采动断层突水机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井突水问题一直是困扰煤矿生产的一个难点问题,本文依托国家973计划项目“煤矿突水机理与防治基础理论研究”,围绕该项目拟解决的“采动岩体结构破坏与裂隙演化及渗流突变规律”科学问题进行研究,利用理论分析、数值模拟以及非线性方法等探讨了矿井突水的先决条件、断层活化突水机理、矿井涌水量的预测等问题。本文的主要研究内容及成果如下:
     总结了矿井突水的两个先决条件——突水水源和突水通道,并结合实例分析其水文地质特征;重点阐述了断层的力学特征和水文地质特性,为本文的研究奠定了基础。
     在分析地下水对岩体的物理化学及力学作用,以及探讨地下水对断层活化突水的影响规律的基础上,对水岩作用机理进行了研究。基于材料力学中的固支梁理论,建立了水压作用下断层张开位移方程。根据断裂力学中的D-M模型,提出了水压和矿压作用下断层附近岩体裂隙起裂的判据,并分析了水压、岩性和断层倾角对其影响的规律。
     通过对底板隔水层破坏机理的研究,提出了底板组合隔水层概念,建立了底板组合隔水层的非线性力学模型,推导出了组合隔水层的非线性失稳的力学充要条件,分析了组合隔水层中软岩的力学性质及巷道跨度对组合隔水层稳定性的影响;从岩体力学理论着手,分析在矿压和水压作用下,采动断层对底板隔水层稳定性的影响,得到了底板隔水层临界水压力公式,并提出了断层影响下底板突水的判据,分析了断层倾角、断层的内聚力及隔水层厚度对底板突水的影响规律。
     依据隔水关键层的概念,分析了小断层的突水机理。运用RFPA—FLOW2D软件模拟小断层突水规律,分析小断层影响下底板突水通道的形成过程。模拟结果表明小断层活化突水过程分三个阶段,即小断层活化阶段、小断层活化区扩展阶段和裂隙贯通阶段。通过对渗流场演化结果的解读发现渗流场与裂隙场同步演化,渗流场能标示工作面突水的位置;多条小断层活化突水模拟结果表明,底板中小断层分布密度越大,越容易发生底板突水。
     针对矿井涌水量预测问题,基于分形和支持向量机理论建立矿井涌水量的非线性预测模型,在matlab下应用LIBSVM工具编制计算程序,利用所建立的模型对鹤壁四矿历年矿井涌水量的时间序列进行预测,并探讨了其预测效果。
     针对铜角湾煤矿耒河下开采的工程问题,提出了走向条带开采与充填法相结合的水体下采煤的开采方案,并利用数值模拟结果验证所提出方案的可靠性。通过对比三种不同材料的充填效果,确定最优充填材料。
     本文所做的研究工作,立足于学科前沿,运用各种理论和非线性方法,对采动断层突水机理及矿井涌水量预测问题进行了研究,具有较高的理论和应用价值,为系统开展矿井突水机理基础理论的研究奠定了基础。
Mine water inrush is a difficult problem which is always puzzling mine production. Relying on 973 National Basic Research Program of China -Research on Basic Theory about the Mechanism of Water Inrush and its Prevention, centering on the science problem being to solved - the structure failure, fracture evolution and flow catastrophe laws of mining strata, the problems including mine water inrush precondition, the water inrush mechanism of fault activation and the water inrush prediction are discussed with theoretical analysis, numerical simulation and nonlinear method in this paper. The main research contents and results are as follows.
     The two preconditions of water inrush including water inrush source and pathway are summarized, and its hydrogeology features are analyzed with examples. The mechanical characteristics and hydrogeology features of fault are described with emphasis, which establish a foundation for the research of the paper.
     Based on the analysis of physical, chemical and mechanical actions of groundwater on rock, and the effect of groundwater on fault activation, water-rock interaction mechanism is studied. With the clamped beam theory of material mechanics, the open displacement equation of fault is built under water pressure. According to the D-M model of fracture mechanics, the crack initiation criterion of single fracture near fault is proposed under hydraulic and underground pressure. The effects of hydrolic pressure, lithologic characters and fault angle are also discussed.
