臭氧生产工艺过程智能测控系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧(03)具有极强的氧化性和杀菌性能,在饮用水、污水处理,食品加工,化工生产及医疗等方面得到了广泛的应用。随着臭氧生产技术的发展及臭氧应用的普及,对臭氧生产工艺过程的自动控制提出了越来越高的要求,而目前臭氧生产过程中测控技术落后、自动化水平低,急待提高。本文在对臭氧生产工艺过程机理深入分析的基础上,提出了应用智能测控技术来实现臭氧生产过程的有效控制和优化控制,研制了整套臭氧生产过程的智能测控系统并成功应用于臭氧生产过程。本文的主要研究内容如下:
     (1)在分析臭氧生产过程机理特性及工艺流程的基础上,提出了臭氧生产工艺过程智能测控系统的整体设计方案,采用工控机+嵌入式工控机PC104+单片机组成三层分布式控制系统,实现了臭氧生产过程各关键工艺参数的测控及臭氧生产过程的优化控制,应用结果验证了本设计方案的有效性。
     (2)臭氧生产过程中需要监控的工艺参数较多、分布较广,且各种管路交叉,强弱电结合,难以采用有线连接方式,因此本文采用无线传感器网络构建整个智能测控系统,并结合具体应用,对无线传感器网络结构、低功耗及可靠性等方面进行了研究。
     (3)设计了气体温度、气体流量以及功率三个关键测控回路,在气体流量测控回路中设计了一种基于浮子流量计的光电式气体流量测量装置,并在实践中对其进行了验证;在功率测控回路中对臭氧生产工艺过程中的功率测量和控制进行了研究,所应用的功率测量方法和控制策略在实践中取得了良好的效果。
     (4)在臭氧生产过程中,作为质量指标和控制目标的臭氧浓度目前很难对其进行在线实时测量。本文结合臭氧生产机理,研究了生产工艺过程中对臭氧浓度有直接影响的工艺参量,选择其中六个为辅助变量,应用RBF神经网络建立了臭氧浓度软测量模型,对模型进行了训练、校正以及评价。采用臭氧浓度分析测试仪EG-2001B对臭氧浓度软测量模型进行了实验验证,验证结果表明臭氧浓度软仪表能够很好地实现臭氧浓度的实时在线测量,且具有响应速度快、精度高、适应性好及泛化能力强等优点。
     (5)降低臭氧生产的运行成本一直是臭氧技术发展的关键问题之一。本文以单位臭氧生产成本最低为优化目标,基于臭氧生产过程模型获得臭氧生产和应用的最优浓度点,采用优化控制策略对臭氧生产中的各控制量的设定值进行优化,根据工况条件的变化动态地设定各个控制环节的设定值,使臭氧生产过程运行在最优浓度点附近,从而有效地降低臭氧生产的运行成本。
     综上,本文对臭氧生产工艺过程智能测控系统进行了比较深入、全面的研究和探讨。实际应用表明:该智能测控系统的设计是成功的,实现了对整个臭氧生产工艺过程的控制和优化,达到了安全、稳定、高效生产的目的。本文的研究也为其他工业生产过程的自动测控系统的研制开发提供了宝贵的设计思路和经验。
Ozone has strong oxidation and sterilization ability. It is widely applied in many fields, such as water and wastewater treatment, food processing, chemical production and medical etc.. With the development of ozone producing technology and the popularization of ozone application, the increasingly higher requirements for the automatic control system of ozone producing system is needed. At present, the measurement and control technology for ozone producing process is outdated and the level of automation is low, so it is anxious for improving the measurement and control system for the ozone producing and application. In this paper, based on analyzing the mechanism of ozone producing process comparatively and deeply, the author proposes intelligent measurement and control system of ozone producing process, and has put it into use successfully. The content of the research in this paper is as follows:
     (1) Based on the analysis of the mechanism of ozone producing process and the technological characteristics, the project of the integrated intelligent measurement and control system of ozone producing process are proposed. In this project, the 3-layer distributed control system is presented by assembling industrial PC, PC 104 and microcontroller, and realizes the intelligent measurement and control of ozone producing process. The results of application illustrate the effectiveness of the project.
     (2) The pivotal technological parameters needed to be measured and controlled in ozone producing process are more and located in a large area. And these are various pipelines, the high voltage and low voltage. So it is hard to be connected by wire. In this paper, the wireless sensor network is used to design the intelligent measurement and control system. And combining the practical application, the configuration, low power and the reliability of wireless sensor network are studied.
