复杂渗流场演变规律及转异特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对与工程安全密切相关的渗流控制问题,利用分形理论、神经网络、遗传算法等前沿数学方法和渗流力学等力学方法,结合大坝原型观测资料,研究建立各种渗流监控模型的新理论、新方法,由此分析复杂渗流场的演变规律,并用正反分析相结合的方法对复杂渗流场转异特征进行了研究。其主要内容如下:
     (1)复杂渗流场的渗流特性及分析方法。首先,在裂隙岩体渗流基本特性研究的基础上,对裂隙岩体渗流的地质力学模型进行深入研究;然后,根据分形几何理论研究了渗透结构面的分形渗流特性;最后,提出了求解复杂渗流场自由面的改进截止负压法,并将其用于三维复杂非稳定渗流场的有限元计算,编制了基于分区混合介质模型的数值计算程序。
     (2)复杂渗流场特殊监控模型研究。引入库水位及降雨的滞后影响函数,建立了等效水位和等效降雨的概念,其中库水位的滞后模式采用正态分布曲线,而降雨滞后模式则采用对数正态分布曲线,较好地模拟了库水位及降雨对大坝渗流场的滞后影响作用,由此建立了基于滞后效应的渗流监控模型;引入库水位等效变化速率的概念,通过三维渗流有限元计算建立了考虑库水位变化速率的渗流混合模型;最后对复杂渗流场基流效应进行分析,指出基流效应主要来源于水压分量和时效分量,并推求了大坝基流下包线。
     (3)复杂渗流场演变规律研究。对复杂渗流场影响因素及其演变过程进行分析,论证了渗流要素随渗透系数和库水位变化的关系表达式,建立了能够隐式反映复杂渗流场演变规律的渗透系数时序模型,并探讨了利用大坝渗流场的基流效应来建立时序模型的具体实现方法和步骤。
     (4)复杂渗流场转异特征研究。首先,对帷幕老化及排水失效机理进行了研究;然后,通过有限元数值分析方法,研究了复杂渗流场中防渗帷幕以及排水孔的转异特征,并推导了渗流要素随帷幕渗透系数变化的经验公式;利用时效和监控指标、监控模型等判别方法对复杂渗流场进行转异识别;最后应用回归分析法和神经网络法对转异时效进行计算。
Aiming at seepage flow governing problems related to safety of engineering closely, some new models and methods are presented for seepage flow safety monitoring based on the advanced theories and methods of mathematics and mechanics, such as fractal theory, artificial neural network, genetic algorithm, seepage flow mechanics, and so on. Then, combing with prototype observation data, the evolvement rule and variation feature of complicated seepage flow field are analyzed by analysis and back analysis methods. The main contents are as follows:
    (1) The behaviors and analysis methods of complicated seepage flow field. Firstly, based on the research of basic behaviors of seepage flow field in fractured rock mass, the geo-mechanical models of seepage flow are studied deeply. Then, by way of fractal geometry theory, the geometric characteristics and hydraulic behaviors are studied of water-conduction fractures. And then, an improved cut-off negative pressure method is presented to determine the free water surface of complicated seepage flow field, and the method is applied to 3-D FEM analysis of unsteady seepage flow field, and relevant numerical simulation program is developed based on divisional hybrid medium model.
    (2) Research on the special monitoring models of complicated seepage flow field. The hysteresis influence functions of water level and rainfall are adopted to reflect their hysteresis effect on the seepage flow, and the equivalent water level and the equivalent rainfall are obtained separately through normal distribution curve and logarithmic normal distribution curve. And following this method, the seepage monitoring models based on hysteresis effect are established. The equivalent heaving speed is put forward for reflecting the influence of heaving speed of water level on the seepage flow field, and the seepage hybrid models are obtained by considering the heaving speed of water level
    through 3-D steady-unsteady seepage flow FEM analysis. In the end, the basic effect of complicated seepage flow field is analyzed, and the conclusion is obtained of seepage base flow mainly derived from water pressure component and time-dependent component, and the lower boundary lines are gained of seepage base flow in dams.
    (3) Research on the evolvement rule of complicated seepage flow field. The influence factors and evolvement process are analyzed of complicated seepage flow field. The relationship is demonstrated of seepage flow element varying with permeability coefficients and water level. The time series model of permeability coefficients, which can implicitly describe the evolvement rule of complicated seepage flow field, is established. The concrete realization approaches and steps are elaborated to construct time series model by taking advantage of seepage base flow.
    
    
    (4) Research on the variation feature of complicated seepage flow field. Firstly, the aging mechanisms of impervious curtain and the malfunction mechanisms of drainage are studied. Secondly, by means of seepage flow FEM computation, the variation features are analyzed of impervious curtain and drain hole in complicated seepage flow field. Accordingly, the experiential formulas are derived of seepage flow element varying with impervious curtain's permeability coefficients. Thirdly, the variation feature is distinguished by the way of time-dependent component method, monitoring indices method and monitoring model method. In the end, the variational time-dependent component is obtained through regression analysis method and artificial neural network model.
引文
[1] 弓正华等,迈向21世纪的中国水电站大坝安全监察,99大坝安全及监测国际研讨会论文集,中国书籍出版社,1999:p1-9.
    [2] 王仁钟,中国水利大坝的安全与管理,99大坝安全及监测国际研讨会论文集,中国书籍出版社,1999:p10-14.
    [3] 吴中如、沈长松、阮焕祥著,水工建筑物安全监控理论及其应用,南京:河海大学出版社,1990.
    [4] Malpasset拱坝失事研究,国外水利水电,1980.11.
    [5] Londe P. The Malpasset Dam Failure. Engineering Geology, 1987, 24:p295-329.
