断续节理岩体破坏过程的数值分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,岩体的断裂破坏与内部裂纹的萌生、扩展及贯通有关,但现有的数值计算方法难以模拟裂纹萌生、开叉、汇交等问题,本文提出了一种断续节理岩体断裂破坏分析方法DDARF(Discontinuous Deformation Analysis for Rock Failure),亦即用改进的不连续变形分析方法来模拟岩体的断裂破坏过程。
     首先,采用Monte-Carlo方法在计算区域内生成随机节理网络。然后,在节理网络上采用计算网格自动生成技术—行波法,将计算区域离散为细密的三角形块体系统,块体的力学参数采用Weibull分布,以模拟岩体的不均匀性。然后,采用粘结算法,对块体剖分过程中产生的虚拟节理,即连续区的块体边界,进行粘结处理,将虚拟节理两边的块体粘结起来,以模拟连续区特性,而虚拟节理的粘结强弱可以直接通过粘结力来反映,其动态变化将决定裂纹沿块体边界的扩展,并加入块体内部的开裂算法,用以模拟裂纹穿过块体的扩展,这样,裂纹扩展就可以通过粘结失效和块体开裂而模拟出来。针对本文的算法,编制了相应的C++程序模块,并加入到石根华教授的DDA程序中,形成了岩体裂纹扩展、破坏分析计算程序DDARF。采用DDARF程序计算了大量的算例,分别模拟了单轴压缩、巴西圆盘、单轴拉伸、粱三点弯曲试验,研究了不同试件中的裂纹扩展情况,并分析了不同应力状态下的裂纹扩展规律。DDARF计算结果与相关试验结果、其它数值方法模拟结果的吻合,验证了本文算法的正确性。最后,将DDARF方法应用到实际工程中,研究了复杂情况下的裂纹扩展情况及岩体破坏过程。DDARF方法适用于岩体连续、断续、完全离散的情形,可以模拟出裂纹萌生、扩展、贯通、直至岩体崩塌破坏的全过程。
     此外,为了研究爆炸产生的应力波在节理岩体中的传播问题,在DDA中加入了一种新的边界条件—无反射边界,并研究了节理面对爆炸波传播的影响,以及爆炸波在节理岩体中的传播及衰减规律,为DDARF方法在岩体动力学领域的应用奠定了基础。
The failure of rock mass is related to the generation, propagation and coalescence of interior cracks, so the study on the law of crack propagation is very necessary for uncovering the mechanism of rock failure and estimating the safety of rock structures. Owing to the mechanical and geometrical complexity of crack propagation, numerical simulation is the most effective tool among the available investigation approaches. However, the commonly-employed numerical methods can not simulate some phenomena in rock failure, such as new crack generation, crack branching, multi crack interaction etc. Against this background, based on the discontinuous deformation analysis (DDA) method, DDARF (discontinuous deformation analysis for rock failure) is proposed in this thesis.
     In the proposed method, the random joint network is produced in the area of interest by using Monte-Carlo technique. On the basis of the joint network, the triangular DDA block system is automatically generated by adopting the FE adaptive mesh generation technique—the advanced front method. To simulate the heterogeneity of rock mass, the randomly distributed mechanical parameters statistically satisfying Weibull’s law are assigned to these blocks. In the process of generating blocks, numerous artificial joints come into being, and they provide the potential paths along which the cracks generate and propagate. The blocks between artificial joint are glued together by adhesive algorithm, and if the glue is invalid, the artificial joint will break and become real crack. In order to eliminate the effect of block boundary on crack propagation path, the fracturing algorithm within one block is established. In this way, the rock failure process can be simulated. Based on the proposed algorithms, the corresponding C++ program module is developed and incorporated into the original DDA code, i.e. the DDARF grogram. For verification, a series of numerical examples are computed to simulate the propagation and coalescence of the closed joints in different rock samples under different loading conditions. The simulated results agree well with the existing experimental and numerical results, indicating that the proposed algorithms are correct and valid. Finally, the rock failure process under more complex condition of some concrete rock engineerings is modeled. With the introduction of the artificial joint concept into the discontinuum-based DDA, DDARF can be applied to simulate the cases of continuum, semicontiuum, as well as discontinuum, without any mathematic difficulty. Moreover, it can easily simulate the generation, propagation and coalescence of rock crack, and the whole process of rock failure is thereafter reproduced.