     (3) The three key measurement and control loops of the temperature of gas, the flux of gas and power are designed. A sort of photoelectric measurement equipment for the flux of gas is designed based on the float meter and it is validated in practice. The measurement and control of power in ozone producing process are studied. And the measurement method and control strategy for power obtain a preferable result in practice.
     (4) As the production quality index and the control target, the ozone concentration is difficult to real-time measurement on line in ozone producing process at present. In this paper, based on the ozone producing mechanism, the technological parameters which can influence the ozone concentration directly in ozone producing process are studied. Six variables are chosen as the secondary variables and a soft-sensor model of ozone concentration based on RBF neural network is build up. And the soft-sensor model is trained, calibrated and evaluated. The ozone concentration analyzer of EG-2001B is used to verify the precision of the soft-sensor model and the experimental results demonstrated that the soft-sensor model can implement the real-time measurement of ozone concentration on line and has the advantages of fast response time, high precision, good adaptability and strong generalization ability.
     (5) One of the key questions in ozone technology development is to reduce the running cost of ozone producing process. In this paper, the unit mass ozone producing cost is chosen as the optimal target, and an optimizing control strategy is introduced to optimize the setting value of the control variables of ozone producing process based on the optimum ozone concentration of ozone production and application obtained by the model of ozone producing process. According to the optimal strategy, the setting values of the control loops are obtained dynamically followed the industrial conditions, and the ozone producing process can be optimized to run at the optimum concentration point and reduce the running cost effectively.
     Above all, the intelligent measurement and control system of ozone producing process is investigated comparatively deeply. The intelligent measurement and control system is applied to realize the ozone producing process control and optimization and the practical application demonstrates that the intelligent measurement and control system is successful. All works provide valuable method and experience for other industrial processes.
引文
[1]Nayera Sadek, Alireza Khotanzad, Thomas Chen. Adaptive Measurement-Based Admission Control Using Neural Network Predictor. IEEE Technology Driving Innovation-Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Canada,2004: 859-862.
    [2]石晶,段敏,陈勇等.发动机试验台测控系统模糊神经网络控制方法的研究.汽车工程,2006,28(1):48-50,84.
    [3]贺红林,赵淳生.基于模型参考自适应技术的超声电机测控研究.传感器与微系统,2008,27(9):52-55.
    [4]刘鹏,谢斌,朱参世.专家系统在卫星测控管理中的应用技术研究.现代电子技术,2007,15:66-68.
    [5]殷复莲,郭黎利,卢满宏.扩频测控系统常见干扰检测技术研究.系统工程与电子技术,2009,31(9):2195-2199.
    [6]曾孟雄,李力,肖露等编著.智能检测控制技术及应用.北京:电子工业出版社,2008.
    [7]林勇,周晓军,杨先勇等.基于SPWVD识别的滚动轴承智能检测方法.振动与冲击,2009,28(9):86-90.
    [8]李明辉,张根宝,李艳.打浆度的智能检测与优化控制.中国造纸学报,2006,21(3):84-87.
    [9]J. Cl. Puippe, A. Michalski, A. Kalicki et al. An Intelligent measurement System for Surface Area Measurement. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, Anchorage, Alaska, USA,2002:1361-1365.
    [10]Amitava Chatterjee, Mita Dutta, Anjan Rakshit. An Intelligent Method of Impedance Measurement Employing PSO-Aided Neuro-Fuzzy System with LMS Algorithm. IEEE 15th International Conference on Fuzzy Systems, London, United Kingdom,2007:1-6.
    [11]赵中敏.基于多传感器信息融合的加工过程监控.化工自动化及仪表,2008,35(3):1-5.
    [12]Katrin Amlacher, Patrick Luley, Gerald Fritz et al. Mobile Object Recognition Using Multi-sensor Information Fusion in Urban Environments.15th IEEE International Conference on Image Processing, San Diego, California, USA,2008:2384-2387.
    [13]T. I. Nagy, J. Tick. Intelligent sensor networks in the military and civil sectors. 5th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania,2009:471-474.
    [14]Heemin Park, Jeff Burke, Mani B. Srivastava. Design and Implementation of a Wireless Sensor Network for Intelligent Light Control.6th International Symposium on Information Processing in Sensor Networks, Cambridge, Massachusetts, USA, 2007:370-379.