    [6] Beltier J., Londe P., Tile Malpasset dam, Engineering Foundation Conf. Pro., The evaluation of dam safety, 1976.
    [7] Wittke W., Leonards G. A., Modified hypothesis for failure of Malpasset dam, Int. Workshop on dam failures, Purdue University, West-Lafayette, 1985.
    [8] Habib P., The Malpassat dam failure, Engineering Geology, Vol. 24, 1987: p331-338.
    [9] Lauffer H., Findings old and new relating to the dam foundation problems encountered at Malpasset, Sta. Maria and Kolnbrein as predicted by D.C. Henny in 1929, Dam Engineering, Vol. X, No. 1, 1999: p3-22.
    [10] Poisel R., Steger W., Unterberger W., The Malpasset dam failure comparison between continuum and discontinuum mechanics: p1893-1896.
    [11] 孙广忠等编,中国典型滑坡,北京:科学出版社,1988.
    [12] 电力工业部西北勘测设计研究院,坝体、库水和坝基相互作用动、静力分析研究,国家“八五”重点科技攻关专题报告,1995.10.
    [13] 哈秋舲,陈洪凯著,长江三峡工程岩石边坡地下水渗流及排水研究,北京:中国建筑工业出版社,1997.
    [14] 吴中如,顾冲时著,大坝原型反分析及其应用,南京:江苏科学技术出版社,2000.
    [15] 邢林生,我国水电站大坝事故分析与安全对策(一),大坝与安全,Vol.14,2000.1:p1-6.
    [16] 邢林生,我国水电站大坝事故分析与安全对策(二),大坝与安全,Vol.14,2000.2:p1-5.
    [17] 吴中如,顾冲时,吴相豪著,碾压混凝土坝安全监控理论及其应用,北京:科学出版社,2001.
    [18] 潘别桐,徐光黎,岩体节理几何特征的研究现状及趋向,工程勘察,No.5,1989:p23-31.
    [19] Snow D. T., Rock fracture spacings, openings and porosities, J. Soil Mech. Found. Div., Proc. ASCE, Vol. 94, No. SM1, 1968: p73-91.
    [20] Priest S. D. and Hudson J., Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 13, 1976: p135-148.
    [21] Bacher G. B. etal, Statistical descriptions of rock properties and sampling, Proc. U. S. Symp. Rock Mech., 18th, 1977.
    [22] 切尔内绍夫,水在裂隙网络中的运动,地质出版社,1987年10月.
    [23] Barton N. and Choubey V., The shear strength of rock joints in the theory and practice, Vol. 10, No. 1-2, 1997: p1-54.
    [24] Xie Heping & Pariseau W G. Fractal estimation of joint roughness coefficient. Fractured and Joint Rock Masses, USA, June 3-5,1992:p132-139.
    [25] 吴继敏,高正夏,汤瑞凉,裂隙粗糙度系数及其分数维特征,岩土力学,No.3,1998:p306-310.
    [26] 周创兵,熊文林,不连续面的分形维数及其在渗流分析中的应用,水文地质工程地质,No.6,1999:
    
    p1-5.
    [27] Lomize G. M., Flow in fractured rocks, Gesenergoizdat, Moscow, 1951.
    [28] Romm E. S., Flow characteristics of fractured rocks, Nedra, Moscow, 1966.
    [29] Louis C., A study of groundwater flow in jointed rock and its influence on the stability of rock masses, Rock Mech. Res. Rep. 10, Imp. Coll., London, 1969.
    [30] Tsang Y. W., Witherspoon P. A., Hydromechanical behavior of a deformable rock fracture subject to normal stress, J. of Geophys. Research, Vol. 86, No. B10, 1981:p9187-9298.
    [31] Tsang Y. W., Witherspoon P. A., The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size, J. of Geophys. Research, Vol. 88, No. B3, 1983:p2359-2366.
    [32] Neuzil C. E. and Tracy J. V., Flow through fractures, Water Resour. Resear., Vol. 17, No.1, 1981: p191-194.
    [33] Barton N., Bandis S., Bakhtar K., Strength, deformation and conductivity coupling of rock joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 22, No.3, 1985: p121-140.
    [34] Elsworth D., Goodman R. E., Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 23, No. 3, 1986: p233-243.
    [35] Witherspoon P. A., Amick C. H., Gale J. E., Iwai K., Observation of a potential size effect in emmperimental determination of the hydraulic properties of fractures, Water Resour. Resear., Vol. 15, No. 5, 1979: p1142-1146.
    [36] Witherspoon P. A., Wang J. C. Y., Iwai K. Gale J. E., Validity ofcobic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, 1980: p1016-1024.
    [37] Brown S. R., Fluid flow through rock joints: the effect of surface roughness, J. of Geophys. Resear., Vol. 92, No.B2, 1987:p1337-1347.
    [38] Louis C., Maini Y. N. T., Determination of in-situ hydraulic permeability in jointed rock, Proc. 2d Int. Cong. RockMedia, Belgrad, Yugoslavia, 1970.
    [39] Hsifh P. A., Neuman S. P., Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media(1, theory), Water Resour. Res., 1985a, 11(21):p1655-1665.
    [40] Hsifh, P. A., Neuman S. P., Stiles G. K. et al., Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media(2,methology and application to fractured rock). Water Resour. Res. 1985b, 11(21):p1667-1676.
    [41] Snow D. T., Anisotropic permeability of fractured media, Water Resource Research, Vol. 5, No. 6, 1969:p1273-1289.
    [42] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock massed, Water Resource Research, Vol. 22, No. 13, 1986: p1845-1856.
    [43] 陈胜宏,王鸿儒,熊文林,节理岩体的数值分析和模型试验研究,岩土工程学报,Vol.11,No.3,1989:p22-29.