     In addition, for modeling dynamic problems by DDA method, a new boundary condition, namely non-reflecting boundary or viscous boundary, is presented in this thesis. The approach is to attach the independent dashpots along the normal and shear directions of specific boundaries, in this way, the energy of stress waves can be absorbed efficiently when the stress waves reach those boundaries, and non-reflecting condition is achieved. The proposed viscous boundary condition is incorporated into the DDA code. To verify the effect of absorbing stress wave of viscous boundary, some examples are calculated, and the numerical results are compared with the test data. This work provides the fundamental for DDARF to simulate the dynamic failure of rock mass.
引文
[1] Griffith A A. The phenomena of rupture and flow in solids [J]. Phil. Trans. Roy. Soc., 1921, A221: 163-198
    [2] Griffith A A. Theory of rupture [A]. In: First International Congress of Applied Mechanics [C]. [s. l.]: [s. n.], 1924, 55-63
    [3] McClintock F A, Walsh J B. Friction on Griffith cracks in rocks under pressure [A]. In: Proceedings of the 4th U.S. National Congress of Applied Mechanics [C]. California: Berkeley, 1962, 2, 1015-1021
    [4] Erdogan F, Sih G C. On crack extension in plates under plane loading and transverse shear [J]. ASME Journal of Basic Engng., 1963, 85: 519-527
    [5] Sih G C. Energy-density concept in fracture mechanics [J]. Engng. Fracture Mech., 1973, 5: 1037-1040
    [6] Palaniswamy K. Crack Propagation under General In-Plane Loading [Ph.D. Thesis]. Pasadena: California Institute of Technology, 1972
    [7] Dugdale D S. Yielding of steel containing slits [J]. J. Mech. Phys. Solids, 1960, 8, 100~104
    [8] Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture [J]. Advances in Applied Mechanics, 1962, 7: 55-129
    [9] Wills A A. Unstable crack propagation in metals: cleavage and fast fracture [A]. In: Proceedings of the Crack Propagation Symposium [C]. Cranfield, 1961, 1, 84
    [10] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and crack [J]. Journal of Applied Mechanics, 1968, 35(2): 379~386
    [11] Williams J G, Ewing P D. Fracture under complex stress - the angled crack problem [J]. International Journal of Fracture Mechanics, 1972, 8: 441-445
    [12] Palaniswamy K, Knauss W G. On the problem of crack extension in brittle solids under general loading [A]. In: Nemat-Nassar S ed. Mechanics Today [C]. New York: Pergamon Press Inc., 1978, 4, 87-148
    [13] 李世愚. 三维脆性破裂的拉应力判据[J]. 地球物理学报, 1990, 33(5): 547-555
    [14] 永广 昌之, 大槻宪四郎 北村. 地质学杂志, 1974, 80(11)
    [15] Chen R, Yao X X, Xie E. Studies of the fracture of gabbro [J]. International Journal of Rock Mechanics and Mining Sciences, 1979, 16: 187-193
    [16] Batzle M, Simmons G, Siefgried R. Direct observation of Fracture closure in rocks under stress [J]. Eos. Tran., 1979, 60: 380
    [17] Horii H, Nemae-Nasser S. Compression-induced microcrack growth in brittle solids [J]. J. Geophys. Res., 1985, 90(B4): 3105-3125
    [18] 张景德, 刘培泰, 黄成佳. 软弱结构面和裂隙岩体直剪破坏机理研究[J]. 岩土工程学报, 1994, 16(6): 21-29
    [19] 朱维申, 陈卫忠, 申 晋. 雁行裂纹扩展的模型试验及断裂机制研究[J]. 固体力学学报, 1998, 19(4): 355-360
    [20] 白世伟, 任伟中, 陈锦清等. 平面应力条件下闭合断续节理岩体破坏机理及强度特性[J]. 岩石力学与工程学报, 1999, 18(5): 635-640
    [21] 李世愚, 滕春凯, 卢振业等. 典型构造微破裂集结的实验研究[J]. 地震学报, 2000, 22(3): 278-287
    [22] 李 炼, 徐 钺, 李启光等. 花岗岩板渐进破坏过程的微观研究[J]. 岩石力学与工程学报, 2001, 21(7): 940-947