    [15]谢慧才.结构健康监测新技术-智能传感网络.四川理工学院学报(自然科学版),2009,22(4):1-3.
    [16]俞金寿.软测量技术及其应用.自动化仪表,2008,29(1):1-7.
    [17]Joseph B., Brosilow C. B.. Inferential Control of Processes:Part Ⅰ. Steady State Analysis and Design. AIChE Journal,1978,24(3),485-492.
    [18]Brosilow C. B., Tong M.. Inferential Control of Process:Part Ⅱ. The Structure and Dynamics of Inferential Control System. AIChE Journal,1978,24(3):492-500.
    [19]Joseph B., Brosilow C. B.. Inferential Control of Process:Part Ⅲ. Construction of Optimal and Suboptimal Dynamic Estimators. AIChE Journal,1978,24(3):500-509.
    [20]李允公,张金萍,刘杰等.基于神经网络和主元分析的特征集生成方法.机械工程学报,2009,45(1):62-67.
    [21]丁世飞,史忠植,靳奉祥.非线性迭代PLS信息模式识别算法.计算机工程,2008,34(1):20-22.
    [22]薄洪光,刘晓冰,马跃等.基于粗糙集的钢铁行业工艺知识发现方法.计算机集成制造系统,2009,15(1):135-141.
    [23]杨佳,许强,曹长修.基于数据挖掘的铁水硅质量分数SVM预测方法.华中科技大学学报(自然科学版),2009,37(5):68-71.
    [24]孙优贤,褚健.工业过程控制技术.北京:化学工业出版社,2005.
    [25]徐欧官.异构化机理软测量模型在工业装置中的在线应用.化工自动化及仪表,2009,36(3):49-53.
    [26]丁云,于静江,周春辉.原油蒸馏塔的质量估计和优化管理.石油炼制与化工,1994,25(5):23-28.
    [27]刘漫丹,杜文莉,钱锋.裂解炉燃料气热值的模糊神经网络软测量.计算机集成制造系统,2003,9(5):412-416.
    [28]杨强大,王福利,常玉清.基于改进BP神经网络的菌体浓度软测量.控制与决策,2008,23(8):869-873,878.
    [29]FU Yongfeng, SU Hongye, CHU Jian. MIMO Soft-snesor Model of Nutrient Content for Compound Fertilizer Based on Hybrid Modeling Technique. Chinese Journal of Chemical Engineering,2007,15(4):554-559.
    [30]P. Georgieva, M. J. Meireles, S. Feyo de Azevedo. Knowledge-based Hybrid Modeling of a Batch Crystallization When Accounting for Nucleation, growth and agglomeration Phenomena. Chemical Engineering Science,2003,58:3699-3713.
    [31]Desai K., Badhe Y., Tambe S. S. et al. Soft-sensor Development for Fed-batch Bioreactors using Support Vector Regression. Biochemical Engineering Journal,2006, 27(3):225-239.
    [32]Liang-yu LEI, Zong-hai Sun. Soft Sensor Based on Generalized Support Vector Machines for Microbiological Fermentation. Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou,2005:4305-4309.
    [33]俞金寿.软测量技术在石油化工中的应用.石油化工,2000,29(3):221-226.
    [34]王华忠,俞金寿.基于混合SVR-PLS方法的丙烯腈收率软测量建模.控制与决策,2005,20(5):549-552.
    [35]Fortuna L., Graziani S., Xibilia M. G.. Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns. Control Engineering Pratice,2005,13(4): 499-508.
    [36]Mcavoy T. J.. Contemplative Stance for Chemical Process Control. Automation,1992, 28(2):441-442.
    [37]王立新.模糊系统与模糊控制教程.北京:清华大学出版社,2003.
    [38]Masaki Takahashi, Terumasa Narukawa, Kazuo Yoshida. Robustness and Fault-tolerance of Cubic Neural Network Intelligent Control Method-Comparison with Sliding Mode Control. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Port Island, Kobe, Japan,2003:17-22.
    [39]Jac-Sub Ko, Jung-Sik Choi, Dong-Hwa Chung. Hybrid Artificial Intelligent Control for Speed Control of Induction Motor. SICE-ICASE International Joint Conference, Bexco, Busan, Korea,2006:678-683.
