轮式战车用镁合金车轮等温挤旋成形技术及装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于轮式战车的战略机动性好,作战和支持费用低,远距离部署起来比较方便的特点,因此世界各军事强国非常重视新型轮式战车的发展。车轮作为轮式战车重要的行驶部件,对其运载能力和越野机动性有较大的影响。
     从武器装备轻量化角度考虑,结合轮式战车对车轮的特殊要求,采用镁合金车轮,不仅能够减轻战车自重、提高有效载荷能力,而且提高了战车机动性和越野性。但镁合金车轮在生产和应用中存在着诸多缺点严重阻碍了其发展。
     本文提出了集旋压成形和挤压成形优点相结合的全浸入式等温挤旋成形技术,它是一种改善产品质量,提高材料利用率的先进制造技术。
     以弹塑性有限元理论为依据,对战车车轮等温挤旋成形工艺特点进行分析的基础上,完成了三维模型的建立。车轮采用AZ80镁合金,利用Deform软件进行有限元数值模拟。镁合金车轮挤旋成形过程中,挤旋轮与车轮从不接触到接触状态,由点接触转变为线接触,接触面积逐步增加,从而接触区压应力增大,改善了车轮成形质量,提高了加工精度。
     通过对不同工艺参数下战车车轮挤旋成形工艺过程的数值模拟,得到了温度T、进给率(径向)f、挤旋轮直径Φ和主轴转速n等工艺参数对挤旋成形的影响较大,并以此作为主要试验因素,利用正交试验法设计了试验方案,得到了一组最优的工艺参数组合:即温度T=380℃、进给率f=1.5、挤旋轮直径Φ=90mm、主轴转速n=120 n/min,车轮成形质量较好。
     为了清楚地了解挤旋成形变形机理,分别沿车轮壁厚、纵向和周向取点,绘制各点的应力应变曲线图,分析发现:(1)成形中金属主要在径向运动,完成车轮精密成形;(2)切向基本没有相对运动;(3)轴向车轮内外表面有相对运动,造成了壁厚的增加,这会引起车轮的扩径和不贴模现象。为了定量了解壁厚变化,对车轮成形过程简化,建立了车轮壁厚与壁厚变化量之间的数学模型,为提高车轮成形精度提供了依据。
     镁合金车轮成形时全部浸入在液态介质中,利用Fluent软件建立挤旋成形模型进行流体模拟。模拟结果表明由于有压力场的存在,在挤旋轮与车轮的间隙中产生负压,而且间隙越小负压越大,这对工件润滑非常有利;而速度迹线图表明,由于挤旋轮和支架的阻挡,整体流动状态呈紊流状态,这样有利于恒温槽内液态热量的传递,保证了油槽内总体温度的一致,同时解决了高温下镁合金易氧化的保护问题。
     针对全浸入式等温挤旋成形技术研制了挤旋成形装置,重点设计了主轴部件、主要工艺装备和恒温槽的结构。根据傅立叶定律,建立了恒温槽保温层厚度的“热导值曲线”模型,得到δ=70mm是最佳保温层厚度。装置控制系统选择AT89C52单片机为控制器,根据偏差变化选择传统PID控制与模糊控制相结合的方法,完成控制系统总体设计,提高了控制精度,增强了抗高温和抗震动干扰能力。
     最后以模拟分析的工艺参数为依据进行试验,试验结果与数值模拟情况基本一致,说明此项成形技术的提出和装置的设计可行,实现了镁合金车轮的精密成形,为镁合金车轮的生产技术及装置推广提供依据,为轮式战车轻量化提供思路。
Due to the strategic mobility of wheeled combat vehicles, operational and supportcosts low, long-distance deployment is more convenient features, therefore the world'smilitary powers attached great importance to the development of new wheeled combat.Wheels as the chariot moving parts have a larger impact on their carrying capacity andoff-road.
     Considered lightweight angle from the weapons and equipment, combined with thespecial requirements of the wheeled chariot wheels. If the magnesium alloy material tomanufacture the chariot wheels, not only to reduce the chariot weight and increase payloadcapacity, but also to improve the chariot maneuverability and off-road. However, there aremany shortcomings seriously hindered its development in the production and application.
     This paper presents a full immersion isothermal squeeze spin forming technology; itset the spin forming and extrusion of the advantages of combining. That is a way toimprove product performance, and improve material utilization of advanced manufacturingtechnology.
