西藏藏鸡种质资源特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏鸡是分布于我国青藏高原的原始小型地方鸡种,本文通过现场调查和抽样检测等方法研究藏鸡种质特性,分析藏鸡体型外貌和生产性能多样性,并用10个微卫星位点从DNA分子水平分析藏鸡遗传多态性.针对高原种蛋孵化率低的问题进行了系列孵化实验,分析人工孵化的种蛋贮存时间、孵化温度,湿度等条件.为了分析VEGF基因在藏鸡胚胎低氧适应中的作用,本文用测序法比较藏鸡和矮小隐性白鸡VEGF基因mRNA序列差异。并比较常氧(O_2 21%)和低氧(O_2 13%)浓度孵化环境中,胚胎尿囊绒毛膜(CAM)组织VEGF基因mRNA表达差异.为了了解藏鸡开发利用价值,本文选用非线性生长模型分析了藏鸡及隐形白鸡在高海拔环境中生长性能,屠宰特定其肉用性能,从肉物理性状和氨基酸、肌苷酸含量分析藏鸡肉用性能,从蛋的常规营养成分和微量元素含量分析藏鸡蛋用性能.结果如下:
     (1)藏鸡生境低压、低氧、严寒等恶劣气候,处于半野生生活状态,具有适应高原气候、觅食能力强、耐粗饲、体型外貌和生活习性与红色原鸡非常近似、人工选择程度低等特点.
     (2)藏鸡人工孵化最佳孵化温度为1-6天为37.68℃;7-14天为37.65℃;15-20天为37.56℃;21天为37.48℃.高原孵化种蛋保存时间不超过7天,贮存温度12-15℃。湿度保持在75-80%,种蛋大头向上.藏鸡受精蛋孵化率88.9%,拉萨白鸡受精蛋孵化率77.5%,隐性白鸡50.7%,藏鸡×隐性白鸡种蛋55.7%,隐性白鸡×藏鸡种蛋63.2%,农大3号矮小蛋鸡54.3%,藏鸡×农大3号矮小蛋鸡种蛋74.7%.
     (3)根据残差平方和(RSS)和复相关指数(R~2),logisitic模型为模拟高海拔鸡生长过程的较优模型,藏公、母鸡logistic模型拟合的极限体重分别为711.2g和646.6g;拐点周龄分别为12.72和12.32周;拐点体重分别为415.1g和323.3g.引进到高原的隐性白鸡极限体重公、母鸡分别为1243.4g和972.1g,拐点周龄分别为12.51和11.81周,拐点体重分别为621.70g和486.05g.
     (4)藏鸡公、母屠体率分别为88.95%和88.74%,半净膛率分别为75.55%和74.65%,全净膛率分别为56.30%和55.34%,胸肌率分别为15.00%和15.97%,腿肌率分别为23.69%和23.09%),胸肌滴水损失分别为2.68%和2.62%,肉色分别为3.52和3.74,剪切力值分别为2.95和3.08kg,熟肉率分别为72.03%和71.12%,氨基酸质量分数分别为20.67%和19.78%,肌苷酸分别为2.32和2.50 mg/g.藏鸡具有肉质鲜美的特征,是发展高原特色、优质养殖业的良好品种.
     (5)藏鸡蛋的营养成分,铁、铜、锌等具有重要生理功能的微量元素以及粗蛋白、粗脂肪含量均高于普通鸡蛋,具有比普通鸡蛋更高的营养价值.
     (6)藏鸡具有体型小、身体长、胫较高,羽色、冠形、体尺等体型外貌形状具有丰富的多态性。藏鸡微卫星位点遗传多样性丰富、杂合程度高、遗传变异大,群体间存在一定的遗传差异.
     (7)VEGF基因序列在藏鸡与矮小隐性白鸡之间相当保守,低氧刺激使藏鸡和矮小隐性白鸡CAM组织VEGF基因表达均上调,矮小隐性白鸡上调程度明显大于藏鸡.藏鸡在低氧环境中CAM组织中VEGF基因表达表现一定程度的增加,有利于血管形成,表现对低氧环境的适应.
     总之,藏鸡无论从表型水平还是从分子水平都是具有丰富遗传多样性的小型地方鸡种,其VEGF基因低氧表达模式具有适应高海拔低氧环境的特征.藏鸡生长缓慢,屠宰性能不高。但胸肌和腿肌率高,氨基酸含量丰富,必需氨基酸和鲜味氨基酸比例大,蛋营养价值高,是发展高原特色、优质养殖业的良好品种.
Tibetan chicken is an original indigenous breed with small body size in the Tibetan plateau of China. In present study, breed characteristics of Tibetan chicken were researched with local inquiry and sample measurement, and its variety was analyzed with body size, performances, and 10 microsatellites markers in genomes DNA. Because of the low hatchability at high altitude, a set of incubation experiments were carried to analyze the optimal conditions of artificial incubation, such as eggs store time, incubator room temperature and relative humidity, ect. In order to research function of VEGF gene on adaptation to hypoxia in Tibetan chicken embryo, the mRNA of VEGF gene was sequenced and measured by quantitative expression in CAM tissue of embryos in Tibetan and Dwarf Recessive White chickens that were incubated at conditions of normal oxygen (O_2 21%) and low oxygen (O_2 13%). Furthermore, In order to research the value in meat