    [23] 赵永红, 凌 勇. 细砂岩裂纹周围变形破坏过程及应变场分布[J]. 岩土力学, 2004, 25(6): 865-870
    [24] 李银平, 王元汉, 陈龙珠等. 含预制裂纹大理岩的压剪试验分析[J]. 岩土工程学报, 2004, 26(1): 120-124
    [25] 李庶林, 尹贤刚, 王泳嘉等. 单轴受压岩石破坏全过程声发射特性研究[J]. 岩石力学与工程学报, 2004, 23(15): 2499-2503
    [26] 刘冬梅, 谢锦平, 周玉斌等. 岩石压剪耦合破坏过程的实时监测研究[J]. 岩石力学与工程学报, 2004, 23(10): 1616-1620
    [27] 仵彦卿, 曹广祝, 王殿武等. 基于 X-射线 CT 方法的岩石小裂纹扩展过程分析[J]. 应用力学学报, 2005, 22(3): 484-490
    [28] 谭志宏, 唐春安, 朱万成等. 含缺陷花岗岩破坏过程中的红外热像试验研究[J]. 岩石力学与工程学报, 2005, 24(16): 2977-2981
    [29] Brace W F, Bombolakis E G. A note on brittle crack growth in compression [J]. J. Geophys. Res., 1963, 68: 3709-3713
    [30] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression [J]. International Journal of Fracture Mechanics, 1965, 137-155
    [31] Peng S D, Johnson A M. Crack growth and faulting in cylindrical specimens of Chelmsford granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1972, 9: 37-86
    [32] Janach W. Failure of granite under compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1977, 14(2): 209-215
    [33] 夏熙伦等. 压缩状态下岩石的 I-II 型复合断裂试验[J]. 岩土工程学报, 1985, 7(2): 17-23
    [34] 李建林, 孙志宏. 节理岩体压剪断裂及其强度研究[J]. 岩石力学与工程学报, 2000, 19(4): 444-448
    [35] 郭少华, 孙宗颀, 谢晓晴. 压缩条件下岩石断裂模式与断裂判据的研究[J]. 岩土工程学报, 2002, 24(3): 304-308
    [36] 周小平, 王建华, 哈秋舲. 压剪应力作用下断续节理岩体的破坏分析[J]. 岩石力学与工程学报, 2003, 22(9): 1437-1440
    [37] 刘远明, 夏才初. 共面闭合非贯通节理岩体贯通机制和破坏强度准则研究[J]. 岩石力学与工程学报, 2006, 25(10): 2086-2091
    [38] Bittencourt T N, Wawrzynek P A, Ingraffea A R. Quasi-automatic simulation of crack propagation for 2D LEFM problems [J]. Engineering Fracture Mechanics, 1996, 55(2): 321-334
    [39] Lim I L, Johnston I W, Choi S K. A finite element code for fracture propagation analysis within elasto-plastic continuum [J]. Engineering Fracture Mechanics, 1996, 53(2): 193-211
    [40] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 45: 601-620
    [41] Dolbow J, Mo?s N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 6825-6846
    [42] Ventura1 G, Budyn E, Belytschko T. Vector level sets for description of propagating cracks in finite elements [J]. International Journal for Numerical Methods in Engineering, 2003, 58: 1571-1592
    [43] Shou K J, Crouch S L. A higher order displacement discontinuity method for analysis of crack problems [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1): 49-55
    [44] Dwyer J F, Amadai B. The edge function method and singular problems in rock mechanics [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(2): 121-133
    [45] Dwyer J F, Amadai B. Application of the edge function method to rock mechanics problems [J]. Rock Mechanics and Rock Engineering, 1995, 28(4): 185-209
    [46] Belytschko T, LU Y Y, GU L. Crack propagation by element-free Galerkin methods [J]. Engineering Fracture Mechanics, 1995, 51(2): 295-315
    [47] Lee S H, Yoon Y C. Numerical prediction of crack propagation by an enhanced element-free Galerkin method [J]. Nuclear Engineering and Design, 2004, 227: 257-271
    [48] 王水林. 数值流形方法与裂纹扩展的模拟 [博士学位论文]. 武汉: 中国科学院武汉岩土力学研究所, 1998
    [49] Rao B N, Rahman S. A coupled meshless-finite element method for fracture analysis of cracks [J]. International Journal of Pressure Vessels and Piping, 2001, 78: 647-657
    [50] 田 荣. 连续与非连续变形分析的有限覆盖无单元方法及其应用研究[Ph. D. Thesis]. 大连: 大连理工大学, 2000
    [51] Li S C, Cheng Y M. Enriched meshless manifold method for two-dimensional crack modeling [J]. Theoretical and Applied Fracture Mechanics, 2005, 44: 234-248