     Based on the analysis of the chariot wheels of isothermal squeeze spin formingprocess characteristics, by elastic-plastic finite element theory, completed athree-dimensional model. Deform finite element numerical simulation of AZ80 magnesiumalloy wheels. The forming process of magnesium alloy wheels, squeeze roller and wheelsnever come into contact with the contact state, from the point of contact into line contact,the gradual increase in contact area. Due to the increase of the deformation zone, thedeformation path is more reasonable, uniform deformation. These improve the formingwheel performance, and improve the machining accuracy.
     Forming process to simulate by squeeze spin the wheel of the chariot in the differentprocessing parameters, the temperature T, the feed rate (radial) f, squeeze roller diameterΦand the spindle speed n, which on the squeeze spin deformation is greater impact. As the main experimental factors, the use of orthogonal experiment method to design a testprogram for optimization of process parameters design. has been one of the bestcombinations of process parameters, Temperature T = 380°C, feed rate f = 1.5, squeezeroller diameterΦ= 90mm, spindle speed n = 120 n / min, forming wheels of good quality.
     In order to clearly understand the deformation mechanism squeeze Spinning along thewheel wall thickness and longitudinal and circumferential take points, changes in thestress-strain curve ,found that: (1) metal forming, mainly in the radial motion, whichcomplete wheels precision forming; (2) no relative motion on tangential; (3) the axial wheelinner and outer surfaces in relative motion, resulting in increased wall thickness, which cancause the wheels expanding and punch phenomenon. In order to quantitatively find outchange of the wall thickness, simplified the wheel forming process, and the establishmentof a mathematical model between the wheels of wall thickness and wall thickness variation,and provides a basis to improve the wheel forming precision.
     In order to meet Squeeze Spinning thermostat requirements, magnesium alloy wheelprocessing allowed all immersed in a liquid medium. Create squeeze spinning model forfluid simulation by Fluent. The simulation results show that the existence of the pressurefield in the squeeze roller and the wheel gap, resulting in negative pressure and the smallerthe gap the negative pressure the greater, which is very beneficial to the wheel lubrication.Speed trajectories, that the overall flow state was turbulent state by squeeze the roller andbracket blocks. So that is conducive to the thermostatic tank of liquid heat transfer toensure the consistency of the overall temperature in the tank.
     Develops squeeze spin forming device for full immersion isothermal extrusion rotaryforming process, with a focus on design of the spindle assembly, the main processequipment and bath structure. according to Fourier's law, establish“the value of thethermal conductivity curve”model, whenδ= 70mm is the optimum insulation thickness.Device control system takes AT89C52 microcontroller as the controller. Circuit selects thetraditional PID control and fuzzy control method of combining, select the control methodbased on change in error, complete the overall design of control systems. Improve the control precision, enhanced resistance to high temperature and vibration interference.
     Finally, the simulation analysis of the process parameters as a basis for the test, testresults and simulations consistent, indicating the forming technology and device design isfeasible, which can achieve precision forming of magnesium alloy wheels. Whichmagnesium alloy wheels production technology and device promotion provides the basis toprovide ideas for lightweight wheeled combat vehicles.
引文
[1]张卫东.世纪回眸-轮式战车百年发展历程(上)[J] .国外坦克.2005(3):10-20
    [2]李补莲.轮式装甲车现状及发展预测[J].国外坦克.2009(12):17-26.
    [3]刘立明,刘红红.2020年外军装甲装备发展趋势[J].国外坦克.2010 (9):7-12.
    [4]曹韩学.镁合金预成形铸坯模压成形技术基础研究.重庆:重庆大学博士论文,2007.4.
    [5]李补莲.轻型坦克与重型装甲车发展漫谈[J].国外坦克.2010(1):22-31.
    [6]黄少东,唐全波等.用镁合金促进兵器装备轻量化[J].金属成形工艺.2002.20(5):8-11.
    [7]肖冰,康凤,胡传凯等.国外轻质结构材料在国防工业中的应用[J].兵器材料科学与工程.2011.34(1):94-97.
    [8]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程. 2007. 30(3):69-72.
    [9]余克章,镁(Mg)-金属在现代军事上的应用[J].金属世界,2006.
    [10] Rudd A L.The corrosion protection afforded by rare earth conversioncoatings applied to magnesium[J],Corrosion Science.2000,42:275-288.
    [11] Nie J F and Muddle B C·Characterization of StrengtheningPrecipi-tation Phases in a Mg-Y-Nd Alloy [J], Acta Mater,2000(48):1691~1703.
    [12]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展.世界科技研究与发展[J].2003, 25(1):72-78.