use the growth of Tibetan and Recessive White chickens raised at hith altitude enviroment were analyzed with nonlinear models, and meat traits including meat physical characters and amino acid and ionsine monophosphat acid contents were measured. The nutrition component and microelement content of Thibetan chicken eggs were determined to evaluate its value in egg use. The results were as following:
     (1) Tibetan chickens with live state of half-wild had habitation of hypobaric hypoxia and chilliness, and charactered adaptation to altiplano environment, high ability of look for food, endurance to coarse feeding, similar to red jungle fowl in bode size and live habit.
     (2) The optimal temperature of incubator room in Tibetan chicken incubation was 37.68℃for day 1 to 6, 37.65℃for day 7 to 14, 37.56℃for day 15 to 20, and 37.48℃for day 21. For incubation at high altitude the eggs store time was less than 7 days, store temperature 12 to 15℃, relative humidity 75% to 80%, and the blunt end of eggs was up. At 2900 m altitude, hatchability of fertile eggs was 88.9% in Tibetan chicken, 77.5% in Lasa White chicken, 50.7% in Recessive White chicken, 55.7% in Tibetan×Recessive White chickens, 63.2% in Recessive White×Tibetan chickens, 54.3% in Nongda No. 3 Dwarf chickens, and 74.7% in Tibetan×Nongda No. 3 Dwarf chickens.
     (3) Comparing based on residual sum of squares (RSS) and correlation coefficient (R~2), it was found that logistic model was superior for fitting the growth courses of Tibetan and lowland chickens. The male and female Tibetan chickens had 711.2 and 646.6 g in final weight, 12.72 and 12.32 wk in inflection point time, 415.1 and 323.3 g in inflection point weight, respectively. The male and female Recessive White chickens introduced to high altitude had 1243.4 and 972.1 g in final weight, 12.51 and 11.81 wk in inflection point time, 621.70 and 486.05 g in inflection point weight, respectively.
     (4) The male and female Tibentan chickens had 88.95% and 88.74% in carcass yield, 75.55% and 74.65% in half eviscerated yields, 56.30% and 55.34% in eviscerated yields, 15.00% and 15.97% in breast muscle yields, 23.69% and 23.09% in leg muscle yields, 2.68% and 2.62% in water dripping loss, 3.52 and 3.74 in meat color, 2.95 and 3.08 kg in meat shearforce, 72.03% and 71.12% in cooking ratio, 20.67% and 19.78% in amino acids contents, 2.32 and 2.50 mg/g in ionsine monophosphat acid contents, respectively. Tibetan chickens had low carcass and eviscerated yields, but had high breast and lag muscle yields, and essential amino acid and testy amino acid contents. Therefore, Tibetan chicken is a good breed for developing high quality especial animal production in high altitude areas.