     Through the research of failure mechanism of water-resisting floor, the concept of composed water-resisting floor is proposed. The nonlinear mechanical model of combined water-resisting floor is built, and its necessary and sufficient conditions of nonlinear destabilization are derived. The effects of soft rock's elastic modulus and tunnel span on the stability of the different composed water-resisting floor are analyzed. With rock mechanics theory, the effect of fault on the stability of water-resisting floor is discussed at the actions of mine pressure and hydraulic. The formula of critical water pressure supported by water-resisting strata is deduced, the water-inrush criterion is proposed simultaneously. Then the effect laws caused by the thickness of the water-resisting floor, the dip angle and cohesion force of fault on the water-resisting floor are analyzed.
     Based on the concept of water-resisting key strata, the water inrush mechanism of little fault activation under ground pressure and hydraulic is analyzed. The water inrush laws of little fault are simulated with RFPA-FLOW2D. The results show that there are three periods including little fault activation, activation area extending and fracture transfixion in the process of water inrush. With the understanding of the seepage flow field, it shows that the seepage flow field evolves with the fracture field simultaneously, and it can label the position of the coal face water inrush. The simulation results of water inrush induced by several faults show that the larger the distribution density of little faults is, the easier the water inrush will happen.
     For predicting the mine water inrush, the nonlinear prediction model of mine water inrush is established based on fractal and support vector machines theory. Under the Matlab environment, the calculating program is compiled with Libsvm. The mine water inrush of HeBi four mine in past years are predicted with the established model, and its prediction precision is discussed.
     For the engineering problem of mining under Lei River in Tong Jiao Wan mine, the mining method of combining the strip mining with the backfill one is proposed. And its reliability is verified with numerical simulation. Through comparing the filling effect of three different filling materials, the optimal one is determined.
     The water inrush mechanism of mining fault and mining water inrush prediction are researched in this dissertation based on the subject frontier, various theoretical and nonlinear methods. The results of this dissertation are useful both theoretically and practically, and established the foundation for the basic theory about the mechanism of water inrush.
引文
[1]王作宇,刘鸿泉.承压水上采煤[M].北京:煤矿工业出版社,1992.
    [2]煤炭工业部煤炭科学研究总院西安分院.华北型煤田奥灰岩溶水煤矿床带压安全开采配套技术(之三),1995.
    [3]黎良杰.采场底板突水机理的研究.中国矿业大学博士学位论文,1995.
    [4]王永红,沈文.中国煤矿水害预防及治理.北京:煤炭工业出版社,1996.
    [5]李白英,弭尚振.采矿工程水文地质学(上册)[M].山东矿业学院教材,1988.
    [6]李白英,沈光寒,荆自刚等.预防采掘工作面底板突水的理论与实践,第二十二届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [7]张金才,张玉卓,刘天泉等.裂隙岩体渗透特征的研究[J].煤炭学报,1997,22(5):481-485.
    [8]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997
    [9]钱鸣高,缪协兴,许家林.岩层控制的关键层理论研究[J].煤炭学报,21(31):45-51.
    [10]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119-123.
    [11]Shi, L.& Singh, R.N. Study of mine water inrush from floor strata through faults[J]. Mine Water and the Environment,2001,20(3):140-147.
    [12]杨善安.采场底板断层突水及其防治方法[J].煤炭学报,1994,19(6):620-625.
    [13]谭志祥.断层突水的力学机制浅析[J].矿业安全与环保,1999(3):21-23.
    [14]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2003,21(1):59-61.
    [15]周瑞光,成彬芳,叶贵钧等.断层破碎带突水的时效特性研究[J].工程地质学报,2000,8(4):412-415.
    [16]韩爱民,白玉华,孙家齐.断层突水性工程地质评价[J].南京建筑工程学院学报,2002,No:21-25.
    [17]Yang, Shanan. Prevention and control of water inrush from faults in floor rocks in the workings [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(4):193A
    [18]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002(6):695-700.
    [19]卜昌森.矿压作用下地质构造对底板突水的影响[J].山东煤炭科技,1996, No.1:47-50.
    [20]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J].煤田地质与勘探,1997,25(S1):33-36.
    [21]刘燕学.峰峰煤田煤层底板强度及断裂构造控水作用[J].河北煤炭,1998,No.3:29-33.
    [22]杨新安,程军,杨喜增.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护,1999,No.2:66-70.
    [23]武强,刘金韬,钟亚平等.开滦赵各庄矿断裂滞后突水数值仿真模拟[J].煤炭学报,2002,27(5):511-516.
    [24]管恩太,武强.矿井涌水量预测评述[J].中州煤炭,2005,No.1:7-8.
    [25]吕贵友,刘士君.利用多元相关比拟法预测矿井延伸水平涌水量[J].煤炭技术,2005,24(7):92.