    [44] 周志芳,任意各向异性岩体渗透系数张量的半解析计算,水利学报,No.3,1999:p65-69.
    [45] 陈洪凯,朱可善,施工期岩体等效渗透张量求解法——以三峡工程永久船闸边坡为例,岩石力学与工程学报,Vol.18,No.2,1999:p129-132.
    [46] Zhou C B. Application of spline function to engineering geology, 6th Int IAEG. Rotterdam Balkema Publisher, 1990: p803-809.
    [47] 胡云进,裂隙非饱和渗流试验研究及有地表入渗的裂隙岩体渗流数值分析,河海大学博士学位论文,2001年7月.
    
    
    [48] 谢和平,分形—岩石力学导论,北京:科学出版社,1996.
    [49] 胡云进,钱锐,速宝玉,一种确定裂隙非饱和水力参数的数值模拟法,岩土工程学报,Vol.23,No.3,2001:p284-287.
    [50] Barenblatt G. I. etal., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Vol. 24, No. 5, 1960.
    [51] Warren J. E. and Rott P. J., The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., No.3,1963.
    [52] Duiguid J. O. and Lee P. C. Y., Flow in fractured porous media, Water Resource Research. Vol. 13, No. 3, 1977.
    [53] Streltsova T.D., Hydrodynamics of groundwater flow in a fractured formation, Water Resource Research., Vol. 12, No. 3, 1976.
    [54] Bibby R., Mass transport of solutes in dual-porosity media, Water Resource Research., Vol. 17, No. 4, 1981.
    [55] Neretnieks I. And Rasmuson A., Diffusion in the rock matrix: an important factor in radionudide retardation, J.Geophys. Res., Vol. 85, No. 38,1980.
    [56] Long J.C.S. etl., Porous media equivalents for networks of discontinuous fractures, Water Resource Research, Vol. 18, No. 3, 1982.
    [57] Khaleel R., Scale dependence of continuum models for fractured basalts, Water Resource Research, Vol. 25, No. 8, 1989: p1847-1855.
    [58] Louis C. Rock hydraulics, in Rock Mech., Ed. By L. Muller, 1974.
    [59] Wittke W., Rock mechanics-theory and applications with case histories, Berlin, 1990.
    [60] Wilson C. R., Witherspoon P. A., Steady state flow in rigid networks of fractures, Water Resource Research, Vol. 10, No. 2, 1974.
    [61] Long J. C. S., Gilmour P., Witherspoon P. A., A method for steady fluid flow in random three-dimensional networks of dise-shaped fractures, Water Resource Research, Vol. 21, No. 8, 1985.
    [62] Dershowitz W. S., et al., A new three dimensional model for flow in fractured rock, Mem. Int. Assoc. Hydrogeol., Vol. 17, 1985.
    [63] Huyakorn P. S., Lester B. H., Faust C. R., Finite element techniques for modeling groundwater flow in fractured aquifers, Water Resour. Resear., Vol. 19, No.4, 1983.
    [64] Casagrande A., Control of seepage through foundations and abutments of dams, Geotechnique, Vol. 11, No. 3, 1961:p161-181.
    [65] 张有天,张武功,裂隙岩石渗透特性渗流数学模型及系数量测,岩石力学,No.8,1982.
    [66] 田开铭,论裂隙岩石的水文地质模型,勘测科学技术,No.4,1984.
    [67] 毛昶熙,陈平等,岩石裂隙渗流的计算与试验,水利水运科学研究,No.3,1984.
    [68] 毛昶熙主编,渗流计算分析与控制,北京:水利电力出版社,1988.
    [69] 王嫒,速宝玉,徐志英,裂隙岩体渗流模型综述,水科学进展,Vol.7,No.3,1996:p276-281.
    [70] 陈洪凯,裂隙岩体研究现状(Ⅱ),重庆交通学院学报,1996b,2(15):p29-34.
    [71] 王洪涛,李永祥,三维随机裂隙网络非稳定渗流模型,水利水运科学研究,No.2,1997:p139-146.
    [72] 张家发,三维饱和非饱和稳定非稳定渗流场的有限元模拟,长江科学院院报,Vol.14,No.3,1997:p35-38.
    [73] 周维垣,肖洪天,剡公瑞,三峡船闸高边坡岩体渗流及稳定分析,岩石力学与工程学报,Vol.17(增),1998:818-822.
    [74] 王恩志,王洪涛,孙俊,双重裂隙系统渗流模型研究,岩石力学与工程学报,Vol.17,No.4,1998:
    
    p400-406.
    [75] 周志芳,滕建仁,三峡工程大坝坝基渗控分析,岩石力学与工程学报,Vol.20,No.5,2001:p700-704.
    [76] 杜延龄,许国安,渗流分析的有限元法和电网络法,北京:水利电力出版社,1992.
    [77] 毛昶熙,电模拟试验与渗流研究,北京:水利出版社,1981.
    [78] Neuman S. P. Saturated-unsaturated seepage by finite elements, Hydraulic Div., ASCE, Vol. 99, No. 12, 1973.
    [79] Bathe K. J. and Khoshgoftan M. R., Finite element for surface seepage analysis without mesh iteration, Int. J. Num. Anal. Methods in Geomechanics, Vol. 3,1979:p3-22.
    [80] Desai C. S., Finite element residual shemes for unconfined flow, Int. Num. Method Eng., Col. 10, No. 6, 1976:p1415-1418.
    [81] Borja R, I., Free boundary fluid flow and seepage force in excavation, J. geotechnical engineering, No. 118, Vol. 1, 1992:p125-146.