    [40]Sergey V. Ulyanov, Ludmila V. Litvimtseva, Sergey A. Panfilov. Design of Self-Organized Intelligent Control Systems based on Quantum Fuzzy Inference: Intelligent System of Systems Engineering Approach. IEEE International Conference on Systems, Man and Cybernetics-SMC, Waikoloa, USA,2005:3835-3840.
    [41]杨川,赵强,张志.智能控制在超精密定位中的应用研究.仪器仪表学报,2009,30(6):1218-1223.
    [42]朱玉璧,程相利,陶新建等.智能控制在锅炉燃烧优化中的应用.中国电机工程学报,2008,28(11):82-86.
    [43]McCulloch W. S., Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Active. Bulletin of Mathematical Btophysics,1943,5:115-133.
    [44]Hebb D.O.. The Organization of Behavior. New York:Wiley,1949.
    [45]倪红伟,彭辉.神经网络在热电厂对象建模中的应用.计算机测量与控制,2006,14(5):622-624.
    [46]X. M. Ren, A. B. Rad. Identification of Nonlinear Systems With Unknown Time Delay Based on Time-Delay Neural Networks. IEEE Transactions on Neural Networks,2007,18(5): 1536-1541.
    [47]石天明,张震,张亮等.一个简单实用的神经网络环状流参数估计器.化工自动化及仪表,2007,34(4):63-67.
    [48]肖本贤,王晓伟,朱志国等.基于改进PSO算法的过热汽温神经网络预测控制.控制理论与应用,2008,25(3):569-573.
    [49]周刚,杨立.集成神经网络方法在蒸汽发生器故障诊断中的应用.原子能科学技术,2009,43(11):997-1002.
    [50]Stephen F Brown, Alan J. Branford, Willian Moran. On the Use of Artificial Neural Networks for the Analysis of Survival Data. IEEE Transactions on Neural Networks, 1997,8(5):1071-1077.
    [51]朱福珍,李金宗,李冬冬.基于BP神经网络的超分辨率图像重建.系统工程与电子技术,2009,31(7):1746-1749.
    [52]Stefano Ferrari, Francesco Bellocchio, Vincenzo Piuri et al. A Hierarchical RBF Online Learning Algorithm for Real-Time 3-D Scanner. IEEE Transactions on Neural Networks, 2010,21(2):275-285.
    [53]刘琦,张引,叶修梓等.基于离散Hopfield网络求解极大独立集的茎区选择算法以及在RNA二级结构预测中的应用.计算机学报,2008,31(1):51-58.
    [54]Commuri S., Lewis, F. L.. CMAC Neural Networks for Control of Nonlinear Dynamic Systems: Structure, Stability and Passivity. Automation,1997,33(4):635-641.
    [55]徐新华,赵伟荣.水与废水的臭氧处理.北京:化学工业出版社,2003.
    [56][美]R.G.赖斯,A.涅泽尔编著,朱庆爽,朱光译.臭氧技术及应用手册.第一版.北京:中国建筑工业出版社,1991.
    [57]Camel V, Bermond A. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Water Research 32:3208-3222.
    [58]王琳,王宝贞编著,聂梅生主审.优质饮用水净化技术.第一版.北京:科学出版社,2000.
    [59]Masten S J, Davies S H R. The Use of Ozonation to Degrade Organic Contaminants in Wastewaters. Environmental Science & Technology.1994,28:181A-185A.
    [60]Takahashi Nobuyuki, Kumagai Tomoya. Application of Ozonation to Dyeing Wastewater Treatment-Case Study in Nishiwaki Treatment Plant. Ozone:Science & Engineering.2008, 30(6):439-446.
    [61]李翠莲,黄中培,方北曙.臭氧杀菌消毒技术在食品工业中的应用.湖南农业科学.2008,4:119-121.
    [62]徐南波.臭氧在食品加工、冷藏库中的应用.制冷.2005,24(2):54-57.
    [63]周元全,胡松,高荣.电解式臭氧发生装置.CN1195643A,1998-10-14.
    [64]Kogelschatz U. Dielectric-Barrier Discharges:Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing.2003,23(1):1-46.
    [65]Baldur Eliasson, Ulrich Kogelschatz. Nonequilibrium Volume Plasma Chemical Processing. IEEE TRANS. ON PLASMA SCIENCE.1991,19(6):1063-1077.
    [66]白希尧,张芝涛,白敏药,沈丽.臭氧产生方法及其应用.自然杂志.2001,22(6):350-353.