    [26]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005:40-110.
    [27]张辉,王献坤,李玉璞等.改进“BT”法在平原区潜水系统水位预报中的应用研究[J].地下水,2007,29(4):109-124.
    [28]郭文雅,温继满.谈矿井涌水量预测方法的发展[J].黑龙江科技信息,2008,No.25:22.
    [29]Xu Xu, Huang Guan-hua, Qu Zhong-yi.Integrating MODFLOW and GIS technologies for assessing impacts of irrigation management and groundwater use in the Hetao Irrigation District,Yellow River basin[J].Science in China Series E:Technological Sciences,2009,,52(11):3257-3263.
    [30]王庆永,贾忠华,刘晓峰等.Visual MODFLOW及其在地下水模拟中的应用[J].水资源与水工程学报,2007,18(5):90-92.
    [31]邢爱国,胡厚田.灰色系统理论在矿井涌水量预测研究中的应用[J].中国矿业,1999,8(6):75-78.
    [32]梁冰,李刚,王宗林等.基于神经网络的降雨充水矿井涌水量预测[J].中国地质灾害与防治学报,2009,21(1):122-125.
    [33]陈玉华,杨永国,彭高辉等.矿井涌水量混沌时间序列分析与预测[J].煤田地质与勘探,2008,36(4):34-36.
    [34]Holland C.T. The strength of coal in mine pillars[C].Proc of the 6th Symp. on Rock Mech., Univ. of Missouri at Rolla,1964.
    [35]Bieniawski Z T. The effect of specimen size on the strength of coal[J]. Int. J. Rock Mech.& Mining Sci,1968, No.5:325-335.
    [36]Bieniawski Z T. Improved design of room-and-pillar coal mines for U.S. conditions [C]. Proc. of 1# Int. Conf. on Mining Eng. New York: SME-AIME,1982,19-50.
    [37]Wilson A H, Ashwin D P. Research into the determination of pillar size. The Mining Engineer,1972(131):409-417.
    [38]白矛,刘天泉.条带开采中条带尺寸研究[J].煤炭学报,1983,No.4:19-25.
    [39]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,No.4:21-29.
    [40]Wu L.X, Wang J. Z. Strata and surface subsidence control in strip-partial mining under buildings[J].Journal of CUMT,1994, No.12:74-85.
    [41]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004.
    [42]营志杰.煤层渗透性变化规律在防水煤柱上的应用[J].江苏煤炭,1998.No.1:31-32.
    [43]白峰青,姜兴阁,蒋勤明.断层防水煤柱设计的可靠度方法[J].辽宁工程技术大学学报(自科版),2000,19(4):356-359.
    [44]杜文堂,杨会双,贾向新.煤层隔水底板稳定性可靠度分析[J].河北工程大学学报(自科版),2008,25(2):62-65.
    [45]唐东旗,李运成,姚秀芳.断层带留设防水煤柱开采的相似模拟试验研究[J].矿业安全与环保,2005,32(6):26-28.
    [46]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报,2000,19(4):421-424.
    [47]周钢,李世平,张晓龙.微山湖下断层煤柱留设与开采技术的模拟试验[J].煤炭科学技术,1997,25(5):13-16.
    [48]杨孟达.煤矿地质学[M].北京:煤炭工业出版社,2008.
    [49]康永华.煤矿井下工作面突水与围岩温度场的关系[M].北京:煤炭工业出版社,1996.
    [50]贾贵廷.华北型煤田陷落柱的形成及分布规律[J].中国岩溶,8(4):261-267.
    [51]沈照理主编.水文地质学[M].北京:科学出版社,1991.
    [52]王辉等.断层富水性的结构分析[J].水文地质与工程地质,2000(3):12-15.
    [53]康永华,耿德庸,许升阳.煤矿井下工作面突水与围岩温度场的关系[M].北京:煤炭工业出版社,1995:113-114.
    [54]吴基文,刘小红.断层带岩体阻水能力原位测试研究与评价[J].岩土力学,2003,24:447-450.
    [55]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1988.
    [56]孙广忠.岩体力学基础[M].北京:科学出版社,1983.
    [57]刘鸿文.材料力学[M].北京:高等教育出版社,2004:176-197.
    [58]陈篪,蔡其巩,王仁智.工程断裂力学[M].北京:国防工业出版社,1978:324-357.
    [59]Dugdale, D. S. J. Mech Physics Solids[J].1960,8:100-104.