    [82] 毛昶熙,段祥宝,李祖贻,渗流数值计算与程序应用,南京:河海大学出版社,1999.9.
    [83] 张有天,张武功,半无限域渗流问题的边界元法,水利学报,No.4,1981:p8-17.
    [84] 任大春,有限解析法在渗流计算中的应用,长江科学院院报,Vol.3,No.8,1991:p35-42.
    [85] 周志芳,李艳,复杂岩体地下水运动问题的有限分析法,水科学进展,No.3,1997.
    [86] Pokharel G., Honjo Y., Mapped infinite elements in multilayered seepage analysis, Computer Methods and Advances in Geomechanics, Balkma, Rotterdam, 1994: p1243-1248.
    [87] 王水林,葛修润,有自由边界渗流问题的流形方法,第六届全国岩土力学数值分析与解析方法讨论会,广州,1998.8.
    [88] France P. W. et al, Numerical analysis of free surface seepage problems, J. Irrig. Drain Div., ASCE, Vol. 97, No. 1, 1971.
    [89] 朱军,刘光廷,改进的单元渗透矩阵调整法求解无压渗流场,水利学报,No.8,2001:p49-52.
    [90] Gell V. K., Der Einfluss der sickrestromung im unterground auf die berchnung der spannungen und verformungen yon bogenstaumauern, Veroffentlichungen des Institutes fur Grundbau, Bodennechanik, Felsmechanik und Verkchrswasserbau der RWTH Auchen, Herausgegeben von Prof. Dr. Ing. W. Witteke, Heft 11,1984.
    [91] 张有天,陈平,王镭,有自由面渗流分析的初流量法,水利学报,No.8,1988.
    [92] 王嫒,裂隙岩体渗流及其与应力的全耦合分析,河海大学博士学位论文,1995.6.
    [93] Baiocchi C., Comincioli V., Magenes E., Pozzi G. A., Free boundary problems in fluid flow through porous media: existence and uniqueness theorems, Ann. Mat. Pura Appl. Vol. 97, 1973:p1-82.
    [94] Oden J. T. and Kikuchi N., Recent Advances: Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Eng. Sci., No. 18, 1980: p173-184.
    [95] Bruch J.C., A survey of free boundary value problems in the theory of fluid flow through porous media: variational inequality approach, Adv. Water Res., No. 3, 1980: p65-80.
    [96] Brezis H. Kinderlehrer and Stampacchia G. Sur unenonvelle formulation du probleme delecoulement a travers une digue, C. R. A. S., Paris, Vol. 287, 1987.
    [97] Lacy S. J. and Prevost J.H., Flow through porous media: a procedure for locating the free surface, Int. J. Num. Annal. Methods Geomech., Vol. 11, 1987:p585-601.
    [98] 速宝玉,沈振中,赵坚,用变分不等式理论求解有渗流问题的截止负压法,水利学报,No.3,1996:p22-29.
    [99] 速宝玉,郭洪兴,詹美礼,非稳定渗流用截止负压法求解的研究,岩土工程学报,Vol.21,No.6,
    
    1999:p711-714.
    [100]陈洪凯,唐红梅,肖盛燮,求解渗流自由面的复合单元全域迭代法,应用数学与力学,Vol.20,No.10,1999:p1045-1050.
    [101]速宝玉,朱岳明,不变网格确定渗流自由面的结点虚流量法,河海大学学报,No.5,1991:p113-117.
    [102]黄蔚,刘迎曦,周承芳,三维无压渗流场的有限元算法研究,水利学报,Vol.6,2001:p33-36.
    [103]梁业国,雄文林,周创冰,有自由面渗流分析的子单元法,水利学报,Vol.8,1997:p34-38.
    [104]吴梦喜,张学勤,有自由面渗流分析的虚单元法,水利学报,Vol.8,1994:p67-70.
    [105] Gale J. E., The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships, Proc. of the 23rd U. S. Symposium on Rock Mech., Berkeley, California, Aug. 1982.
    [106] Ohnishi Y., Shibata H., Kabayashi A., Development of finite element code for analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium, Int. Symp. On Coupled Process Affecting the Performance of a Nuclear Waste Repository, 1985.
    [107] Ohnishi Y., Kabayashi A., Thermal-hydraulic-mechanical coupling analysis of rock mass. See: Comprehensive Rock Engineering (Ed. By Hudson J. A.), Pergamon Press, Vol. 2, 1993 :p191-208.
    [108] Raven K. G., Gale J. E., Water Flowing natural rock fracture as a function of stress and sample size, Int. J. Rock. Mech. Sci. & Geomech. Abstr. Vol. 4, No. 22,1985:p151-161.
    [109]孙钧,李成江,复合膨胀渗水围岩—隧洞支护系统的流变机理及其粘弹塑效应(研究报告),1985.3.
    [110]郭雪莽,岩体的变形、稳定和渗流及其相互作用研究,大连理工大学博士学位论文,1990.
    [111]耿克勤,复杂岩基的渗流、力学及其耦合分析研究以及工程应用,清华大学博士学位论文,1994.
    [112]沈振中,三峡大坝和基岩施工期变形分析及其反分析模型,河海大学博士学位论文,1995.
    [113]王洪涛,王恩志,金宜英,裂隙岩体渗流耦合数值分析方法及其工程应用,水利水运科学研究,No.4,1998:p320-328。
    [114] Tonini D., Observed behavior of several leakier arch dams, Proc. ASCE, Journal of the Power Division, Vol. 82, Dec 1956.
    [115] Bonaldi P., Fanelli M., Giusepptti G., Automatic observation and instantaneous control of dam safety, ISMES, 1980.