     (5) Tibetan chicken eggs had higher nutrition than common eggs in Fe, Cu, Zn, ect., and cross protein and cross fat that have importance physiological function.
     (6) Tibetan chicken population had abundant variety in feather colour, comb shape, body size, and microsatellite loci, and had high heterozygosity and certain genetic variance within the popution.
     (7) The mRNA sequence of VEGF gene was conservative between Tibetan and Drwarf Recessive White chickens. Hypoxia-induced VEGF up-regulation occurred in CAM tissue for both breeds. However, the extent of up-regulation was significantly higher in Dwarf Recessive White than that in Tibetan chickens. Tibetan chickens had hypoxia induced VEGF mRNA expression to a certain degree, which made for angiogenesis and adaptation to hypoxic environment.
     At all, Tibetan chicken is a small size breed with aboundent variety in phenotype and molecule genotype. The hypoxia induced expression of VEGF gene in Tibetan chickens had characteristic of adaptation to hypoxia at high altitude. Tibetan chickens had low growth rate and carcass yields, but had high breast and lag muscle yields, and essential amino acid and testy amino acid contents, and its eggs had high nutrition values. So, Tibetan chicken is a good breed for developing high quality and especial animal production in high altitude areas.
引文
1.鲍海港.藏鸡myDNA变异和胚胎线粒体呼吸功能与其低氧遗传适应的关系.中国农业大学学报,2007
    2.常洪 主编 家畜遗传资源学纲要(M),中国农业出版社,1995
    3.谌澄光,李兴辉,郭小鸿,等.宁都黄鸡体尺选育及肉质性状比较的研究.江西农业大学学报(自然科学版),2002,24(6):860-864
    4.陈冬梅,周材权,苏学辉.不同饲养方式对肉用土鸡屠宰性能和肉质的影响.饲料工业,2005,26(17):9-10
    5.陈辉,黄仁录,李巍,张振红,郭云霞,潘栋,杨利,邸科前.散养柴鸡肌肉肌苷酸含量的比较.畜产品加工,2006,(5):90
    6.陈国宏,吴信生,李碧春,等.泰和乌骨鸡肌肉肌苷酸含量变化规律及其遗传力估测.扬州大学学报,2002,2(23):29-32
    7.陈国宏,王克华,丁铲,杨宁主编.中国禽类遗传资源.上海科学技术出版社,上海,2004.6,p6-10
    8.陈继兰,文杰,李建军,等.不同贮存条件下肌肉肌苷酸生成与降解规律的研究.畜牧兽医学报,2004,35(3):272-279
    9.陈继兰,文杰,王述柏,赵桂苹,郑麦青,李小华.肌肉肌苷酸和肌内脂肪沉积规律研究.畜牧兽医学报,2005a,36(8):843-845
    10.陈继兰,文杰,赵桂苹.郑麦青,杨宁.肌肉肌苷酸和肌内脂肪等肉品风味性状遗传参数的估计.遗传,2005b,27(6):898-902
    11.陈灵芝 主编 1993,中国的生物多样性--现状及其保护对策,99-113科学出版社 北京
    12.程光潮,周德旺,吴丽城,段章雄,王力,张婷,刘坤凡,郑小惠.鸡的血型研究*Ⅹ.我国11个地方鸡种的血型和血浆蛋白质多态分析.遗传学报,1991,18(5):415-423
    13.崔建华,张西洲,谢印芝,等.高原低氧与内皮生长因子的关系探讨.航天医学与医学工程。2000,5:368-370.
    14.丁保安,马军,任慧晔.缺氧地区清洗褐壳种蛋提高孵化率试验.当代畜牧,1995,(2):11
    15.杜志强,曲鲁江,李显耀,胡晓湘,黄银花,李宁,杨宁.藏鸡群体遗传多样性研究.遗传,2004,26(2):167-171
    16.樊斌,Chen.,Y湖北省三品种猪27微卫星座位的遗传变异.生物多样性,1999,7(2):91-96
    17.方弟安,王艾平,罗朝晖,耿照玉,夏瑾华.白耳黄鸡生产性能和肉质性状的研究.中国家禽,2006,28(4):9-11