    [13]孙全喜,战中学,李进军.汽车用镁合金的现状和发展前景.内蒙古科技与经济[J].2008, 163(9):73-75.
    [14]曹韩学.镁合金预成形铸坯模压成形技术基础研究.重庆:重庆大学博士学位论文,2007.4.
    [15]张珣.镁合金产业的现状与发展[J].世界有色金属.2002,9:10-13.
    [16]汤红强.镁合金汽车轮毅的研究与开发.浙江:浙江工业大学硕士学位论文,2009.5.
    [17]DMagers,JWillekens.GlohaloutlookontheUseofMagnesiumDieeastinginAutomotiveAPPlieations[J].Frankfurt(Germany): :Werkstoff-InformationsgesellschaftmbH,Gennany,1998:105.
    [18]陈虎.镁合金的研究及其在汽车轻量化中的应用.企业技术开发[J].2009,28(11):17-20.
    [19]叶山益次郎.回转塑性加工学[M].近代编辑社.1978.
    [20]祁庆琚,刘勇兵.镁合金的研究及其在汽车工业中的应用与展望[J].汽车工程,2002,(2):94-100.
    [21]李亚宁.镁合金挤压预成形坯模压近终成型工艺研究.重庆:重庆大学硕士论文, 2009,4.
    [22] Decker R F. Magnesium Semi -solid Metal Forming.Advanced Materials& Processes,1996,(2):41-42.
    [23] Magnesium p ressure die cast components [J]. Aluminum, 2000, 76(4):276-280.
    [24]游国强.新型镁熔体气体保护技术基础研究.重庆大学博士论文. 2007,4.
    [25]廖慧敏.镁合金铸锻复合成形组织与性能研究.重庆大学博士论文.2009,10.
    [26]贾玉贤,王承志.半固态铸造技术的现状及发展趋势[J].铸造设备研究, 2003,(5) : 40-43.
    [27] Yim C D,Seok H K,Lee J C,et al. Semi -solidProcessing of MagnesiumAlloys [J]. Materials ScienceForum,2003,419-422:611-616.
    [28]齐丕骧.面向21世纪的挤压铸造技术[J].特种铸造有色合金,1998,(4):32-36.
    [29]赵文元,夏兰廷.镁合金成形技术现状及展望.铸造设备研究[J].2005,2(4):47-52.
    [30]陈适先,贾文铎.强力旋压工艺与设备[ M] .北京:国防工业出版社,1986.
    [31]赵琳瑜,韩冬,张立武.典型零件旋压成形技术应用发展.航天制造技术[J].2007, 2(4):5-11.
    [32]HiroyukiWatanabe, et al. Realization of High - rate Superp lastici2tyat Low Temperatures in a Mg - Zn - Zr Alloy [J]. Mater Sci Eng. 2001, (A307):119-128.
    [33]王强.普通旋压的弹塑性有限元分析及变形机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1990.
    [34]王雪敏.镁合金高温氧化及表面改性研究[D].上海:上海交通大学博士学位论文,2007,11.
    [35]吕炎,徐福昌,薛克敏,许沂。镁合金上机匣等温精锻工艺的研究。哈尔滨工业大学学报。2000,32(4):127-129.
    [36]王艳红.车轮轮辋旋压成形技术研究.秦皇岛:燕山大学硕士学位论文,2008.5
    [37]张宁,檀雯等.筒形件错距旋压数值模拟及旋压力分析[J].沈阳理工大学学报,2009,28(5):55-60.
    [38]齐麦顺.铝合金车轮拉深旋压成形模拟和试验.有色金属[J].2010,62(2):40-47.
    [39]Xu Y, Zhang, S H, Lu Y. 3D Rigid2Plastic FEM Nu2 merical Simulationon Tube Spinning[M].J.Mater.Process.Tech,2001.113:710~713.
    [40]李传民,王向丽等编著.DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2006.
    [41] WANG Z T,ZHANG X Q,Researches on the flow patterns in extrusion ofaluminum shapes with experiments and 3-D FEM[J].Advanced technology ofPlasticity, 1990:423-584
    [42]张莉,李升军编著.DEFORM在金属塑性成形中的应用[M].北京:机械工业出版社,2009.
    [43]李启军,吕宏军等.薄壁曲母线TC4钛合金构件热旋模拟与试验研究.天津工业大学学报[J].2008,27(2)61-66.
    [44]杜坤.筒形件多道次普通缩旋三维弹塑性有限元模拟研究[D].西安:西北工业大学硕士学位论文,2001
    [45]陈峰伟.汽车减振器外壳热挤压成形工艺及装置研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.7.