    [116] Xerez A., Lamas J.F., Methods of analysis of arch dam behavior, VI Congress on Large Dams, R.39, Q.21, New York, 1958.
    [117] Rocha M., et al. A Quantitative method for the interpretation of the results of the observation of dams, Ⅵ Congress on Large Dams, Report on Question 21 New York, 1958.
    [118] Silveria A., F. Pedro, Jose. Quantitative interpretation of results obtained in the observation of concrete dams, 8th ICOLD Congress, Q.29, R.43, 1964, Edinburgh.
    [119]中村庆一、饭田隆一,实测资料举动解析,土木技术资料,Vol.5,No.12,1963.
    [120] Widmann R., Evaluation of deformation measurements performed at concrete dam, Commission Internationals of Grands Banrages, 1967.
    [121] Marazio P., et al. Behavior of Enel's large dams, Enel's report, Roma, 1980.
    [122] Pedro J. O., et al. Stress evaluation in concrete dams, the example of verosa dam, International Conference on Safety of Dams, Coimbra, 1984.
    [123] Gueds Q. M., Coelho P. S. M., Statistical behaviour model of dams, 15th ICOLD congress, Q.56,
    
    R. 16, Lausanne.
    [124] Purer E., Steiner N., Application of statistical methods in monitoring dam behaviour, International Water Power & Dam Construction, December, 1986.
    [125] Luc E. Chouinard, et al. Statistical analysis in real time of monitoring data for idukki arch dam, 2nd international conference on dam safety evaluation, Trivandrum, India, 1996:p381-385.
    [126] Maria. Experimental study of concrete arch dams 40 years of LNEC experience, Lisboa, July 1986.
    [127] Fanelli M., Automatic observation for dam safety, International Water Power &Dam Construction, Dec 1979.
    [128] Yoshida M., Mechanical behaviour of Kurobe dam and its foundation and safety of the dam, R.2, Q52, ⅩⅠⅤth Congress ICOLD, 1982.
    [129] Serafim J.L., Safety aspects in the design and inspection of dams, International Water Power & Dam Construction, 1982.5.
    [130] Rocha M., Serafim J. L., da Silveiva A.F. and Guerreivo M. Q., Observation of concrete dams: results obtained in cabril dam, Ⅵ Congress on Large Dams, Report on Question 21, New York, 1958.
    [131] Ram P., Sharma. Deterministic forecasting model and retrofit instrumentation for safety monitoring of boundary dam, 18th Congress ICOLD, Q.68, R.62, 1982.
    [132] Oliver Crepon. An analytical approach to monitoring, International Water Power & Dam Construction, June, 1999:p52-54.
    [133] Silva Gomes A. F., Silva Matos D., Quantitative analysis of dam monitoring result, State of The Art, Applications and prospects. 15th Congress ICOLD, Q.56, R.39, Lausannne.
    [134]陈久宇,用非线性参数估计分析混凝土坝原体的时效变形,大坝观测与土工测试,No.2,1980.
    [135]陈久宇,应用实测位移资料研究刘家峡重力坝横缝的结构作用,水利学报,No.12,1982:p12-20.
    [136]吴中如,混凝土坝观测物理量的数学模型及其应用,华东水利学院学报,No.3,1984:p20-25.
    [137]吴中如、沈长松、阮焕祥,论混凝土坝变形统计模型的因子选择,河海大学学报,No.6,1988.
    [138]吴中如,论混凝土坝安全监控的确定性模型和混合模型,水利学报,No.5,1989:p64-70.
    [139]吴中如,卢有清,利用原型观测资料反馈大坝的安全监控指标,河海大学学报,No.6,1989:p29-36.
    [140] Gomezlaa G., Rodriguez, Gonzalez J.A., In search of a deterministic hydraulic monitoring model of concrete dam foundation. ⅩⅤth ICOLD, Q.58, R.49, 1985.
    [141] Kalkani E. C., Polynomial regression to forecast earth dam piezometer levels, Journal of Irrigation &Drainage Engineering, ASCE.Vol. 115, Aug. 1989:p45-55.
    [142]沈长松,吴中如,混凝土坝坝基扬压力统计模型的探讨,河海大学学报,No.1,1989.
    [143]朱岳明,测压管水位反分析确定性混合模型,大坝安全监测技术国际学术讨论会论文集,1992.p150-154.
    [144]郦能惠,蔡飞,沈珠江,土石坝原型观测资料分析方法的研究,水电能源科学,Vol.18,No.2,2000:p6-10.
    [145]齐仁贵,非线性回归问题的迭代法在地下水动态研究中的应用,水利学报,No.10,1998:p40-43.
    [146]郑东健,老坝安全的评价方法研究,河海大学博士学位论文,2000.
    [147]郑东健,古田溪一级大坝14号坝段以左的渗压确定性模型,大坝观测与土工测试,1996.3.
    [148]刘望亭,土石坝安全监控的数学模型及反分析研究,河海大学硕士学位论文,1989.
    [149]盛金保,刘嘉忻,李君纯,土石坝渗流统计数学模型,水利水运科学研究,1995.4.
    [150] Wu Zhongru, Wang Zhanrui. Dynamic monitoring model of space displacement field of concrete dam, International Symposium on monitoring technology of dam safety, 1992:p215-224.
    
    
    [151]马能武,大坝监测资料动平均灰色模型分析方法研究,河海大学学报,Vol.25,No.1,1997:p116-118.
    [152]陈继光等,土坝观测数据的模糊人工神经网络分析,水利学报,No.1,2000:p19-21.
    [153]汪树玉等,大坝观测数据序列中的混沌现象,水利学报,N07,1999:p22-25.
    [154]赵斌,大坝安全监控正反分析的新模型和新方法,河海大学博士学位论文,1998.