    18.傅金恋.1983.应用G、C带技术分析略阳鸡的核型.第六次全国家家禽遗传育种学术讨论会论文集,209-215
    19.傅衍,罗静.中国家鸡的起源探讨.遗传学报,2001,28(5):411-417
    20.高玉时,杨宁,李慧芳,王克华,童海兵.我国地方鸡品种保种群微卫星多态性分析与分子标记档案的建立.遗传,2004,26(6):859-864
    21.苟潇.藏鸡胚胎低氧适应的血红蛋白分子机制.中国农业大学博士论文,2005
    22.顾志良 2000 我国地方鸡种遗传多样性研究进展 中国家禽 7
    23.洪夏,郑文竹.河田鸡线粒体DNA物理图谱.厦门大学学报:自然科学版,1999,38(3):452-459
    24.黄秀清,黄建斌,翁志铿,陈震,杨振通.5种不同类型地方鸡种肉用性能及肉质的研究.福建农业学报,2000,15(1):35-39
    25.黄勇,许由,龙小海,向荣淑,蒋顺时,徐恢仲,单天锡,杜世铭.旧院黑鸡染色体组型及G 带研究.西南农业大学学报,1994,(2):
    26.简承松,李敬丹.贵州部分地方鸡品种血浆淀粉酶的多态性.贵州农业科学,2000.28(4):7-11
    27.井根正利.王家玉译.分子群体遗传学与进化论[M].北京:农业出版社,1975
    28.李慧芳,章双杰,陈宽维,汤青萍,高玉时,陈国宏.我国重点保护地方鸡品种资源的遗传变异.中国农业大学学报,2005,10(3):21-24
    29.李世杰.赵月苹,江富华.艾维茵肉仔鸡生长规律的模拟及最大经济效益点的研究.河北农业大学学报,1999,22(2):67-70
    30.李瑜鑫,王建洲,徐业芬,强巴央宗.高海拔地区不同饲养方式下藏鸡生产性能测定.中国家禽,2007,29(8):44-46
    31.林敏,肖智远,詹乐群.福星鸡屠宰率与肌肉氨基酸含量的测定与分析.第7次全国家禽学术研讨会论文集,杭州:1995,360-362
    32.凌遥,张浩,强巴央宗.利用藏鸡杂交培育高原优质肉鸡初探.中国畜牧杂志,2007,43(11):5-7
    33.刘树俊,程光潮.DNA指纹技术在家禽亲缘关系分析中的应用.中国农业大学出版社,中国家禽质量性状在育种和生产中的应用,1997,58-59
    34.刘宗荣等.沙子岭猪群体遗传多样性的RAPD指纹分析.第六次全国畜禽遗传标记研讨会论文集,1998,83-87
    35.娄义州.茶花鸡、武定鸡种质特性研究--早期肉用性能测定.家禽,1987,(1):29-31
    36.逯岩.青脚鸡的选育及配套系中的应用.山东家禽,2000,(5):2-3
    37.吕雪梅等.蛋鸡品系RAPD变异及其杂种优势关系的分析.遗传,21(2):24-28
    38.马纯,何灵杰,杨孔.藏鸡对高原环境的适应.四川动物,2007,26(4):961-963
    39.孟安明,齐顺章,宫桂芬.四个探针产生的家禽DNA指纹图谱.生物化学与生物物理进展,1993,20(2):139-141
    40.欧茶海,李润泉,丁自柏,叶绍辉,段纲.不同日龄和性别腾冲雪鸡肉的营养成分分析.西南民族学院学报-自然科学版,1999,25(2):181-185
    41.强巴央宗,田见晖,谢庄.影响西藏高原禽蛋孵化率的因素及对策.畜牧与兽医,1999,31(5):12-13
    42.邱祥聘.嘉勇.优质肉鸡的内涵和改良之我见.见:徐是雄,编.第一届优质鸡的改良生产及发展研讨会论文集.香港:香港大学嘉道理农业研究所,1989
    43.余永新,田发益,赵晓玲,等.低氧环境对良种蛋鸡孵化率的影响.西南农业学报,2001,14(3):71-74
    44.施立明.遗传多样性及其保存[J].生物科学信息,1990,(2):158-164
    45.束婧婷,包文斌,张红霞,张学余,季从亮,陈国宏.家鸡腺苷琥珀酸裂解酶基因多态性与肌苷酸含量的关联及其红色原鸡的亲缘关系.遗传,2007,29(3):343-348
    46.束婧婷,吉文林.包文斌,陈国宏,张学余,季从亮.鸡ADSL基因和GARS-AIRS-GART 基因对肌肉肌酐酸(IMP)含量的影响.畜牧兽医学报,2007,38(8):786-791
    47.宋焕禄.张建,赵环环.几种鸡肌肉中肌苷酸(IMP)的测定.食品科学,2002,2(23):103-105
    48.宋兴平,庄勇,王秀华.日照麻鸡选育效果初报.山东畜牧兽医,1994,(3):14-16
    49.苏一军,李慧芳.张学余.我国地方鸡种保种群分子遗传多样性的检测.中国家禽,2005,27(18):16-19
    50.孙汉,吾豪华.江西地方鸡种6种血清酶多态性的研究.江西农业大学学报,1997,19(3):65-69
    51.孙永进,稽宝华,韩威,陈国宏,张学余.藏鸡、茶花鸡染色体核型分析.中国家禽,2007,29(13):16-18
    52.田发益,朱洪云,赵晓玲,田见辉,强巴央宗,德央,佘永新.提高西藏地区蛋种鸡孵化效果的综合研究--气体交换和湿度对蛋种鸡孵化效果的影响.畜牧与兽医,2001,33(5):16-17
    53.田刚,余冰.鸡肉肉质风味研究现状及其影响因素(四).四川畜牧兽医,2001,28(3):53
    54.童晓梅,梁羽,王威,徐树青,郑晓光,汪建,于军.藏鸡线粒体全基因组序列的测定和分析.遗传,2006,28(7):769-777
    55.王存芳.藏鸡资源群体的建立及其低氧适应性的分子机制研究.中国农业大学博士论文,2005
    56.王克华等.地方鸡种随机扩增多态DNA(RAPD)及其与群体遗传结构相关研究.第六次全国 畜禽遗传标记研讨会论文集,1998,110-116
    57.王立克,张中林,陈祖照.三种不同地方鸡种肉用性能的比较研究.安徽技术师范学院学报,2002,16(4):18-20
    58.王文,兰宏.家鸡和原鸡的线粒体DNA多态性比较.动物学研究,1994,15(4):55-60
    59.王志耕.肉的嫩化(综述).安徽农业大学学报(自然科学版),1997,24(2):186-188