    [60]Goodier, J. N., Field, F. A. Fracture of Solids[M].1963:103-108.
    [61]E.M.谢尔盖耶夫.工工程岩土学[M].北京:地质出版社,1990.
    [62]陶振宇,唐方福,张黎明.节理与断裂岩石力学[M].北京:中国地质大学出版社,1992.
    [63]孙维林,王铁军,刘庆旺.粘土理化性能[M].北京:地质出版社,1992.
    [64]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1988.
    [65]于广明.地层沉陷中的突变现象及研究进展[J].辽宁工程技术大学学报(自然科学版),2001,20(1):1-5.
    [66]于广明;赵建锋,姚鑫等.采动断层(节理)活化的突变问题研究[J].中国科学基金,2001(1):51-53.
    [67]谢胜华,侯忠杰.突变理论在浅埋煤层组合关键层的应用[J].力学与实践,2002,24(6):42-44.
    [68]尹光志,王登科,黄滚.突变理论在开采沉陷中应用[J].矿山压力与顶板管理.2005,No4:94-96.
    [69]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):151-154.
    [70]王连国,宋杨.煤层底板突水突变模型[J].工程地质学报,2000,8(2):160-163.
    [71]潘岳,王志强,吴敏应.岩体动力失稳终止点、能量释放量解析解与图解[J].岩土力学,2006,27(11):1915-1921.
    [72]梁运培,孙东玲.岩层移动的组合岩梁理论及其应用研究[J].岩石力学与工程学报,2002,21(5):654-657.
    [73]C.H. Huang, X.G. Xie, D.H. Xie, T. Feng. Study on soft rock strata movement with catastrophe theory. Boundaries of Rock Mechanics —Recent Advances and Challenges for the 21st Century,2008: 883-888
    [74]尹光志,李贺,鲜学福等.煤岩体失稳的突变理论模型[J].重庆大学学报,1994,17(1):23-28.
    [75]马念杰,侯朝炯.采准巷道矿压理论及应用[M].北京:煤炭工业出版社,1995.
    [76]贾明魁.岩层组合劣化型冒顶机制研究[J].岩土力学,2007,28(7):1343-1347.
    [77]尹会永,魏久传,李子林等.潘西煤矿断裂构造突水机制探讨[J].山东科技大学学报:自然科学版,2007,26(1):30-33.
    [78]冯启言,杨天鸿,于庆嘉,等.基于渗流-损伤耦合分析的煤层底板突水过程的数值模拟[J].安全与环境学报,2006(3):1-4.
    [79]李连崇,唐春安,梁正召,等.含断层煤层底板突水通道形成过程的仿真分析[J].岩石力学与工程学报,2009,28(2):290-297.
    [80]刘树才,刘鑫明,姜志海,等.煤层底板导水裂隙演化规律的电法探测研究[J].岩石力学与工程学报,2009,28(2):348-356.
    [81]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [82]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:219-228.
    [83]彭文庆,王卫军,李青锋.不同断层倾角条件下防水煤柱合理宽度的研究[J].采矿与安全工程学报,2009,26(2):179-184.
    [84]卜万奎,茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(2):386-394.
    [85]张春霞,周鑫光,张舰等.兴隆庄井田小构造特征研究[J].山东科技大学学报,2004,23(1):24-27.
    [86]易伟欣,王恩营.米村矿一煤小断层密集带对突水的控制作用及分布预测[J].中国煤田地质,2007,19(1):42-45.
    [87]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [88]王恩营.煤层断层形成的岩性结构分析[J].煤炭学报,2005,30(3):319-321.
    [89]李青锋,王卫军,朱川曲,彭文庆.不同断层倾角条件下防水煤柱合理宽度的研究[J].采矿与安全工程学报,2009,26(2):87-90.
    [90]王家龙.弹性力学[M].北京:高等教育出版社,2001:114-121.
    [91]Terzaghi.Theoretical soil mechanics[M].John wiley and sons Inc:New York,1943.
    [92]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1995:69.
    [93]朱万成,唐春安,杨天鸿,等.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29.
    [94]TANG C A, THAM L G, LEE P K K, et al. Coupling analysis of flow, stress
    and damage(FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [95]史丽萍.矿井涌水量监测与预报[M].徐州:中国矿业大学出版社,2003.
    [96]Takens F. Detecting strange attractor in turbulence[J]. Lecture Notes in Mathematics,1981; 898(2):366-381.