    [155]徐洪钟,大坝动力系统的安全监控非线性分析模型研究,河海大学博士学位论文,2001.
    [156]苏怀智,吴中如,温志萍,沈振中,遗传算法在大坝安全监控神经网络预报模型建立中的应用,水利学报,No.8,2001:44-48.
    [157]顾冲时,吴中如,应用模糊控制论建立新安江3号坝基扬压力预测模型,大坝观测与土工测试,No.4,1996:p7-10.
    [158]何勇军,薛宝林,土石坝渗流的神经网络监控模型,河海大学学报,Vol.29,No.2,2001:p79-82.
    [159]张乾飞,徐洪钟,吴中如等,基于模糊聚类的神经网络模型及其在渗流分析中的应用,水力发电学报,No.2,2002:p37-43.
    [160]朱伯芳,水工建筑物的施工期反馈设计,水力发电学报,No.2,1995:p74-81.
    [161]杨林德等,岩土工程问题的反演理论与工程实践,北京:科学出版社,1996.
    [162]顾冲时,吴中如,坝体、坝基和库盘变模的整体反演分析,水力发电学报,No.3,1996:p43-48.
    [163]Giusepptti G. Basic theory underlying the computation of influence coefficients, ISMES, 1986.
    [164]Shimizu N., Sakurai S., Application of boundary element method for back analysis associated with tunneling problems, Proc. of 5th Int. Conf. Boundary Elements, Hiroshima, Japan.
    [165]樱井春辅等,地下洞室的一种设计方法,国外地质,No.1,1981:p17-25.
    [166]Gioda G., Indirect identification of the average elastic characteristics of rock masses, Proc. Int. Conf. on Struc. Foundations on Rock, Sydney, 1980.
    [167]Gioda G., Maier G., Direct search solution of an inverse problem in elasto- plasticity identification of cohesion, friction angle and in-site stress by pressure tunnel tests, Int. Numerical Methods Eng. 15, 1980:p1823-1848.
    [168]Gioda G., Some remarks on back analysis and characterization problems in geomechanics, Proc. 5th Int. Conf. on Numerical Methods in Geomechanics, Nagoya, 1985.
    [169]Sakurai S., Takeuchi K., Back analysis of measured displacements of tunnels, Rock Mech. and Rock Eng., Vol. 16, No. 3, 1983: p173-180.
    [170]Hisatake M., Ito T., Back analysis for tunnel by optimization method, Proc. 5th Int. Conf. on Numerical Methods in Geomech., Nagoya, 1985.4.
    [171]沈振中,三维粘弹性位移反分析的可变容差法,水利学报,No.9,1997:p66-70.
    [172]Theis C. V., The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Trans. AGU, Vol. 16, 1935: p519-524.
    [173]Tsien D. S., Chen Y. M., A Numerical Method for Nonlinear Inverse Problem in Fluid Dynamics, Computer Methods in Nonlinear Mechs., The University of Texas, 1974.
    [174]金忠青,陈夕庆,用脉冲谱法确定承压水含水层非均值导水系数,河海大学学报,Vol.19,No.3,1991:p53-63.
    [175]Neuman S. P., Calibration of distributed parameter groundwater flow models viewed as a multiple objective decision process under uncertainty, Water Resour. Res., Vol. 9, No.4, 1973: p1006-1021.
    [176]Chavent G., Identification of distributed parameter system: About the output least square method, its implementation and identifiability, Identification and System Parameter Estimation, edited by Isermann R., New York, Pergamon, No. 1, 1979b: p85-97.
    
    
    [177] Frind E. O., Pinder G. F., Galerkin solution of the inverse problem for aquifer transmissivity, Water Rour. Res., Vol. 9, No. 5, 1973:p1397-1410.
    [178] Sagar B., et al. A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers, Water Resour. Res., Vol. 11, No. 4, 1975:p563-570.
    [179] Yeh W W~G., et al. Aquifer parameter identification with kringing and optimum parameterization, Water Resour. Res., Vol. 19, No. 1, 1983:p225-233.
    [180] Weir, G.J. The direct inverse problem in aquifers, Water Resour. Res., Vol. 25, No. 4, 1989:p749-753.
    [181] Kleinecke D., Use of linear programming for estimating geohydrologic parameters of groundwater basins, Water Resour. Res., Vol. 7, No. 2, 1971:p367-375.
    [182] Hefez E., et al. Identifying the parameters of an aquifer cell model. Water Reour. Res., Vol. 11, No. 6, 1975:p993-1004.
    [183] Chen W. H., et al. A new algorithm for automatic historic matching, Soc. Pet. Eng. J., Vol. 14, No. 6, 1974: p593-608.
    [184] Chavent G., Dupuy M., Lemonnier P., History matching by use of optimal theory, Soc. Pet. Eng. J., Vol. 15, No. 1, 1975: p74-86.
    [185] Vemuri V., et al. Sensitivity analysis method of system identification and its potential in hydrologic research, Water Reour. Res., Vol. 25, No. 10, 1989: p2211-2225.
    [186] Fletcher R., Reeves C. M., Function minimization by conjugate gradients, Computer Journal, No. 7, 1964: p149-154.
    [187] Neuman S. P., A statistical approach to the inverse problem of aquifer hydrology, 3, Improved solution method and added perspective, Water Reour. Res., Vol. 16, No. 2, 1980:p331-346.
    [188] Cheng J.M., Yeh W. W~G., A Proposed quasi Newton method for parameter identification in a flow and transport system, Advances in Water Resource Research, Vol. 15, No. 4, 1992:p239-250.
    [189] Jahns H. O., A rapid method for obtaining a two-dimensional reservoir description from well pressure response data, Soc. Pet. Eng. J., Vol. 6, No. 4, 1966:p315-327.