    [67]Baldur Eliasson, Ulrich Kogelschatz. Modeling and Application of Silent Discharge Plasmas. IEEE TRANS. ON PLASMA SCIENCE.1991,19(2):309-323.
    [68]Horn R. J., Straughton J. B., Dyer-Smith P. et al. Development of the Criteria for the Selection of the Feed Gas for Ozone Generation from Case Studies, in:A K Bin(ed.) Proceedings of the International Ozone Symposium "Application of Ozone in Water and Wastewater Treatment", Warsaw Poland,1994:253-262.
    [69]刘庆君,朱天宇,辛力锋.大型高频臭氧发生器的冷却特性分析.河海大学常州分校学报,2007,21(4):69-71.
    [70]郑华军.高频臭氧发生器控制系统的研制:(硕士学位论文).南京:河海大学,2004.
    [71]Rakness, KL, and GF Hunter. Ideas for Simplifying and Improving LOX-Ozone Automation. Ozone Association World Congress in Dearborn, MI.2000:321-335.
    [72]徐学基,诸定昌编著.气体放电物理.上海:复旦大学出版社,1996.
    [73]Eliasson, B., M. Hirth, and U. Kogelschatz. Ozone Synthesis from Oxygen in Dielectric Barrier Discharges. J. Phys. D:Appl. Phys.1987,20:1421-1437.
    [74]J. Kitayama, M. Kuzumoto. Analysis of Ozone Generation from Air in Silent Discharge. J. Phys. D:Appl. Phys.,1999,32:3032-3040.
    [75]J. Kitayama, M. Kuzumoto. Theoretical and Experimental Study on Ozone Generation Characteristics of an Oxygen-Fed Ozone Generator in Silent Discharge. J. Phys. D: Appl. Phys.1997,30:2453-2461.
    [76]S. Yagi, M. Tanaka. Mechanism of Ozone Generation in Air-Fed Ozonisers. J. Phys. D: Appl. Phys.1979,12:1509-1520.
    [77]IEEE-P996.1, PC/104 Specification Version 2.5[S].2003.
    [78]邓明,白宜城,陈儒军,李哲,肖建平,邓靖武.PC104嵌入式计算机在海底大地电磁信号采集中的应用.中南工业大学学报,2002,33(6):555-558.
    [79]胡晓依,何庆复,林荣文,王华胜,唐松柏.基于PC104的车载增压器状态监测系统设计.北京交通大学学报,2008,32(4):10-13.
    [80]吴钢华,何永义,李志远,方明伦.基于PC104的微小位移检测.仪器仪表学报,2006,27(7):779-782.
    [81]徐贺,王树国,付宜利,李寒.基于PC104和网络驱动电机的移动机器人控制系统.机器人,2005,27(4):336-340.
    [82]刘卫,程明宵,海光美.PC104工业色谱仪操作系统研究及内核实现.化工自动化及仪表,2006,33(6): 59-61.
    [83]Mohammad I, Imad M. Handbook of Sensor Networks:Compact Wireless and Wired Sensing Systems. Washington, D. C.:CRC PRESS,2004.
    [84]马祖长,孙怡宁,梅涛.无线传感器网络综述.通信学报,2004,4:114-124.
    [85]赵静,宋刚,周驰岷等.无线传感器网络水质监测系统的研究与应用.通信技术,2008,41(4):124-126.
    [86]刘坚,秦大力,于德介.基于无线传感器网络的智能状态监测系统研究.计算机集成制造系统,2008,14(10):2047-2051,2067.
    [87]张克,李洋,陈炼等.基于ZiogBee的传感器网络在石化工业中的应用探讨.计算机工程与设计,2007,28(2):409-411,414.
    [88]赵增华,石高涛,韩双立等.基于无线传感器网络的高压输电线路在线监测系统.电力系统自动化,2009,33(19):80-84.
    [89]Byrne J A.21 Ideas for the 21st Century. Business Week,1999,30(8):78-167.
    [90]Wade R, Mitehel W M, Petter F. Ten Emerging Technologies that Will Change the World. Technology Review,2003,106(1):33-49.
    [91]任秀丽,于海斌.ZigBee无线通信协议实现技术的研究.计算机工程与应用,2007,36(4):143-145.
    [92]张治斌,王玉芬,李长江.ZigBee无线传感器网络在瓦斯监测系统中的应用.矿山机械,2007,35(11):32-34.
    [93]闫银发,公茂法,汤元信.基于ZigBee技术的无线网络抄表系统设计.电测与仪表,2006,43(6):43-45.
