云南澜沧老厂多金属矿区构造及其控矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
澜沧老厂矿区是三江成矿带南段重要的多金属成矿区之一,最新研究表明澜沧老厂在成因上属于火山喷流沉积叠加隐伏斑岩热液成因为主的多因复成矿床。本文在充分收集前人资料和多次实际调研的基础上,侧重研究矿区及区域构造特征、构造演化及其与火山喷流沉积成矿系统和隐伏花岗斑岩成矿系统的关系,总结构造及其对成矿系统的控制。
     晚古生代以来,澜沧地区区域动力学环境多次转变,区域构造演变过程可分为裂谷期(D-P1)→裂谷封闭-隆升期(P2-K)→陆内碰撞造山期(新生代以来)三大构造期。受区域大地构造体制演变-转化的影响,老厂多金属矿床的成矿演化复杂而特殊:在时间上随大陆裂谷→陆内碰撞造山带的形成与演化,依次出现早石炭世火山喷流沉积成矿作用占主导→喜山期斑岩成矿作用占主导的成矿作用演变过程,形成特有的“双成矿系统”。
     研究区褶皱除矿区本部的老厂背斜和睡狮山向斜外,本部以东还有上云山背斜。其中老厂背斜形态复杂,是重要控矿构造。矿区断裂构造发育,包括SN向、NW向的主干断层以及NE向和EW向的次要断层。SN向和NW向断层应是矿区形成最早的构造,演化历史长,断层多期活动明显,性质多次转化,至少经历张性→挤压→右行走滑为主的多次活动过程,具继承性活动特征。矿区内NE向、EW向断层规模较小,对岩性岩相的控制不明显,可能形成于裂谷封闭期后。
     构造对火山喷流沉积成矿系统的控制,主要体现在裂谷对成矿的控制和断裂褶皱对矿体的控制与改造两方面。澜沧裂谷基底富铅锌银,裂谷边界及主干断裂是穿透性构造,不仅是岩浆上升-喷发的通道,还是深部成矿流体上涌-聚集的有利构造;裂谷中的地堑式多级盆地为成矿提供了良好的沉积洼地,利于成矿物质沿同生断裂带聚集与沉积成矿;裂谷封闭过程中,断裂构造性质反转,地层普遍褶皱,火山喷流沉积型矿体(Ⅰ、Ⅱ、Ⅴ号矿体群)呈叠瓦状抬升,与地层同步变形,并可在次级褶皱转折端加厚富集;陆内碰撞造山期的强烈构造挤压与区域性抬升,使火山喷流沉积型矿体进一步变形改造,局部隆升剥蚀。
     构造对斑岩成矿系统的控制,主要体现在对隐伏斑岩体空间分布的控制及斑岩有关的矿体群(Ⅲ、Ⅳ、Ⅵ号矿体群)的控制。据岩体产出特征分析,隐伏花岗斑岩体总体受老厂背斜及F1、F4断层联合控制,背斜轴部两断层交汇处为斑岩体高侵位地段;沿岩体突起顶部及其裂隙带,形成披覆状厚大细脉-浸染状钼(铜)矿体群(Ⅵ号矿体群);具继承性活动的F1、F3和F1l等南北向主干断层控制了热液充填型大脉状铅锌银矿体群(Ⅳ号矿体群)的产出;主干断层旁侧的次级断层及节理裂隙带中,不仅普遍发生低温热液蚀变,还形成大量不规则脉状-透镜状铅锌银矿体群(Ⅲ号矿体群);
Lancang lead deposit is one of important polymetallic deposits in south segment of Tri-rivers region in Yunnan province, China. The recent researches indicate that the genesises of Landcang ore deposit are compounded with Carboniferous volcano exhalative sedimentary and Himalayan concealed granite porphyry heated liquid. Based on the data collection and field survey, the regional tectonic features and tectonic evolvement and the relations to the systems of volcano exhalative sedimentary metallogenic and concealed granite porphyry metallogenic have been studied. Especially, the metallogenic system controlled by tectonic has been studied in detail.