    [52] Rossi P, Richer S. Numerical modelling of concrete cracking based on stochastic approach [J]. Materials and Structures, 1987, 20: 334-337
    [53] Tang C A. Numerical simulation of progressive rock failure and associated seismicity [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34 (2): 249-261
    [54] Tang C A, Yang W T, Fu Y F, et al. A new approach to numerical method of modeling geological processes and rock engineering problems—continuum to discontinuum and linearity to nonlinearity [J]. Engineering Geology, 1998, 49: 207-214
    [55] Burt N J, Dougill J W. Progressive failure in a model heterogeneous medium [J]. Journal of Engineering Mechanics, ASCE, 1977, 103 (3): 365-376
    [56] Zubelewiez A, Bazant Z P. Interface element modelling of fracture in aggregate composites Journal of Engineering Mechanics, ASCE, 1987, 113 (11): 1619-1630
    [57] 邢纪波, 俞良群, 王泳嘉. 三维粱-颗粒模型与岩石材料细观力学行为模拟[J]. 岩石力学与工程学报, 1999, 18(6): 627-630
    [58] Shi G H. Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Block System [Ph. D. Thesis]. Berkeley: Department of Civil Engineering, University of California, 1988
    [59] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of joint rock [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(3): 637-659
    [60] Cundall P A. A computer model for simulating progressive large-scale movements in blocky rock systems [A]. In: Proceeding of the International Symposium on Rock Fracture [C]. Nancy, 1971
    [61] Lin C T. Extension to the discontinuous deformation analysis for jointed rock masses and other blocky systems [Ph. D. Thesis]. University of Colorado Boulder, 1995
    [62] Cai Y E, Liang G P, Shi G H, et al. Studying an impact problem by using LDDA method[A]In: Proc. of the First International Forum on Discontinuous Deformation Analysis(DDA) and Simulations of Discontinuous Media[C]. Albuquerque: TSI Press, l996, 288-294
    [63] 栾茂田, 黎 勇, 杨 庆. 非连续变形计算力学模型基本原理及在边坡岩体稳定性分析中的应用[J]. 岩石力学与工程学报, 2000, 19(3): 289-294
    [64] Ke T C. Simulated testing of two dimensional heterogeneous and discontinuous rock masses using discontinuous deformation analysis [Ph. D. Thesis]. Berkeley: University of California, 1993
    [65] Shyu K K. Nodal-based discontinuous deformation analysis [Ph. D. Thesis]. Berkeley: University of California, 1993
    [66] Wang C Y, Chang C T, Sheng J. Time integration theories for the DDA method with finite element Meshes [A]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press, 1996: 263-288
    [67] Chern J C, Koo C Y, Chen S. Development of second order displacement function for DDA and manifold method [A]. In: Working Forum on the Manifold Method of Material Analysis [C]. 1990, 183-202
    [68] Koo C Y, Chern J C. The development of DDA with third order displacement function [A]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press, 1996: 342-350
    [69] Ma M Y, Zaman M, Zhou J H. Discontinuous deformation analysis using the third order displacement function [A]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press, 1996: 383-394
    [70] Gebara J M. The Fnite Block Method: Its basis and Its Modification to Allow the Fracturing of Blocks under High Impact Loads [Ph. D. Thesis]. Lafayette: Purdue University, 1994