    [97]骆振华.时间序列分析引论[M].厦门:厦门大学出版社,1987:23-26.
    [98]Luis A. A. A nonlinear correlation function for selecting the delay time in dynamical reconstructions[J]. Physics Letters A,1995,203:88-94.
    [99]Fraser A. M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A,1986,33(2):1134-1140.
    [100]杨志安,王光瑞,陈式刚.用等间距分格子法计算互信息函数确定延迟时间[J].计算物理,1995,12(4):442-448.
    [101]Abarbanel H. D. I, Masuda N, Rabinovich M. I, Turner E. Distribution of mutual information[J]. Physics Letters A,2001,281(5):369-373.
    [102]Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information[J]. Physical Review E,2004,69(9).
    [103]Grassberger P. An optimized box-assisted algorithm for fractal dimensions [J]. Physics Letters A,1990,148:63-68.
    [104]陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70.
    [105]Daniel T. Kaplan, Leon Glass. Direct test for determinism in a time series[J]. Physical Review Letters,1992,68(4):427-430.
    [106]Liming w salvino, Robert Cawley. Smoothness implies determinism:method to detect it in time series[J]. Physical Review Letters,1994,73(18):1091-1094.
    [107]M. T. Rosenstern, J. J. Collins and C. J. Deluca. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physical D. 1993,65:117-134.
    [108]P. Grassberger and L. Procaccia. Measuring the strangeness if strange attractors[J]. Physical D.1983,9:189-208.
    [109]Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physical D,1999,12:48-60.
    [110]张胜,刘红星,高敦堂等.NN非线性时间序列预测模型输入延时τ的确定[J].东南大学学报,2002,32(6):905-908.
    [111]Cao Liang-Yue. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physical D,1997,110:43-50.
    [112]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [113]韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007:207-210.
    [114]Smola A J, Scholkopf B. A tutorial on support vector regression[J]. Statistics and Computing,2004,14(3):199-222.
    [115]Alex J. Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression [J],Neuro COLT2 Technical Report Series NC2-TR-1998030,October,1998.
    [116]Burge. CJC. A Tutorial on Support Vector Machines for Pattern Recognition [J].Data Mining and Knowledge Discovery 2,121-167,199.
    [117]John C. Platt. Sequential Minimal Optimization:A Fast Algorithm for training Support Vector machines[J], Technical Report MSR.TR.98 14, April 21.1998.
    [118]Joachims T. Making large-scale SVM Learning Practical [R].LS8.Report, 24,University Dortmund, LS VIII.Report,1998.
    [119]Amari Swum S. Improving support vector machine classifiers by modifying kernel functions[J].Neural Networks,1999,12(6):783-789.
    [120]Mikhail Kanevski, Stephance Canu. Spatial data mapping with support vector regression[R].IDIAP.RR.00-09, May,2000.
    [121]Vapnik V N. The nature of statistical learning theory[M]. New York:Springer Verlag,1995.
    [122]S.K.Lahiri, K.C.Ghanta. Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model[J]. Chinese Journal of Chemical Engineering,2008,16(6):841-848.
    [123]刘丁,任海鹏,孔志强.基于径向基函数神经网络的未知模型混沌系统控制[J].物理学报,2003,52(3):531-535.
    [124]刘涵,刘丁,李琦等.基于支持向量机的混沌时间序列非线性预测[J].系统工程理论与实践,2005,No.9:94-99.
    [125]鲁静,陈江峰,黄存捍,等.鹤壁四矿矿井涌水量的分形预测[J].矿业安全与环保,2002,29(4):25-26.
    [126]Chih-Chung Chang and Chih-Jen Lin. LIBSVM-A Library for Support Vector Machines[DB/OL]. http://www. csie.ntu.edu. tw/-cjlin/ libsvm/index. html.2009-02-27.
    [127]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程 [M].北京煤炭工业出版社,2000.
    [128]范立民.论保水采煤问题[J].煤田地质与勘探,2005,33(5):51-53.
    [129]张荣亮等.河下开采时地表变形的研究[J].矿山测量,1999,(4):14-16.
    [130]郭文兵等.水库下采煤的安全性分析[J].采矿与安全工程学报,2006,23(3):324-328.
    [131]杨帆,麻风海.急倾斜煤层采动覆岩移动模式及其应用[M].北京:科学出版社,2007:28-44.
    [132]钱鸣高,宋振骐,钟亚平等.“三下”采煤新技术[M].徐州:中国矿业大学出版社,2008:49-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700