    [190] Yoon Y. S., Yeh W. W~G., Parameter identification in an in homogeneous medium with the finite element method, Soc. Pet. Eng. J., Vol. 16, No. 3, 1976: p217-226.
    [191] Cooley R. L., A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 1,Theory and numerical properties, Water Resource Research, Vol. 13, No. 2, 1977: p318-324.
    [192] Cooley R. L., Incorporation of prior information on parameters into nonlinear regression groundwater flow models, 1, Theory, Water Resour. Res., Vol. 18, No. 4, 1982: p965-976.
    [193] Cooley R. L., Incorporation of prior information on parameters into nonlinear regression groundwater flow models, 2, Applications, Water Resour. Res., Vol. 19, No. 3, 1983:p662-676.
    [194] 朱岳明,刘望亭,土石坝的复杂渗流反分析研究,河海大学学报,Vol.19,No.6,1991:p49-55.
    [195] 朱岳明,刘望亭,裂隙岩体渗透系数张量的反演分析,岩石力学与工程学报,Vol.16,No.5,1997:p461-470.
    [196] Wang Shijun, Liu Jiaxin. Determination of hydraulic conductivity model for concrete foundation by optimum inversion, International Symposium on Monitoring Technology of Dam Safety, 1992.
    [197] 顾冲时,大坝与岩基的反馈分析及其应用,河海大学博士学位论文,1997.
    [198] 沈振中,赵坚,吴玲莉,渗透参数反演的可变容差法,水电能源科学,Vol.17,No.1,1999:p5-8.
    [199] 周志芳,裂隙地下水反分析中若干问题的探析,水文地质工程地质,No.4,1993:p33-35.
    [200] 周志芳,朱学愚,确定岩体渗透参数的结构面控制反演法,南京大学学报,Vol.35,No.3,1999.
    
    
    [201]周志芳,马庆新等,有限分析法在反求裂隙岩体渗透张量中的应用,水利学报,Vol.23,No.5,1993:p68-75.
    [202]耿克勤,吴永平,基于原型观测资料的拱坝及其基础的有限元综合分析,水利学报,No.4,2001:p62-67.
    [203]金忠青,周志芳,工程水力学反问题,南京:河海大学出版社,1997.
    [204]Zhou Zhifang, Discussion on problems of numerical reverse of fissure water, Enviromental Hydraulics, Balkema, Rotterdam, 1991.
    [205]Zhou Zhifang, Inverse analysis for seepage parameters of the rock mass in Laxiwa Project, In: 7th International IAEG Congress, Balkema, Rotterdam, 1994.
    [206]Cividini A., Mailer G., Nappi A., Parameter estimation of a static geotechnical lmodel using a Bayes' approach, Int. J. Rock Mech. Min. Sci. & Geotchenics Abstract, Vol. 20, No. 5, 1983 :p215-226.
    [207]杨剑,渗透系数的随机反演方法研究,河海大学硕士学位论文,2000.
    [208]Tikhonov A. N., Solution of ill-posed problems and the regularization method, Soviet Math. Dokl., No. 4, 1963:p1035-1038.
    [209]Chavent G., Identification of functional parameters in partial differential equations, Identification of Parameters in Distributed Systems, edited by Goodson R. E. and Polis M., New York, American Society of Mechanical Engineers, 1974: p31-48.
    [210]Kitamera S., Nakagiri S., Identifiability of spatially varying and constant parameters in distributed systems of parabolic type, SIAM Journal of Control Optimize, Vol. 15, No. 5, 1977:p785-802.
    [211]Chavent G., Local stability of the out least square parameter estimation technique, Math. App. Comp, Vol. 2, No. 1, 1983:p3-22.
    [212]Yeh W. W~G., Sun N. Z., An extended identifiability in aquifer parameter identification and optimal pumping test design, Water Resource Research, Vol. 20, No. 12, 1984:1837-1847.
    [213]李守巨,刘迎曦等,基于神经网络的混凝土大坝弹性参数识别方法,大连理工大学学报,Vol.40,No.5,2000:p531-535.
    [214]冯夏庭,张治强,杨成祥等,位移反分析的进化神经网络方法研究,岩石力学与工程学报,No.5,1999:p529-533.
    [215]高玮,郑颖人,岩体参数的进化反演,水利学报,No.8,2000:p6-9.
    [216]Sawyer C. S., et al. Estimation of the aquifer hydraulic conductivity: A neural network approach, Proceedings of the IAHS Conference on Models for Assessing and Monitoring Groundwater Quality, Boulder, CO.IAHS Publ. 227, 1995.
    [217]Mukhopadhyay A., Spatial estimation of transmissivity using artificial neural network, Ground Water, Vol. 37, No. 3, 1999:p458-464.
    [218]Morshed J., Kaluarachchi J. J., Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery, Water Resource. Res., Vol. 34, No. 5, 1998: p1101-1113.
    [219]张乾飞,王建,吴中如,基于人工神经网络的大坝渗透系数分区反演分析,水电能源科学,Vol.19,No,4,2001:p4-7.
    [220]吴中如,顾冲时著,大坝安全综合评价专家系统,北京科学技术出版社,1997.
    [221]何金平,李珍照,施玉群,大坝结构实测性态综合评价方法研究,水力发电学报,No.2,2001:p36-43.
    [222]杨保全,杨光中,叶桂萍,大坝坝基水质与渗流特征,河海大学学报,Vol.29,No.2,2001:p91-95.
    [223]耿克勤,吴永平,包煜君,复杂岩基上拱坝和坝肩岩体变形过程及转异特征研究,水利学报,
    
    No.4,1995.