     Since the late Paleozoic, the regional dynamic conditions have been changed in times. The evolution process of regional tectonic can be divided into 3 phases which are period of rift (D-P1), rift-close and lift (P2-K) and continental collision. Controlled by the complex tectonic conditions, the evolution process of the poly-metallogenic of Lancang ore deposit is also very complex. The in time sequence, when the tectonic was from rift to continental collision, the double metallogenic systems which processed from Carboniferous volcano exhalative sedimentary to Himalayan concealed granite porphyry heated liquid had been formed.
     In the research field, there are three folds including Shangyunshan anticline and Laochang anticline and Shuishishan syncline. The conformation of Laochang anticline is very complex and also an important ore-controlling structure. The faults are mainly spread in SN and NW directions and in NE and EW directions. The evolution process of the faults is very long and the activities of the faults can be observed in many stages which are at less including tension and squeeze and dextral strike slip. The faults in NE and EW directions are relative small.
     The Carboniferous volcano exhalative sedimentary controlled by tectonic in two aspects:the rift controls the metallogenic, the faults and the folds control the ore body. The boundary of the rift and the main fault are transfixion tectonics which is not only the channels for the magma ascending and eruption but also the space for the collection of rising metallogenic flow. The rift valley multi-stage basin in the rift is a good sedimentary depression for metallogenic and also helpful in the accumulation and sedimentary of minerals along the fault belt. During the process of rift close, the properties of faults reversed and many folds happened and the ore bodies lifted imbricately in phase of the deformation of stratum and can be enriched at the transition part of the folds. The continental collision of tectonic compression and strong regional uplift make the volcanic exhalation-sedimentary ore body deformed more.
     The porphyry metallogenic system is controlled by tectonic in two parts which are the space shape of concealed porphyry body and the ore body group related to the porphyry. According to the characters of the rock characteristics of occurrence, the concealed porphyry granite is controlled by Laochang anticline and faults F1 and F4. the shaft of the anticline locates the intersection of the two faults for the high intrusion of porphyry. Along the top the salience of porphyry and the rift belt, veins disseminated molybdenum(copper) ore body group has been formed. The nervation heated liquid filling ore body (IV orebody group) of Pb-Zn-Ag has been controlled by the main faults in NS direction such as F1 and F3 and F11and etc. In the secondary faults and fissures and cracks, there is not only low temperature heated liquid alteration but also many Pb-Zn-Ag ore body group(III orebody group) shaped in irregular nervation and lenticular.
引文
[1]Lovering T S. Epigenetic, diplogenetic, syngenetic, and lithogene deposits[J]. Economic Geology, 1963,58(3):315-331.
    [2]涂光炽.叠加与再造-被忽视了的成矿作用[J].湖南地质科技情报,1975,7(12):76-83.
    [3]徐克勤,朱金初.我国东南部几个断裂拗陷带中沉积(或火山沉积)热液叠加类铁铜矿床成因的探讨[J].福建地质科技情报,1978,12(4):1-68.
    [4]陈国达.从地壳演化规律看多因复成矿床[J].湖南地质学会会讯,1979,7(2):1222.
    [5]翟裕生.袁见齐,朱上庆.成矿控制和成矿规律[M],北京:地质出版社,1979:428-430.
    [6]翟裕生,姚书振,林新多.长江中下游地区铁铜矿床的成矿特征和成矿系列[M],国际交流地质学论文集(4).北京:地质出版社,1985:321-330.
    [7]翟裕生,邓军,彭润民.中国区域成矿若干问题探讨[J].矿床地质,1999,18(4):323-332.
    [8]翟裕生,王建平,邓军,等.成矿系统时空演化及其找矿意义[J].现代地质,2008,22(2):143-150.
    [9]翟裕生.论成矿系统[J].地学前缘,1999,6(1):13-27.
    [10]涂光炽.叠加与再造-被忽视了的成矿作用[J].湖南地质科技情报,1975,8(3):68-75.
    [11]翟裕生,邓军,李晓波.区域成矿学[M].北京:地质出版社,1999,3(5):1-171.
