热管中冷器及其在车辆冷却系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着排放法规日益严格,发动机强化程度越来越高,对增压压比的要求变高,增压器能达到的压比也越来越高,同时废气再循环(Exhaust Gas Recirculation, EGR)技术的采用,促使增压空气的温度也要越来越高,大幅度增加热交换器的热应力,同时发动机舱空间日益拥挤,限制了空气流动,不利于散热器更及时的散热。铝材抗拉强度在温度140℃多开始变差,在超过200℃严重恶化。因此涡轮增压高应力运行时间对目前铝中冷器的耐温性能和散热性能提出了严峻的挑战,在某些情况下已达到铝材的耐热极限。鉴于热管具有高效的传热特性和高热流密度等技术特点,本文针对某型载重车冷却系统设计了一种热管中冷器,研究热管中冷器在车辆冷却系统上的应用可行性。采用理论分析计算和数值模拟技术以及试验研究相结合的方法对热管中冷器的传热与阻力性能,以及结构优化设计进行了研究,同时对该载重车前端冷却模块进行优化匹配设计研究,在满足载重车散热要求的前提下,对铝中冷器进行结构优化设计,研制出新型高效紧凑式冷却系统模块。本文的主要研究内容包括:
     1.结合载重车冷却系统对中冷器的散热要求和发动机舱空间的限制,采用对数平均温差法和有效度-传热单元数方法,对热管中冷器进行了初步设计计算,并对热管间距、热管冷凝度长度、热管根数和冷热流体进出口条件等对热管中冷器的传热与阻力性能的宏观影响进行了讨论研究。
     2.采用计算流体力学(Computational Fluid Dynamics, CFD)仿真技术对热管中冷器单层换热单元和整体热交换器的内部流动传热过程进行了仿真分析,结合场协同理论研究了换热器结构参数和冷热流体进口条件等对热管中冷器流动传热特性的影响机制。
     3.采用BP神经网络方法来预测分析热管中冷器的传热与阻力性能,基于少量试验数据建立网络预测模型,训练好的传热性能网络预测模型的最大相对误差为8.0%,平均相对误差为3.5%;阻力性能网络预测模型的最大相对误差为13.1%,平均相对误差为5.1%。采用BP神经网络模型和试验技术相结合的方法可以很好的预测热管中冷器的传热与阻力性能,同时能够对热管中冷器的结构进行优化设计,最后提出了一个比较优化的结构参数组合。
     4.在风洞试验台架A上对热管中冷器的传热与阻力性能进行了试验研究,详细分析了冷侧空气流速、热侧空气进口温度、热侧空气流量等因素和热管间距、冷凝段长度和热管列数等结构参数对热管中冷器的流动与传热性能的影响,并与理论计算值进行了对比分析,同时对冷风出口温度场和热流体通道内温度分布进行了试验与仿真对比分析,最后利用多元线性回归拟合得到传热和阻力性能的试验关联式。
     5.对前端冷却模块和热管中冷器的组合模块进行了流动与传热仿真研究,并在风洞试验台架B上对其进行了试验研究,最后对铝中冷器的结构进行了优化设计,可以明显改善流体的流量分配均匀性和阻力损失,用CFD数值模拟技术和试验方法相结合对其进行了验证和分析讨论,铝中冷器优化后冷却模块中中冷器能够满足该载重车散热要求,同时水箱换热量相比原冷却模块的水箱换热量有3.36%-13.08%的提高。
With increasingly stringent emissions regulations and increasing degree of engine enhancement, the requirement of compression ratio becomes much higher and the compression ratio of turbocharger compressor can achieve higher and higher. Furthermore, exhaust gas recirculation (EGR) technology is adopted, hence the charge air temperature becomes even higher, promoting a substantial increase of the heat exchanger thermal stress. In addition, the vehicle underhood space is increasingly crowded, the air flow is limited and the heat exchanger cannot reject heat timely. Tensile strength of aluminum begins to aggravate above the temperature of more than140· and deteriorate seriously above2009℃. Therefore, high stress operating time of turbo is a challenge to the mechanical and fatigue resistance properties and thermal performance of the current word wide aluminum charge air cooler. In some cases, it has reached the inherent material performance limitations of aluminum at high temperatures. In view of the technical features of heat pipe, such as highly efficient heat transfer characteristics and high heat flux, a kind of heat pipe heat exchanger is designed for the cooling system of the commercial vehicle in this research. Then the application feasibility of heat pipe charge air cooler in the vehicle cooling system is conducted. The heat transfer and pressure drop performance of heat pipe charge air cooler and the optimization design of heat pipe charge air cooler are studied by theoretical analysis, numerical simulation and experimental research. Meanwhile the matching optimization of the heat pipe heat exchanger and front cooling module is investigated. Under the premise of meeting the cooling requirements of the truck, the structure of the aluminum charge air cooler is improved and finally a new compact and efficient cooling system module is developed. The main contents of this paper include:
     1. Considering the requirements of heat transfer performance for the charge air cooler and vehicle underhood space limitation, a heat pipe heat exchanger is designed and the influence of tube pitch, condenser length, number of pipes, inlet and outlet conditions of cooling and hot air on the heat transfer and pressure drop characteristics of the heat pipe charge air cooler are investigated using the logarithmic mean temperature difference method and ε-NTU (effectiveness-number of heat transfer units) method.
