强(2005)病毒的突变与进化.医学综述11(010):944-946.
    83. Aldous EW, Mynn JK, Banks J, Alexander DJ (2003) A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol 32:239-256.
    84. Cattoli G, Fusaro A, Monne I, Molia S, Le Menach A, et al. (2010) Emergence of a new genetic lineage of Newcastle disease virus in West and Central Africa--implications for diagnosis and control. Vet Microbiol 142:168-176.
    85. Snoeck CJ, Ducatez MF, Owoade AA, Faleke OO, Alkali BR, et al. (2009) Newcastle disease virus in West Africa:new virulent strains identified in non-commercial farms. Arch Virol 154:47-54.
    86. Miller PJ, Decanini EL, Afonso CL (2010) Newcastle disease:evolution of genotypes and the related diagnostic challenges. Infect Genet Evol 10:26-35.
    87. Kim LM, King DJ, Curry PE, Suarez DL, Swayne DE, et al. (2007) Phylogenetic diversity among low-virulence newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J Virol 81:12641-12653.
    88. Kim LM, King DJ, Suarez DL, Wong CW, Afonso CL (2007) Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcriptjon-PCR. J Clin Microbiol 45:1310-1314.
    89. Maminiaina OF, Gil P, Briand FX, Albina E, Keita D, et al. (2010) Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV. PLoS One 5:el3987.
    90. Tsai HJ, Chang KH, Tseng CH, Frost KM, Manvell RJ, et al. (2004) Antigenic and genotypical characterization of Newcastle disease viruses isolated in Taiwan between 1969 and 1996. Vet Microbiol 104:19-30.
    91. Wu S, Wang W, Yao C, Wang X, Hu S, et al. (2010) Genetic diversity of Newcastle disease viruses isolated from domestic poultry species in Eastern China during 2005-2008. Arch Virol.
    92. Wehmann E, Czegledi A, Werner O, Kaleta EF, Lomniczi B (2003) Occurrence of genotypes Ⅳ, Ⅴ,Ⅵ and Ⅶa in Newcastle disease outbreaks in Germany between 1939 and 1995. Avian Pathol 32:157-163.
    93. Diel DG, da Silva LH, Liu H, Wang Z, Miller PJ, et al. (2012) Genetic diversity of avian paramyxovirus type 1:proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect Genet Evol 12:1770-1779.
    94. Courtney SC, Susta L, Gomez D, Hines NL, Pedersen JC, et al. (2013) Highly divergent virulent isolates of newcastle disease virus from the dominican republic are members of a new genotype that may have evolved unnoticed for over 2 decades. J Clin Microbiol 51:508-517.
    95. Neumann G, Whitt MA. Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned? J Gen Virol 83:2635-2662.
    96. Nagai Y, Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbiol Immunol 43: 613-624.
    97.黄耀伟,李龙,于涟(2004)人类及动物RNA病毒的反向遗传系统.生物工程学报20:311-319.
    98.刘一良,张艳梅,胡顺林,吴艳涛,刘秀梵(2005)利用反向遗传操作技术产生ZJI株鹅源新城疫病毒.微生物学报45:780-783.
    99. Romer-Oberdorfer A, Mundt E, Mebatsion T, Buchholz UJ, Mettenleiter TC (1999) Generation of recombinant lentogenic Newcastle disease virus from cDNA. J Gen Virol 80 (Pt 11):2987-2995.
    100. Al-Garib SO, Gielkens AL, Gruys E, Peeters BP, Koch G (2003) Tissue tropism in the chicken embryo of non-virulent and virulent Newcastle diseases strains that express green fluorescence protein. Avian Pathol 32:591-596.
    101. Krishnamurthy S, Huang Z, Samal SK (2000) Recovery of a virulent strain of newcastle disease virus from cloned cDNA:expression of a foreign gene results in growth retardation and attenuation. Virology 278:168-182.
    102. Peeters BP, de Leeuw OS, Verstegen I, Koch G, Gielkens AL (2001) Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine 19:1616-1627.
    103. Mebatsion T, Koolen MJ, de Vaan LT, de Haas N, Braber M, et al. (2002) Newcastle disease virus (NDV) marker vaccine:an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. J Virol 76:10138-10146.
    104. Engel-Herbert I, Werner O, Teifke JP, Mebatsion T, Mettenleiter TC, et al. (2003) Characterization of a recombinant Newcastle disease virus expressing the green fluorescent protein. J Virol Methods 108:19-28.
    105. Vigil A, Park MS, Martinez O, Chua MA, Xiao S, et al. (2007) Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 67:8285-8292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700