    [12]Zhai Y S, Deng J, Peng R M. Issues on China regionalmetallogeny [J].Journal of China University of Geosciences,2000,11(3):220-227.
    [13]翟裕生.中国区域成成矿特征的探讨[J].地质与勘探,2002,38(5):1-4.
    [14]邓军,翟裕生,杨立强等.剪切带构造-流体-成矿体系统动力学模拟[J].地学前缘1999,6(1):115-126.
    [15]邓军,杨立强,翟裕生等.构造-流体-成矿系统及其动力学的理论格架与方法体系[J].地球科学,2000,25(1):71-78.
    [16]孙家骢.矿田地质力学方法.昆明理工学院院报[J].1988,13(3):120-126.
    [17]赵寅震.同成矿构造应力场与矿床形成,分布的关系[M].见:地质力学文集(9).北京:地质出版社.1989,40-55。
    [18]刘守君.区域地质构造与成矿[J].黑龙江冶金,2009,29(1):16-17.
    [19]吴延之,王增润,段嘉瑞等.滇西澜沧火山岩带铜多金属成矿地质条件及找矿预测研究报告[R].中南工业大学科研报告,1990.
    [20]欧阳成甫,徐楚明,胡承绮,等.云南澜沧老厂银铅矿区隐伏花岗岩体预测及其意义[J].大地构造与成矿学,1993,17(2):119-126.
    [21]李峰,鲁文举,杨映忠等.2009.云南澜沧老厂多金属矿床矿化结构及成矿模式.地质与探.45(5):516-523.
    [22]杨帆,李峰,陈珲等.云南澜沧老厂隐伏花岗斑岩体地球化学特征及构造环境.岩石矿物学杂志[J].2011.待刊.
    [23]陈珲,李峰,坚润堂等.云南澜沧老厂斑岩锆石SHRIMP定年及其地质意义.地质学报[J].2010,84(4):485-491.
    [24]陈珲,李峰,坚润堂等.云南澜沧老厂花岗斑岩中锆石标型特征及地质意义.岩石矿物学杂志[J].2010,29(1):41-49.
    [25]李峰,鲁文举,杨映忠等.云南澜沧老厂斑岩铝矿成岩成矿时代研究[J].现代地质:2009,23(6):1049-1055.
    [26]杨开辉.三江地区火山岩成因块状硫化物矿床的基本特征与主要类型[J].矿床地质,1992,11(1):35-44.
    [27]潘桂棠,徐强,候增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,2003.
    [28]徐楚明,欧阳成甫.云南澜沧老厂银铅锌矿床成因研究[J].桂梓冶金地质学院学报,1991,11(3),245-252.
    [29]薛步高.含锡花岗岩外带银铅多金属矿床的地质特征[J].矿产与地质,1995,9(3):12-23
    [30]薛步高.昆阳群·矿床地质论文集[M].昆明:云南科技出版社,2003,157-167.
    [31]叶庆同,胡云中,杨清,等.三江地区区域地球化学背景和金银铅锌成矿作用[M].北京:地质出版社,1992.
    [32]周凤禄.澜沧老厂铅锌银矿床成矿条件浅识.西南矿产地质[J].1991,5(2):16-28.
    [33]王增润,吴延之.滇西澜沧裂谷成矿作用谦论老厂大型铜铅银矿床成因[J].有色金矿产与勘查,1992,5(4):207-215.
    [34]李雷,段嘉瑞,李峰,等.澜沧老厂铜多金属矿床地质特征及多期同位成矿[J].云南地质,1996,15(3):246-256.
    [35]李峰等.滇西大型-超大型铜多金属矿床成矿条件及靶区优选[R].昆明理工大学科研报告,2000.
    [36]陈百友.云南省澜沧老厂银铅锌铜多金属矿床成矿学研究[D].长沙:中南大学工业大学博士学位论文,2002.
    [37]李四光.地质力学概论[M].北京:科学出版社,1973,43-77.
    [38]陈国达,等.中国大地构造概要(1:400万中国大地构造图说明书)[M].北京:地震出版社,1977.58-77.