    60.王志跃,陈伟亮,白群安,等.新扬州鸡生长模式的比较研究.黑龙江畜牧兽医,2002,(12):4-5
    61.魏泽辉.藏鸡高原孵化胚胎气体交换及生长发育特点.中国农业大学博士论文,2005
    62.翁跃进.AFLP--一种DNA分子标记新技术.遗传,1996,18(6):29-31
    63.吴常信.优质鸡育种特点及遗传标记辅助选择(MAS)的应用.见:李渊百,编.第三届优质鸡的改良生产及发展研讨会论文集.台湾台中:国立中兴大学,1994,11-15
    64.吴信生,陈国宏.王得前,张学余,王克华,成荣,刘博.徐琪,周群兰.利用微卫星技术分析中国部分地方鸡种的遗传结构.遗传学报,2004,31(1)43-50
    65.吾豪华,黄峰岩,谢金防,等.隐性白羽祖代肉鸡的引种饲养观察.江西畜牧兽医杂志.1999,(1):9-10
    66.吾豪华,等.江西地方鸡种肌肉常规肉品质与组织学分析.中国家禽,1999(增刊):43-45
    67.谢金防,熊文华,刘林秀,谢明贵.改良型崇仁麻鸡的肉质特性研究.江西畜牧兽医杂志,2003,(4):7-8
    68.徐琪,谢恺舟,王克华,张学余,陈国宏.仙居鸡和固始鸡胸肌肌苷酸含量的分析.扬州大学学报,2004,25(1):15-17
    69.杨宁 不同品系鹌鹑的生长曲线分析 中国家禽,1990(1):23-26
    70.杨宁.现代养鸡生产.北京:北京农业大学出版社,1994,47-56,620-621
    71.杨永军,倪有崇,江迎华,方航,陈红莲.华坪乌骨鸡产肉性能及肉质特性的研究初报.西南民族大学学报(自然科学版),2004,30(2):194-200
    72.叶绍辉,欧茶海,丁自柏,李润泉.60和90日龄笼养腾冲雪鸡屠宰性能分析.云南畜牧兽医,2000,(1):14-15
    73.章明,高玉时,李慧芳,陈国宏,王克华,陈宽维.部分地方鸡种微卫星DNA指纹分析.中国家禽学报,2004,8(1)184-188
    74.张德祥,杨山.不同性别肉仔鸡生长模式差异的研究.黑龙江畜牧兽医,1998,(3):11-12
    75.张德祥,杨山.优质鸡育种的肉质问题,中国家禽,1998,20(9):1-2
    76.张浩,强巴央宗,吴常信,等.鸡蛋高海拔孵化条件分析,中国家禽,2004.26(20):40-43
    77.张浩.藏鸡高原适应生理机制及其杂交利用研究.中国农业大学博士论文,2005
    78.张浩,吴常信,强巴央宗,马雪英,唐晓惠,普布.高海拔孵化鸡胚死亡曲线分析.中国农业 大学学报,2005a,10(4):109-114
    79.张浩,苟潇,魏泽辉,凌遥,吴常信.自动化低氧模拟孵化机的研制与测试.中国家禽,2005b,27(17):31-33
    80.张浩,吴常信,强巴央宗,凌遥,罗章.藏鸡高海拔适应与肺组织NOS活力研究.中国农业大学学报.2006,11(1):35-38
    81.张浩,吴常信,强巴央宗,凌遥,纪素玲.不同海拔环境中藏鸡生长曲线及杂种优势分析.中国农业大学学报,2007,12(2):40-44
    82.张浩,吴常信,强巴央宗,凌遥,李俊英.海拔对藏鸡及其杂交组合体重和屠宰性能的影响.家畜生态学报,2007,28(2):48-52
    83.张浩,吴常信,强巴央宗,凌遥,唐晓惠.藏鸡心脏高海拔低氧适应相关酶的研究.中国应用生理学杂志,2008,24(2):233-235
    84.张浩.藏鸡NOS基因高原低氧适应分子机理.中国农业大学博士后工作报告,2007
    85.张立凡.藏鸡胚胎低氧适应的肌红蛋白、神经及细胞珠蛋白的分子机制研究.中国农业大学学报,2007
    86.张录强.杨振才,孙儒泳.红腹锦鸡(Chrysolophus pictus)生长曲线分析.北京师范大学学报(自然科学版),2002,38:549-553
    87.张廷钦,邹平,宿兵,刘爱华,季维智,聂龙.云南地方鸡种血液蛋白多态性与其遗传关系的研究.云南畜牧兽医,1997,(3):27-30
    88.张细权,吴显华.选育过程中的粤黄鸡血液淀粉酶(Amy-1)基因频率的时代变化.遗传学报,1993,20(3):216-221
    89.张细权等.中国地方鸡种血液淀粉酶Amy-1多态性.遗传,1996,18(3):9-11
    90.张细权.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异.遗传学报,1998,25(2):112-119
    91.张学余等.乌骨鸡种群遗传结构的RAPD分析,中国家禽,1998,(5):1-2
    92.张学余,束婧婷,季从亮,陈国宏,韩威.5个鸡种腺苷琥珀酸裂解酶(ADSL)基因外显子9SNP及其与鸡肉肌苷酸含量的相关分析.畜牧兽医学报,2007,38(3):237-240
    93.张亚平.从DNA序列到物种树.动物学研究,1996,17(3):247-252
    94.中国标准出版社第一编辑室.中国农业标准汇编一畜禽卷.北京,中国标准出版社,2002.9.pp 52-56
    95.中国家禽品种志编写组.中国家禽品种志.上海:上海科学技术出版社,1989
    96.中国家禽品种志.上海科学技术出版社,上海,1989.10
    97.周怀军等.RAPD技术对地方鸡种群体遗传结构的分析.中国家禽,1997,(5):7-10
    98.朱庆.畜禽遗传标记辅助选择的研究与应用.四川畜牧兽医,2000,27(B07)82-83
    99. Arranze J J, Bayon R, San Primitivo F et al. Genetic variation of five microsatellite loci in four breeds of cattle[J]. Journal Agricultural Science, 1996 (27): 533~538.
    