    [46]林新波. DEFORM-2D和DEFORM-3D CAE软件在模拟金属塑性变形过程中的应用[J].模具技术,2000(3):75-79.
    [47]郭强.镁合金高温单向压缩及多向变形行为研究[D].湖南:湖南大学博士学位论文,2007,3.
    [48]耿义海,李保成,张晓芳等. AZ80变形镁合金高温变形流变应力分析.材料热处理技术[J].2007,14(5):38-42.
    [49]郭强,严红革,陈振华,张辉.铸态AZ80镁合金高温热变形行为研究.塑性工程学报[J],2006,13(10):26-31.
    [50]孙丽丽.汽车轮毅旋压成形过程的数值模拟[D].合肥:合肥工业大学硕士学位论文,2008.
    [51]周一丹,廖萍.旋挤法翻边孔加工工艺及其主要参数的优化.新技术与工艺[J],2004(10):48-50.
    [52]E.Quigley,J.Monaghan.Enhanced finite element of metalspinning.Journal of Materials Processing Technology,2002,121(1):43-49.
    [53]王艳红.车轮轮辋旋压成形技术研究[D].秦皇岛:燕山大学硕士学位论文,2008,5.
    [54]李克智,筒形件强力旋压三维弹塑性有限元数值模拟[D].哈尔滨:哈尔滨工业大学博士学位论文,1996,22-26.
    [55]檀雯. 1Cr18Ni9不锈钢筒形件错距旋压研究[D].沈阳:沈阳理工大学硕士学位论文,2009,3.
    [56] TROJANOV Z,LUKAC P,MILICKA K,SZARAZ Z.Characterision of dynamicstrain ageing in two magnesiumalloys [J].Material Science and EngineeringA, 2004, 387/389:80-83.
    [57]林娜,曾绍峰等. AZ91D变形镁合金的动态应变时效现象.中国有色金属学报[J].2010,20(8):1455-1461.
    [58] Li Kezhi,Research on the distribution of the displacement in backwardtubespinning,J.of Mater.Proc.Tech.79(1998):185-188.
    [59] C.C.Wong,T.A.Dean,J.Lin.A Review of Spinning,Shear Forming and FlowForming Processes.International Journal of MachineTools&Manufacture.2003,43(14):1419-1435.
    [60] M.I.Rotarescu.A Theoretical Analysis of Tube Spinning UsingBalls.Journal of Materials Processing Technology.1995,(54):224-229.
    [61] Xue Kemin,Lv Yan.Elastic-plastic FEM analysis and experimental studyof diametral growth in tube spinning.Journal of Materials ProcessingTechnology,1997(69):172-175.
    [62]彭子明.强力旋压工艺分析软件及旋压力和偏载力研究[D].秦皇岛:燕山大学硕士学位论文,2004.2.
    [63]马春生,张治民.汽车镁合金轮毂等温挤旋成形工艺优化与试验.农业机械学报[J]。2012,43(3)223-229。
    [64]赵宪明.筒形件强力旋压变形机理的有限元分析.塑性工程学报,1998,3:46-50.
    [65]李广新,智能旋压工艺设计和加工质量控制的研究,上海:上海交通大学博士学位论文,1993.
    [66]徐文臣,单德彬等.筒形件三旋轮非对称旋压的刚粘塑性有限元模拟.塑性工程学报[J].2007,14(4):44-49.
    [67]Eamonn Quigley,John Monaghan.Metal Forming:an Analysis ofSpinningProcess.Journal of Materials Technology.2000,103(3):114-119.
    [68]吴立波,张治民,李保成.引伸模的振动分析及成形精度的数值模拟.塑性工程学报[J].2008,15(4):102-105.
    [69]赵宪明,吴迪,吕炎.筒形件正旋旋压力及位移分布规律的有限元分析.塑性工程学报,2002,7(4):56-59.
    [70] Wang Tao and Z.R.Wang,The slipline fields of thickness-redutionspinning and the engineering calculation of the spinning forces,Rotaryforming-Proceedings of internationalconference,Beijing,China,October17-21,1989:131-135.
    [71]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟.北京:冶金工业出版社,1997.8-10.
    [72]高西成,康达昌.薄壁筒收口旋压过程的数值模拟.塑性工程学报[J],1999,4:54-57.
    [73] R.M.McMeeking,J.R.Rice,Finite element formulation for problemsoflarge elastic deformation.Int.J.Solids Struct.,1975,(11):601.