    [39]黄汲清,等.中国大地构造图(1:400万)[M].北京:地图出版社,1979.25-44.
    [40]王铠元,等.滇西地区大地构造演化.青藏高原地质论文集(12)[M].北京:地质出版社,1983:187-201.
    [41]张旗等.横断山区镁铁-超镁铁岩[M].北京:科学出版社,1992.,87-102.
    [42]莫宣学,路凤香,沈上越.三江特提斯火山作用与成矿[M].北京:地质出版社,1993:50-105.
    [43]范承钧.滇西区域地质特征[J].云南地质,1982,(4):323-336.
    [44]王义昭,李兴林,段丽兰,等.三江地区南段大地构造与成矿[M].北京:地质出版社.2000.
    [45]张翼飞,段锦荪,张罡,柏坚编著.滇西蛇绿岩带地质构造演化与澜沧江板块缝合线研究[M].昆明:云南科技出版社,2001.79-122.
    [46]杨开辉.三江地区火山岩成因块状硫化物矿床的基本特征与主要类型[J].矿床地质,1992,11(1):35-44.
    [47]罗君烈,杨友华,赵准,等.滇西特提斯的演化及其主要金属矿床的成矿作用[M].北京:地质出版社.1994.77-86.
    [48]云南澜沧铅矿等.云南澜沧银铅锌多金属矿床立体定位预测与增储研究.云南省省院省校科技合作计划项目研究报告[R],1991.
    [49]中南工业大学滇西科研队.澜沧老厂矿田成矿预测研究报告[R].1996,内部资料.
    [50]陈百友.云南省澜沧老厂银铅锌铜多金属矿床成矿学研究[D].长沙:中南大学工业大学博士学位论文,2002.
    [51]桂林冶金地质学院.云南澜沧老厂银铅矿研究报告[R].1988,内部资料.
    [52]云南地质矿产局.中华人民共和国区域地质调查报告(1:20万孟连幅)[R].1984.
    [53]段嘉瑞.澜沧地区逆冲推覆构造研究[J].云南地质,1993,8(4):357-336.
    [54]Morgan P, Baker B H, ets. Processes of Continental Rifting[M]. Els.Sci.Pub.,1983:1-680.
    [55]Logachev Condie K C. Plate Tectonics and Crustal Evolution[M]. New York: Pergarnon Press, 1982:1-310.
    [56]邓晋福等.中国大陆根柱构造—大陆动力学的钥匙[M].北京:地质出版社,1996,12-17.
    [57]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳-幔成矿系统[J].地学前缘,1999,6(2):259-268.
    [58]丁林,钟大赉.滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征[J].中国科学(B辑),1995,25(1):93-100.
    [59]Murray R W,Buchholtz Ten,Brink M R et al.Rare earth Majorand trace elements in chert from the Franciscan complex and Monterey Group,California,Assessing REE sources to fine-grained marine sediments[J].Geonchimica et Cosmochimica Acta,1991,55:1875-1895.
    [60]Guild P M.1972.Metallogeny and the global tectonics[C].24th IGC Proceeding,4:17-24.
    [61]毛景文,谢桂清,李晓峰,等.大陆动力学演化与成矿研究——兼论华南地区在地质历史演化期间大陆增生与成矿作用[J].矿床地质,2005a.24(3):193-205.
    [62]毛景文,李晓峰,李厚民,等.中国造山带内生金属类型、特点和成矿过程探讨[J].地质学报,2005b.5(7):342-372.
    [63]侯增谦,吕庆田,王安建,等.试论陆—陆碰撞与成矿作用——以青藏高原造山带为例[J].矿床地质,2003b.22(4):319-334.
    [64]Seltmann R, Kampf H and Moller P. Metallogeney of collisionalorogens[M]. Czech Geological Survey, Prague,1994.1-434.
    [65]Marignac C and Cunney M, Ore deposits of the French Massif Central:Insight into the metaalogenesis of the Variscan collision belt[J]. Mineralium Deposita,1999.34 (4):472-504.