    [94]郭世富,马树元,吴平东等.基于ZigBee无线传感器网络的脉搏信号测试系统.计算机应用研究,2007,24(4):258-260.
    [95]王权平,王莉.ZigBee技术及其应用.现代电信科技,2004,01:33-37.
    [96]ZHANG Haichuan, LIU Zhongyang, XU Dongwei. On-line Test of Power in The Process of Ozone Production.7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT(VOLS 1-7), Beijing,2007:3283-3286.
    [97]刘钟阳.DBD等离子体反应器放电功率测量的研究.仪器仪表学报,2001,22(3):78-79.
    [98]赵学东.电网中畸变波形对一些常用仪表运行情况的影响.电测与仪表,1990,7:26-32.
    [99]戴先中.准同步采样及其在非正弦功率测量中的应用.仪器仪表学报,1984,Vol.5(4):390-396.
    [100]俞红祥,梅广益,徐洪.基于准同步采样技术的配电网电能质量在线监测装置.仪器仪表学报,2008,29(10):2201-2206.
    [101]张波,岳朝松.臭氧发生器运行参数的正交试验研究.高电压技术,2002,28(10):43-44.
    [102]田健,王华民,郭会军等.串联谐振感应加热电源频率跟踪控制的研究.工业加热,2000,3(2):4-7.
    [103]陶海敏,李彦锋,张仲超等.高压大功率电晕电源的研制.高电压技术,2002,28(6):40-41,54.
    [104]毛鸿,吴兆麟,候振程.串联型IGBT超音频感应加热电源.工业加热,1998,7(2):25-28.
    [105]颜文旭,沈锦飞,惠晶等.基于模糊逻辑PDM串联谐振逆变器功率控制.电力电子技术,2005,39(2):56-58.
    [106]马红斌,沈锦飞.感应加热电源PDM-PSM复合功率控制策略研究.电力电子技术,2007,41(5):70-7.
    [107]P. Viriya, S. Sittichok, K. Matsuse. Analysis of high-frequency induction cooler with variable frequency power control. In:Power Conversion Conference. Nagaoka,2002, 1502-1507.
    [108]吕宏,黄玉水,张仲超.串联谐振单相全桥逆变器常用控制方法的研究.电源技术应用,2002,5(5):216-218.
    [109]吕宏,黄玉水,张仲超.感应加热电源的M-PFM控制方法.电力电子技术,2003,37(1):8-11.
    [110]杨海英,谢少军.对称PWM控制ZVS半桥变换器研究.电工技术学报,2006,21(6):29-342.
    [111]鲍建宇.并联逆变中频感应加热电源双负载功率分配技术的研究:(硕士学位论文).杭州:浙江大学,1999.
    [112]黄玉水.DBD型臭氧发生器负载特性及高频放电电源的研究:(博士学位论文).杭州:浙江大学,2004.
    [113]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2003.
    [114]刘钟阳,吴彦,王宁会.DBD型中高频臭氧发生器的动态负载特性.中国电机工程学报,2002, 22(5):61-64,83.
    [115]黄玉水,王立乔,林平,张仲超.介质阻挡放电型臭氧发生器负载特性研究.浙江大学学报(工学版),2005,39(5):696-700.
    [116]鲍建宇,徐炜,张仲超.软开关相移PWM感应加热技术的研究.电力电子技术,2000,6:31-32,42.
    [117]王益红,崔建明.带锁相控制的IGBT感应加热电源.煤炭科学技术,1999,27(9):32-34.
    [118]陈燕东,孟志强,邓湘凤.基于移相PWM控制数字化臭氧电源的设计.电力电子技术,2006,40(6):80-83.
    [119]张琪,刘勇,何湘宁.移相全桥PWM控制的薄膜表面处理电源研究.电力电子技术,2006,40(1):95-96.
    [120]王跃球,唐杰.基于CD4046的新型频率跟踪移相PWM控制电路研究.船电技术,2006,26(6):25-28.
    [121]C. Gottschalk, J.A.Libra, A. Saupe. Ozonation of Water and Waste Water. Weinheim: Wiley-VCH Verlag,2000.
    [122]黄克瑾.精馏过程的模型化及仿真.浙江大学博士学位论文,1992.
    [123]丁云,于静江,周春晖.原油蒸馏塔的质量估计和优化管理.石油炼制与化工,1994,25(5):23-28.