    [71] Pearce C J, Thavalingam A, Liao Z, et al. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture [J]. Engineering Fracture Mechanics, 2000, 65: 283-298
    [72] MacLauhlin M M, Sitar N. Rigid-body rotations in DDA [A]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press, 1996: 620-636
    [73] Pei J M. The effects of energy loss in block bumping [A]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press, 1996: 401-406
    [74] Koo C Y, Chem J C. Modification of the DDA method for rigid block problems [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(6): 683-693
    [75] 姜清辉. 三维非连续变形分析方法的研究[博士学位论文][D]. 武汉: 中国科学院武汉岩土力学研究所, 2000
    [76] Kim Y I, Amadei B, Pan E. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 949-970
    [77] Jing L, Ma Y, Fang Z. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 2001, 38(1): 343-355
    [78] Moosavi M, Grayeli R. A model for cable bolt-rock mass interaction: Integration with discontinuous deformation analysis (DDA) algorithm [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 2006, 43: 661-670
    [79] Hatzor Y H, Arzi A A, Zaslavsky Y, et al. Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod’s Palace, Masada, Israel [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 813-832
    [80] Wu Jianong, Ohnishi Y, Nishiyama S. Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA) [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 731-743
    [81] Kim Y I, Amadei B, Pan E. Modeling the effect of geology on uplift in concrete gravity dam foundation with the discontinuous deformation analysis [A]. In: Rock Mechanics for Industry[C].1999, 1: 527-534
    [82] Mortazavi A, Katsabanis P D. Modelling of blasthole expansion and explosive gas pressurization in jointed media [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 35(5): 497-498
    [83] Hsiung S M, Shi G H. Simulation of earthquake effects on underground excavations using discontinuous deformation analysis (DDA) [A]. In: Rock Mechanics for Industry [C]. [s. 1.]: [s. n.], 1999, 1: 1413-1420
    [84] 朱传云, 戴 晨, 姜清辉. DDA 方法在台阶爆破仿真模拟中的应用[J]. 岩石力学与工程学报, 2002, 21(增 2): 2461-2464
    [85] Liu L B. Modeling seismic fault slips and block deformation in Northern China by DDA [A]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulation of Discontinuous Media [C]. Albuquerque: TSI Press, 1996, 373-383
    [86] Peraire J C. Adaptive remeshing for compressible flow computations [J]. Comp. Phy., 1987, 72: 449~466
    [87] 邓建辉. 节理岩体自适应有限元分析——方法与实现[博士学位论文][D]. 武汉: 武汉大学, 1994
    [88] 徐光黎, 潘别桐, 唐辉明等. 岩体结构模型与应用[M]. 武汉: 中国地质大学出版社, 1993
    [89] 盛 骤, 谢世千, 潘承毅. 概率分析与数理统计(第二版)[M]. 北京: 高等教育出版社, 1989
    [90] 何 渝. 计算机常用数值算法与程序: C++版[M]. 北京: 人民邮电出版社, 2003
    [91] 朱维申, 李术才, 陈卫忠. 节理岩体破坏机理和锚固效应及工程应用[M]. 北京: 科学出版社, 2002
    [92] Li Y P, Chen L Z, Wang Y H. Experimental research on pre-cracked marble under compression [J]. International Journal of Solids and Structures, 2005, 42: 2505-2516
    [93] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite element [J]. Cement and Concrete Research, 1976, 6(6): 773-782
    [94] 陈 瑛, 姜弘道, 乔丕忠等. 混凝土黏聚开裂模型若干进展[J]. 力学进展, 2005, 35(3): 377-390
    [95] Alfaiate J, Pires E B, Martins J A C. A finite element analysis of non-prescribed crack propagation in concrete [J]. Computers & structures, 1997, 63(1): 17-26
    [96] Zavattieri P D, Espinosa H D. Grain level analysis of crack initiation and propagation inbrittle materials [J]. Acta materials, 2001, 49: 4291-4311