    100. Avivi A, Resnick M B, Nevo E, Joel A, and Levy A P. Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growth factor. FEBS Lett, 1999,452(3): 133-140
    
    101. Avivi A, Shams I, Joel A, Lache O, Levy AP, and Nevo E. Increased blood vessel density provides the mole rat physiological tolerance to its hypoxic subterranean habitat. FASEB J. 2005, 19(10):1314-1316
    
    102. Ayala F. J. and J. W. Valentine. 1991. Evolving: The theory and progress of organic evolution. Menlo Park: Benjamin-Cummings.
    
    103. Baker J S F. A global protocol for determining genetic distance among domestic livestock breeds.In: Proceedings of the 5th world congress on genetics applied to livestock production, 1994, 21:501~508.
    
    104. Bao H, Zhao C, Li J, Wu C. Sequencing and alignment of mitochondrial genomes of Tibentan chicken and two lowland chicken breeds. Sci China C Life Sci, 2008, 51(1): 47-51
    
    105. Bao W, Chen G, Li B, Wu X, Shu J, Wu S, Xu Q, Weiqend S. Analysis of genetic diversity and phylogenetic relationships among red jungle fowls and Chinese domestic fowls. Sci China C Life Sci, 2008, 51(6): 560-568
    
    106. Bisgard G E. Carotid body mechanisms in acclimatization to hypoxia. Reapir. Physiol., 2000, 121:237~246
    
    107. Bruggeman V, A Witters, L De Smit, M Debonne, N Everaert, B Kamers, O M Onagbesan, P Degraeve, and E Decuypere. Acid-base balance in chicken embryos (Gallus domesticus) incubated under high CO2 concentrations during the first 10 days of incubation. Respir. Physiol. Neurobiol.,2007, 159(2): 147-154
    
    108. Bunn H. F. and R. O. Poyton. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev.,1996,76: 839~885
    
    109. Chakraborty R. Jin L. 1991. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. In "DNA figerprintiong: State of the science". Pena, S. D. J., Chakraborty R. Epplen J T., and Jeffreys, A J. eds. Birkhauser Verlag Basl/Switzerland.
    
    110. Crooijmans, R. P. M. A. New microsatellite markers on the linkage map of the chicken genome. J. Hered. 1994, 85(5): 401~403
    
    111. Dang C. V. and Semenza G L. Oncogenic alterations of metabolism. Trends Biochem Sci., 1999. 24: 68-72
    
    112. Darmani-Kuhi H., E. Kebreab, S. Lopez and J. France. A derivation and evaluation of the von Bertalanffy equation for describing growth in broilers over time. J. Anim. Feed. Sci. 2002, 11:109-125
    
    113. Darmani-Kuhi H., E,Kebreab, S. Lopez and J. France. An evaluation of different growth function for describing the profile of live weight with time (age) in meat and egg strains of chicken. Poult. Sci. 2003, 82: 1536-1543
    
    114. De Smit L, V Bruggeman, M Debonne, J K Tona, B Kamers, N Everaert, A Witters, O Onagbesan, L Archens, J De Baerdemaeker, and E Decuypere. The effect of nonventilation during early incubation on the embryonic development of chicks of two commercial broiler strains differing in ascites susceptibility. Poult. Sci., 2008, 87(3): 551-560
    
    115. Dunnington E. A., et al. Genetic diversity among commercial chicken populations and problems of estimation. Genetics, 1997, 145: 207~216
    
    116. Fairful R W. Herterosis. In: Poultry breeding and genetics. Crawford, R. D. eds. New York: Elsevier Science Publishers B. V., 1990: 913-933
    
    117. Ferrara N. (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol., 280, C1358-C1366.
    
    118. Flamme I, von Reutern M, Drexler H C, Syed-Ali S and Risau W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev. Biol. 1995, 171 (2): 399-414
    
    119. Francis D. W. Bernier P. E. Hutto D. C. The effect of altitude on the hatchability of chicken eggs. Poultry. Sci. 1967,46: 1384~1389
    
    120. Goldberg M A, Schneider T J. Smiliarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem, 1994, 269:4355-4361
    
    121. Gou X, Li N, Lian L, Yan D, Zhang H, Wei Z, Wu C. Hypoxic adaptations of hemoglobin in Tibetan chick embryo: high oxygen-affinity mutation and selective expression. Comp Biochem Physiol B Biochem Mol Biol, 2007,147(2): 147-155
    
    122. Grant V. The evolution process: A critical study of evolutionary theory (2nd)[J]. New York. Columbia University Press, 1991
    