    [66]Crawford A J, Corbett KD and Everard J. Geochemistry and tectonic setting of a Cambrian VMS-rich volcanic belt:The Mount Read Volcanics, W Tasmania [J]. Economic Geology,1992.87(6): 597-619.
    [67]Hou Z Q, Wang L Q, Khin Zaw, Mo X X, et al.2003a. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, S. W. China [J]. Ore Geology Reviews,22 (6):177-199.
    [68]王京彬,徐新.新疆北部后碰撞构造演化与成矿[J].地质学报,2006.8(6):23-31.
    [68]陈衍景.陆内碰撞造山体制的流体作用模式与成矿的关系——理论推导和东秦岭金矿床的研究成果[J].地学前缘,1996.3(2):282-289.
    [69]陈衍景,陈华勇,刘玉琳,等.1999.碰撞造山过程内生矿床成矿作用的研究历史和进展[J].科学通报,44:1681-1689.
    [70]Powell C M. Continental underplating model for the rise of the Tibetan plateau[J]. Earth Planet. Sci. Lett.1986.81:79-94.
    [71]Zhao W L, Nelson K D and Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet [J]. Nature,1993.366:557-559.
    [72]Owens T J and Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution [J]. Nature,1997.387:37-43.
    [73]Zhao W J and Morgen W J. Uplift of Tibetan plateau[J]. Tectonics,1985.4:359-369.
    [74]Zhao W L and Morgen W J. Injection of Indian crust into Tibetan lower crust:a two-dimentional finite element model study[J].1987. Tectonics,6:489-504.
    [75]Dewey J F, Shackleton R M, Chang C, et al. The tectonic evolution of the Tibetan Plateau[M]. London:Philosophical Transations of the Royal Society,1988. A327:379-413.
    [76]Tapponnier P and Molnar P J. Slip-line field theory and large scale continental tectonics[J]. Nature, 1976.264:319-324.
    [77]Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J]. Nature,1990.343:431-437.
    [78]Zhao W J and Nelson K D. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet [J]. Acta Geoscientia Sinica,1996.17:131-137 (in Chinese with English abstract).
    [79]Kosarev G, King R, Sobolev S V, Yuan X, Hanka W and Oreshin S. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet [J]. Science,1999.283:1306-1309.
    [80]Leech M, Singh S, Jain A K, Klemperer S L and Manickavasagam RM. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth Planet. Sci. Lett.2005.,234:83-97.
    [81]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337-358.
    [82]侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅱ.晚碰撞造山成矿作用[J].矿床地质,2006,25(5):521-543.
    [83]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    [84]王登红,应汉龙,梁华英,等.西南三江地区大陆动力学过程与大规模成矿[M].北京:地质出版社,2006.55-67.
    [85]Hou Z Q, Ma H W, Zaw K,et al. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology.2003,98:125-145.
    [86]侯增谦.斑岩Cu—Mo—Au矿床:新认识与新进展[J].地学前缘,2004,11(1):131-144.
    [87]段锦荪,张罡,柏坚等.滇西地区晚古生代裂谷作用与成矿[M].北京:地质出版社,2000,67-75.
    [88]罗君烈.滇西特提斯造山带的演化及基本特征[J].云南地质,1990,9(4).33-36.
    [89]戴自希,盛继福,白冶,等.世界铅锌资源的分布与潜力[M].地质出版社,2005.127-150.
    [90]李峰、张富良滇西大平掌铜多金属矿床火山喷流沉积成因[J].地质与勘探,2001,37(4):5-8.
    [91]李雷,李峰,段嘉瑞等.兰坪—思茅地区铜矿找矿前景[R].西南有色地质研究所、昆明理工大学、中南工业大学科研报告,1995.
    [92]袁奎荣主编.隐伏花岗岩预测及深部找矿[M].北京:科学出版社,1990,44-78.
    [93]张均.矿体定位预测的研究现状与趋势[J].地球科学进展,1997.12(3):242-244.
    [94]张均.隐伏矿体定位预测的方法学基础及方法论[J].贵金属地质,2000,9(2):241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700