    [97] Jin Z H, Sun C T. Cohesive zone modeling of interface fracture inelastic bi-materials [J]. Engineering Fracture Mechanics, 2005, 72 : 1805-1817
    [98] Wang L M, Xu S L, Zhao X Q. Analysis on cohesive crack opening displacement considering the strain softening effect [J]. Science in China: Series G Physics, Mechanics & Astronomy, 2006, 49(1): 88-101
    [99] Wong T F, Robina H C, Wong K T, et al. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock [J]. Mechanics of Materials, 2006, 38(7): 664-681
    [100] Fang Z, Harrison J P. Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39( 4): 459-476
    [101] 李廷春. 三维裂隙扩展的CT 试验及理论分析研究[博士学位论文][D]. 武汉: 中国科学院武汉岩土力学研究所, 2005
    [102] Zhu W C, Tang C A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences, 2006, 43 (2): 236-252
    [103] 国家电力公司成都勘测设计研究院. 锦屏一级水电站可行性研究报告[R]. 成都: 成都勘测设计研究院, 2003
    [104] 李建军, 段祝平. 节理裂隙岩体爆破试验研究[J]. 爆破, 2005, 22(3): 12-16
    [105] 张继春, 郭学彬, 郑爽英等. 顺层边坡岩体的爆破振动特性试验研究[J]. 地下空间与工程学报, 2005, 1(6): 1041-1044
    [106] 王占江, 李孝兰, 戈 琳等. 花岗岩中化爆的自由场应力波传播规律分析[J]. 岩石力学与工程学报, 2003, 22(11): 1827-1831
    [107] 王玉杰, 梁开水, 田新邦. 周宁水电站地下厂房开挖爆破地震波衰减规律的研究[J]. 岩石力学与工程学报, 2005, 24(22): 4111-4114
    [108] 于 冲. 拉西瓦水电站Ⅱ#变形体爆破动力稳定性研究[J]. 水利与建筑工程学报, 2006, 4(2): 41-45
    [109] Ma G W, Hao H, Zhou Y X. Modeling of wave propagation induced by underground explosion [J]. Computers and Geotechnics, 1998, 22(3-4): 283-303
    [110] Wu C Q, Hao H, Zhou Y X. Distinctive and fuzzy failure probability analysis of an anisotropic rock mass to explosion load [J]. International Journal for Numerical Methods in Engineering, 2003, 56 (5): 767-786
    [111] Chen S G, Zhao J. A study of UDEC modeling for blast wave propagation in jointed rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 93-99
    [112] 郭易圆, 李世海. 离散元法在节理岩体爆破振动分析中的应用[J]. 岩石力学与工程学报, 2002, 21(增2): 2408-2412
    [113] Fan S C, Jiao Y Y, Zhao J. On modeling of incident boundary for wave propagation in jointed rock masses using discrete element method [J]. Computers and Geotechnics, 2004, 31(1): 57-66
    [114] Jiao Y Y, Fan S C, Zhao J. Numerical investigation of joint effect on shock wave propagation in jointed rock masses [J]. Journal of Testing and Evaluation, 2005, 33(3): 197-203
    [115] Kong X J, Liu J. Dynamic failure numeric simulations of model concrete-faced rock-fill dam [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 1131-1134
    [116] Zhang Y L, Lin G, Li Z J, et al. Application of DDA approach to simulation of ice breaking process and evaluation of ice force acting on a structure [J]. China Ocean Engineering, 2002, 16(3): 273-282
    [117] Bai W M, Lin B H, Chen Z A. Numerical simulations of deformation and movement of blocks within North China in response to 1976 Tangshan earthquake [J]. Science in China Series D-Earth Sciences, 2003, 46: 141
    [118] Sitar N, MacLaughlin M M, Doolin D M. Influence of kinematics on landslide mobility and failure mode [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 716-728
    [119] Lysmer J,Kuhlemeyer R L. Finite Element Method Accuracy for Wave Propagation Problems [J]. J. Soil Mech. & Foundations Div.,ASCE,1973,99(5):421-427
    [120] Nanyang Technological University. Small-Scale Ground Shock Tests at the Mandai Quarry [R]. Singapore: Nanyang Technological University, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700