    123. Grossman M., et al. Logistic growth curve of chickens: heritability of parameters. Heredity, 1985,76: 459-462
    
    124. Guillard J. C, and J. Klepping. Nutritional alterations at high altitude in men. Eur. J. Appl. Physiol., 1985,54:517-523
    125.Haberfeld A.,Dunnington E.A.Sinegel P.B.Genetic distances estimated from DNA fingerprints in crosses of white Plymouth Rock chickens.Anim.Genet(AB).1992,23(2):167-173
    126.Hlatky L,Hahnfeldt P,Tsionou C,et al.Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart.Br J Cancer,1996,74(Suppl):151
    127.Hochachka P.W.,Rupert J.L.,Monge C.,1999,Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance.Comparative Biochemistry and Physiology Part A:124:1-17
    128.Jin,K.L.,Mao,X.O.,Nagyama,T.,Goldsmidt,P.C.and Greenberg,D.A.(2000).Induction of vascular endothelial growth factor and hypoxia-inducible factor-lαby global ischemia in rat brain.Neuroscience 99,577-585
    129.Koizumi T,Ruan Z,Sakai A,et al.Contribution of nitric oxide to adaptation of Tibetan sheep to high altitude.Respiratory Physiology & Neurobiology,2004,140:189-196
    130.Laird A.K.Postnatal growth of birds and mammals.Growth,1966,30:1027-1038
    131.Levinson G and G A Gutman.High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12.Nucleic Acids Research,1987,15(13):5323-5338
    132.Li Q F and Dai A G.Hypoxia-inducible factor-1 alpha regulates the role of vascular endothelial growth factor on pulmonary arteries of rats with hypoxia-induced pulmonary hypertension.Chin Med J,2004,117(7):1023-1028.
    133.Liu L X,Lu H,Luo Y,et al.Stabilization of vascular endothelial growth factor mRNA by hypoxia inducible factor 1.Biochem Biophys Res Commun,2002,291(4):908-914
    134.Liu X.Z.,Li S.L.,Jing H.,Liang Y.H.,Hua Z.Q.,and Lu G.Y.Avian haemoglobins and structural basis of high affinity for oxygen:structure of bar-headed goose aquomet haemoglobin.Acta Crystallogr D Biol Crystallogr.2001.57(Pt 6):775-783
    135.Lutfullah,G.,All,S.A.,and Abbasi,A.A.(2005) Molecular mechanism of high altitude respiration:primary structure of a minor hemoglobin component from Tufted duck(Aythya fuligula,Anseriformes).Biochemical and Biophysical Research Communications,326:123-130
    136.Marks H.L.Growth curve changes associated with long-term selection for body weight in Japanese quails.Growth,1978,42:129
    137.Martin-Barriel I.,et al.Genetic dibersity analysis of six Spanish native cattle breeds using microsatellites.Anita.Genet(AB).1999,30(3):177-182
    138.Mignon-Grasteau S.,C.Beaumont,E.Le Bihan-Duval,et al.Genetic parameters of growth curve parameters in male and female chickens. Br. Poult. Sci. 1999, 40:44-51
    
    139. Mignon-Grasteau S., M. Pilest, L. Varona, et al. Genetic analysis of growth curve parameters for male and female chickens resulting from selection on shape of growth curve. J. Anim. Sci. 2000, 78:2515-2524
    
    140. Millar C I,Libby W J. Strategies for conserving clinal,ecotypic,and disjunct population diversity in wildspread species[J]. In Falk,D A and K E Holsinger(eds.) Genetic and Conservation of Rare Plants. New York: Oxford University Press, 1991,149V170
    
    141. Monge C, and F. Leon-Velarde. Physiological adaptation to high attitude: oxygen transport in mammals and birds. Physiol. Rev., 1991,71(4): 1135~1172
    
    142. Montgomery H.M., Marshall R., Hemingway H., Humphries S., et al. Human gene for physical performance. Nature, 1997,393: 221~222.
    
    143. Nei M. Molecular Evolutionary Genetics[J]. New York. Colombia University Press, 1987
    
    144. Notter D R. The important of genetic diversity in livestock population of the future[J]. J. Ani. Sci.,1999,77:61~69
    145. Onagbesan O, V Bruggeman, L De Smit, M Debonne, A Witters, K Tona, N Everaert, and E Decuypere. Gas exchange during storage and incubation of Avian eggs: effects on embryogenesis, hatchability, chick quality and post-hatch growth. World's Poult. Sci. J., 2007,63: 557-573
    
    146. Ponsuksili S., et al. Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting. J. Hered. 1998, 89(1): 17~23
    
    147. Ponsuksili S., et al. Comparison of multilocus DNA fingerprints and microsatellite in an estimate of genetic distance in chicken. J. Hered. 1999(6): 656~659
    
    148. Proudfoot E G The effects of plastic packaging and other treatments on hatching eggs. Canadian Journal of Animal Science, 1964,44: 87-95
    