    [124]Bingxiang Zhong, Taifu Li, Jinliang Shi et al. Research on soft sensor model based on Kernel Function Principal Component Analysis for gas outburst. The 7th World Congress on Intelligent Control and Automation, Chongqing,2008:2668-2672.
    [125]贺湘宇,何清华,郭勇等.基于主元回归模型的挖掘机液压系统故障诊断.江苏大学学报(自然科学版),2008,29(2):106-110.
    [126]Stopel D., Boger Z., Moskovitch R. et al. Application of Artificial Neural Networks Techniques to Computer Worm Detection. International Joint Conference on Neural Networks, Vancouver, Canada,2006,2362-2369.
    [127]Wenjun Hou, Xiangji Li, Yue Jin et al. A Study of Intelligent Decision-Making System Based on Neural Networks and Expert System. Intenational Conference on Cyberwolds, Hangzhou,2008:811-814.
    [128]杨强大,王福利,常玉清.基于改进BP神经网络的菌体浓度软测量.控制与决策,2008,23(8):869-873,878.
    [129]Lant P. A.,Willis M. J.,Montague G. A. etal. A comparision of adaptive estimation with neural-based techniques for bioprocess application. Process American Control Coference,1990,3,2173-2178.
    [130]王学武,王冬青,陈程等.基于混沌RBF神经网络的气化炉温度软测量系统.化工自动化及仪表,2006,33(5):48-50.
    [131]GAO Qian, YAN Wei-wu, SHAO Hui-he. Regularized RBF Network-Based Inferential Sensor and Its Application in Product Quality Prediction. JOURNAL OF SYSTEM SIMULATION.2005, 17(7):1609-1612,1678.
    [132]杨辉,柴天佑.稀土萃取分离过程的优化设定控制.控制与决策,2005,20(4):398-402.
    [133]Dai X., Wang W., Ding Y. etal. "Assumed inherent sensor" inversion based ANN dynamic soft-sensoing method and its application in erythromycin fermentation process. Computers and Chemical Engineering,2006,30(8):1203-1225.
    [134]Thompson M. L., Kramer M. A.. Modeling Chemical Process Using Knowledge and Neural Networks. AICHEJ,1994,40(8):1328-1340.
    [135]刘敏,王宁会,刘钟阳.基于混合神经网络的臭氧浓度软测量.计算机测量与控制,2003,11(9):660-662.
    [136]赵昀,黄志尧,王保良等.基于神经网络及机理分析的气力输送粉料质量流量软测量.仪器仪表学报,2000,21(4):360-363.
    [137]刘瑞兰,苏宏业,褚健.模糊神经网络的混合学习算法及其软测量建模.系统仿真学报,2005,17(12):2878-2881.
    [138]谢常清,鄂加强,成志明等.基于模糊神经网络的点火提前角时间差软测量模型.内燃机工程,2009,30(2):73-77.
    [139]王桂增,王诗宓,徐博文等.高等过程控制.北京:清华大学出版社,2003.
    [140]Christof Humpert, Gerhard J. Pietsch. Simulation of Ozone Synthesis in Oxygen-and Air-Fed Surface Discharge Arrangements. Ozone:Science and Engineering,2005,27: 59-68.
    [141]Toshiyuki Horinouchi, Takahisa Hayashi, Norio Nakajima. Ozone Generator with Cylindrical Type of Rotating Electrod. Ozone:Science and Engineering,2005,27: 53-57.
    [142]岳朝松,陈万金,储金宇.电晕放电法臭氧发生器电极的研究.高电压技术,2002,28(6):42-43,45.
    [143]唐雄民,刘铮,彭永进等.移相控制串联谐振式臭氧发生器电源分析.中国电机工程学报,2007,27(24):17-23.
    [144]王宪,陈云,王呈.智能臭氧浓度在线测试仪.计算机与应用化学,2005,22(9):793-796.
    [145]邓成.臭氧浓度在线自动检测系统:(硕士学位论文).湖南:湖南大学,2004.
    [146]Kerwin L. Rakness, Glenn F. Hunter. Ideas for Simplifying and Improving LOX-Ozone Automation. Ozone Association World Congress in Dearborn,2000:321-335.
    [147]莫巨华,黄敏,王兴伟.基于模糊控制与遗传算法的串行生产控制系统最优设计.计算机集成制造系统,2009,15(11):2096-2103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700