    [74]胡丽娟. AZ31镁合金板材温热变形行为的数值分析与试验研究[D].上海:上海交通大学博士学位论文,2009,12.
    [75]商琳琳.AZ80_ZK60铸态镁合金高温变形行为研究[D].沈阳:沈阳理工大学硕士学位论文,2009,3.
    [76]李艳辉,李保成.AZ80镁合金热模拟压缩变形的实验研究[J].金属世界.2009,3:10-15.
    [77]尹从娟.热变形对AZ80镁合金性能影响的研究[D].太原:中北大学硕士学位论文,2008,5.
    [78]李伟.塑性变形对铸态AZ80镁合金组织及性能影响的研究[D].太原:中北大学硕士学位论文,2009,6.
    [79]邱恺.基于复杂断面零件的AZ31镁合金差温成形性能研究[D].重庆:重庆理工大学硕士学位论文,2009,5.
    [80]王强,张治民,曹亚强.AZ80镁合金热变形流变应力研究.塑性工程学报[J].2008,15(5):28-32.
    [81]韩志仁,陶华.筒形件强力内旋压工艺的正交试验研究.锻压技术[J].2005,(2):29-31.
    [82]数理统计编写组.数理统计[M].西安:西北工业大学出版社,1999.
    [83]赵选民.试验设计方法[M].北京:科学出版社,2006.
    [84]马希文.正交设计的数学理论[M].北京:人民教育出版社,1981.
    [85]冯蕾.导热油技术及其应用实例.润滑油[J].2005, 20(6):58-63.
    [86]令狐志强.双向推流搅拌桶的数值模拟与试验研究[D].太原:太原理工大学硕士学位论文,2011,5.
    [87]余志宏.基于Fluent的喷射器数值模拟与结构优化研究[D].江南大学硕士学位论文,2011,3.
    [88]王瑞金,张凯,王刚编著.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [89]W.F.休斯,J.A.布赖顿著.流体动力学[M].北京:科学出版社.2002
    [90]武宇琼.水轮机导水机构双列叶栅流动数值模拟及振动特性分析[D].昆明:昆明理工大学硕士学位论文,2010,3.
    [91]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986.5.
    [92]陈适先.强力旋压及其应用[M].北京:国防工业出版让,1966.
    [93]大连工学院机床教研室.金属切削机床设计[M].北京:机械工业出版社,1965.
    [94]胡志清.连续多点成形方法、装置及成形实验研究[D].吉林:吉林大学博士学位论文,2008,6.
    [95]熊建坤.铝、镁轻合金焊接性研究及焊丝挤压装置设计.重庆:重庆大学硕士学位论文,2008.5
    [96]日本塑性加工学会.旋压成形技术[M].北京:机械工业出版社,1988.
    [97]夏琴香.三维非轴对称零件旋压成形工艺及设备.新技术新工艺[J].2003,12:33-35.
    [98]居冰峰,傅建中,李志锋等.NC机床恒温立柱模型的建立及热模态实验研究.中国机械工程[J].1999,10(6):679-683.
    [99] Jay Dratler, Jr.A proportional thermostatwith 10m icrodegreestability[J].Rev. sci instrum, 1974.
    [100]马春生,张治民.镁合金车轮等温挤旋成形装置的研究.机械设计与制造[J]。2011,10:53-55.
    [101]季镜屏,李国平,钱火根.一种新型高精度标准恒温油槽.计量技术[J],2000,(10):15-17.
    [102] Ma Chun-Sheng, Zhang Zhi-Min.The design of automatic control systemof auxiliary heating device in thermostatic tank. ICACC 2011[C].2011:282-286.
    [103]叶斌.CHZ海洋重力仪恒温槽设计.测量与地球物理集刊[J],1984.
    [104]石雄.恒温槽高精度恒温自动控制系统的设计与实现.工业仪表与自动化装置[J],2005,(1):32-34.
    [105]马春生,张治民.恒温油槽智能控制系统的研究.制造技术与机床[J].2011,8:106-108.
    [106] Ma Chun-Sheng, Zhang Zhi-Min. Design of thermostatic tank and controlsystem. 2010 Symposium on Security Detection and InformationProcessing[C].2010: 477-481.
    [107]吴立波,张治民.旋压设备工艺研究.锻压装备与制造技术[J].2006,2:30-33.
    [108]李素丽.三通件多向加载整体成形工艺研究[D].太原:中北大学硕士学位论文,2008,3.
    [109]陈刚.镁合金负重轮温挤压成形工艺研究[D].太原:中北大学硕士学位论文,2009,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700