    149. Risau W. Mechanisms of angiongenesis. Nature, 1997, 386(6626): 671-674
    
    150. Sanchez J. A., et al. Protein and microsatellite single locus variability in Salmo Salar L. (Atlantic Salmon). Heredity. 1996, 77(4): 423~432
    
    151. Shams I., Avivi A., and Nevo E. Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci USA, 2004,11(26): 9698-9703
    
    152. Smith E. J., et al. Use of randomly amplified polymorphic DNA markers for the genetic analysis of relatedness and diversity in chickens and turkeys. Poult. Sci. 1996, 75(5): 579~584
    
    153. Sun G L., et al. Genetic diversity in Elymus Caninus as revealed by isozyme, RAPD, and microsatellite markers. Genome. 1994. 136: 333~341
    154.Takahashi H.,et al.Genetic relationships among Japanese native breeds of chicken based on microsatellite DNA polymorphisms.J.Hered.1998,89(6):543-546
    155.Thompson,R.L.Incubation at high altitudes.The effects of wind,barometrix pressure and humidity on foetal mortality in the hen's egg.Poult.Sci.,1952,31:497
    156.Tona K,Onagbesan O,De Ketelaere B,et al.Effects of age of broiler breeders and egg storage on egg quality hatchability,chick quality,chick weight,and chick posthatch growth to forty-two days.J Appl Poult Res,2004,13:10-18
    157.Ulger H,Karabulut A K,Pratten M K.The growth promoting effects of bFGF,PD-ECGF and VEGF on cultured postimplantation rat embryos deprived of serum fractions.J Anat,2000,197(Pt 2):207-219
    158.Vanhala T.Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers.Poult.Sci.1998,77(6):783-790
    159.Visschedijk A.H.J.and H.Rahn.Incubation of chicken eggs at altitude:theoretical consideration of optimal gas composition.Br.Poult.Sci.,1981,22:451-460
    160.Visschedijk A.H.J.Physics and physiology of incubation.Br.Poult.Sci.,1991,32:3-20
    161.Wang C,Yuan C,Zhang L,Wu C,Li N.Differential gene expression of phosphoglyceric kinase (PGK) and hypoxic adaptation in chicken.Sci China C Life Sci,2007,50(3):335-342
    162.Wang C F,Yuan C Z,Wang S H,Zhang H,Hu X X,Zhang L,Wu C,Li N.Differential gene expression of aldolase C and hypoxic adaptation in chickens.Anim Genet,2007,38(3):203-210
    163.Weber R.E.,Jessen T.H.,Malte H,et al.Mutant haemoglobins(α~(119)-Ala and β~(55)-Ser):functions related to high-altitude respiration in geese.J.Appl.Physiol,1993,75:26467-2655
    164.Wei Z,H Zhang,C L Jia,Y Ling,X Gou,X M Deng,C X Wu.Blood gas,hemoglobin,and growth of Tibetan chicken embryos incubated at high altitude.Poult.Sci.,2007,86:904-908
    165.Welsh J.et al.1990.Fingerpringting genomes using PCR with arbitrary primers.Nucleic.Acids.Res.18:7213-7218
    166.Williams J G K,Kubelik A R,Livak J,Rafalsld A,Tingey S V.1990.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acid Research,18:6531-6535
    167.Wiseman J.and C.E.Lewis.Influence of dietary energy and nutrient concentration on the growth of body weight and of carcass components of broiler chickens.J.Agrie.Sci.1998,131:361-371
    168.Wu R.L.,Ma C-X,Myronehang,et al.A logistic mixture model for characterizing genetic determinants eansing differentiation in growth trajectories.Genet.Res.2002,79:235-245
    169.Xu Rifu,Kui Li,Guohong Chen,Hui Xu,Bayangzong Qiang,Changehun Li,Bang Li.Characterization of genetic polymorphism of novel MHC B-LB Ⅱ alleles in Chinese indigenous chickens. Journa of Genetics and Genemics, 2007, 34(2): 109-118
    
    170. Zabeau M, Vos P. Selective restriction fragment amplification-a general method for DNA fingerprinting[P].European Patent Application 94202629.7 (Publication No. 05348A1). Paris: European Patent Office, 1993
    
    171. Zhang H., C X Wu, Y Chamba, Y Ling. Blood characteristics for high altitude adaptation in Tibetan chickens. Poult. Sci. 2007, 86: 1384-1389
    
    172. Zhang Hao, Changxin Wu, Yangzom Chanba, Yao Ling, Suling Ji. Influences of altitude on growth curves in Tibentan chicken and its hybrid. Front Agric China, 2008, 2(2): 237-241
    
    173. Zhang X., et al. Random amplified polymorphic DNA comparisons among broiler lines selected for incidence of tibial dyschondroplasia. Poult. Sci. 1995, 74(8) 1253~1258
    
    174. Zhang Y. S. and J. Z. Du. The response of growth hormone and prolactin of rats to hypoxia. Neuroscience Letters, 2000,279: 137~140
    
    175. Zhou H. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers. Anim. Genet (AB). 1999, 30(4): 256~264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700