    [224]吴相豪,高碾压混凝土拱坝原型正反分析模型研究,河海大学博士学位论文,2000.
    [225]朱岳明等,高碾压混凝土重力坝渗流特性和计算理论及应用研究,国家“九五”重点科技攻关研究报告,河海大学,2000.
    [226]周志芳等,溪洛渡水电站水工建筑物防排水方案三维有限元分析,河海大学研究报告,1997.
    [227]Feder J. Fractals. New Yorks: Plenum press, 1998.
    [228]Capasso G, et al. The influence of normal load on the hydraulic behavior of rock fractures. In: Vonille G & Berest P, The 9th international congress on rock mechanics. Rotterdam: Balkama. 1999.
    [229]Barnsley M F, et al. The science of fractal images. New York: Springer-Verlag, 1988:p96-101.
    [230]Lee Y H, et al. The fractal dimension as a measure of the roughness of rock discontinuity profiles. Int. J. Rock Mech. Min. Sci. Vol. 27, No. 6, 1990:p453-464.
    [231]Brown S. R. & Scholz C. H. Broad bandwidth study of topography of natural rock surfaces. J. Geophys. Res., Vol. 90, No. B14, 1985: p12575-12582.
    [232]缴锡云,王文焰,雷志栋,张江辉,估算土壤入渗参数的改进Maheshwari法,水利学报,No.1,2001:p62-67.
    [233]Choi, E. C., Parameter identification and field application of transient ground water model, Water Resource. Res., Vol. 13, No. 3,1977.
    [234]周明,孙树栋,遗传算法原理及应用,北京:国防工业出版社,1999.
    [235]王正志,薄涛,进化计算,长沙:国防科技大学出版社,2000.
    [236]EibenA E, Aarts E H, Van Hee K M, Global convergence of genetic algorithms: a infinite Markov chain analysis, Schwefel H P, Manner R H, Parallel Problem Sloving from Nature, Berlin: Springer-Verlag, 1991: p4-12.
    [237]Srinivas M., Patnaik L. M., Adaptive probability of crossover and mutation in genetic algorithms, IEEE Trans. On SMC. Vol. 24, No. 4, 1994:p656-667.
    [238]吴良骥,渗流场中点预报模型及其可靠度分析,水利水运科学研究,No.4,1996:p335-342.
    [239]屈世显,张建华,复杂系统的分形理论与应用,西安:陕西人民出版社,1996.
    [240]J.贝尔著,李竞生,陈崇希译,多孔介质流体动力学,北京:中国建筑工业出版社,1983:p13-15.
    [241]李佩成,地下水非稳定渗流解析法,北京:科学技术出版社,1990:p55-57.
    [242]任若恩,王惠文,多元统计数据分析——理论、方法、实例,北京:国防工业出版社,1997.
    [243]朱伯芳,水工建筑物的施工反馈设计,水利水电科学研究院,1993.
    [244]孙钧,岩土材料流变及其工程应用,北京:中国建筑工业出版社,1999.
    [245]吴中如,朱伯芳,三峡水工建筑物安全监测与反馈设计,北京:中国水利水电出版社,1999.
    [246]张有天,周维垣,岩石高边坡的变形与稳定,北京:中国水利水电出版社,1999.
    [247]钱家欢,殷宗泽,土工原理与计算,北京:中国水利水电出版社,1996.
    [248]申晋,朱维申,赵阳升,三峡永久船闸高边坡岩体裂隙分布的分形研究,岩土工程学报,Vol.20,No.5,1998:p97-100.
    [249]哈秋舲,三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究,岩石力学与工程学报,Vol.20,No.5,2001:p603-618.
    [250]徐年丰,於习军,李洪斌,三峡永久船闸高边坡岩体地下排水系统设计及排水效果验证,岩石力学与工程学报,Vol.20,No.5,2001:p738-741.
    [251]刘耀儒,杜广林,周维垣,赵吉东,降雨入渗条件下三峡船闸边坡渗流场的变化,岩石力学与工程学报,Vol.21,No.2,2002:p238-241.
    [252]肖裕行,王泳嘉,卢世宗,陈殿强,王思敬,裂隙岩体水力等效连续介质存在性的评价,岩石
    
    力学与工程学报,Vol.18,No.1,1999:p75-80.
    [253] 郑少河,朱维申,赵阳升,复杂裂隙岩体水力学模型的研究,人民长江,Vol.30,No.9,1999:p31-33.
    [254] Г·И·波克罗夫斯基等,萨彦舒申斯克水电站坝基应力应变状态对渗流参数的影响,水利水电快报,Vol.21,No.11,2000:p20-24.
    [255] Humberto Marengo, Considerations on dam safety and the history of overtopping events, Dam Engineering, Vol. Ⅺ, No. 1, 2000:p29-59.
    [256] Olaf A. Cirpka, Peter K. Kitanidis, Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data, Advances in Water Resources, Vol. 24, No. 1, 2001: p89-103.
    [257] Kabala Z. J., Sensitivity analysis of a pumping test on a well with wellbore storage and skin, Advances in Water Resources, Vol. 24, No.5, 2001: p483-504.
    [258] Vasco D. W., Karasaki K., Inversion of pressure observations: an integral formulation, Jouranl of Hydrology, Vol. 253, Nos. 1-4, 2001: p27-40.
    [259] Ertunga C. Ozelkan, Lucien Duckstein, Fuzzy conceptual rainfall-runoff models, Journal of Hydrology, Vol. 253, Nos.1-4, 2001: p41-68.
    [260] Richard M. yager, Detecting influential observations in nonlinear regression modeling of groundwater flow, Water Resources Research, Vol. 34, No.7, 1998: p1623-1633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700