     2. For the heat pipe charge air cooler, a single heat exchanger unit model and an overall heat exchanger model are established and simulated using the CFD (Computational Fluid Dynamics) method. Finally, the effects of the structural parameters of heat exchanger and the inlet conditions of cooling and hot air on the flowing and heat transfer characteristics of the heat pipe charge air cooler are analyzed according to the field synergy theory.
     3. Heat transfer performance and resistance performance prediction model of heat pipe intercooler are established based on a small amount of test data. Then the heat transfer performance and resistance performance of the heat pipe charge air cooler are predicted by means of the BP neural network method, the prediction results-are compared with the experimental results and it is found that the prediction results are in good agreement with the experimental results. For the heat transfer performance network model, the maximum relative error is8.0%and the average relative error is3.5%; For the resistance performance network model, the maximum relative error is13.1%and the average relative error is5.1%, which means that the prediction model can predict the thermal performance of the heat pipe charge air cooler well and can be used for engineering design combining with experimental method. Finally, the structural parameters are optimized by the BP neural network model and the optimal design parameters are obtained.
     4. The heat transfer and pressure drop characteristics of the heat pipe charge air cooler are investigated in a small wind tunnel A. The influence of cooling air velocity, inlet temperature of hot air, mass flow of hot air, tube pitch, condenser length, pipe line on the flowing and heat transfer characteristics of the heat pipe heat exchanger are discussed. Then, the experimental results are compared to the theoretical results. Meanwhile, the outlet temperature field of cooling air and the temperature distribution of hot air channel are discussed by means of experiments and CFD simulations. Finally, by multi-parameter linear regression analysis of a large number of experimental results, the correlations of Nu and Eu are obtained.
     5. The flowing and heat transfer characteristics of the package of a heat pipe charge air cooler and front cooling module are studied by CFD simulation and experimental research in the wind tunnel B. Then, two kinds of optimization of the intercooler are done to improve the performance. The results show that the airflow uniformity index and the pressure drop are improved efficiently; the heat pipe intercooler could well reduce the inlet temperature of the aluminum intercooler, while the optimized intercooler can satisfy the cooling requirements well, and thereby the aluminum intercooler has further room for improvement. On this basis, compared to the original, the heat rejection of radiator has a larger enhancement between3.36%-13.08%. Thus the cooling module can be optimized to be more compact to meet the cooling requirements, which is very significant to the optimization of the front-end cooling module and improvement of the overall heat transfer.
引文
[1]http://www.ga-forum.org/ShowNews.asp?52.html.
    [2]http://www.ga-forum.org/ShowNews.Asp?49.html.
    [3]High-Temperature Strength of Charge Air Coolers is Crucial for Clean Diesel Engines. International Copper Association, CuproBraze. Executive Report, No.21
    [4]Lang O, Geiger J, Habermann K, et al. Boosting and direct injection-synergies for future gasoline engines[C]. SAE Paper 2005-01-1144.
    [5]Lang O, Habermann K, Wedowski S, et al. Optimization of the transient characteristics of boosted SI engines[J].12/2004 TAE-Entwicklungstendenzen bei Ottomotoren.
    [6]霍尼韦尔国际公司,带具有叶片密封表面的可变喷嘴的涡轮增压器CN200910141302.X.
    [7]霍尼韦尔国际公司,用于涡轮增压器的可变喷嘴组件.CN200910007753.4.
    [8]霍尼韦尔国际公司,可变喷嘴涡轮增压器的叶片组件及叶片组件的组装方法CN200710152744.5.
    [9]Wijetunge R.S., Hawley J. G., Vaughan N. D.. An exhaust pressure control strategy for a diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2004,218(4):449-464.
    [10]郁秀峰,刘兴华,韩秀坤.可变几何废气涡轮增压器(VGT)的控制系统研究[J].兵工学报,1995,2:41-46.
    [11]马朝臣,朱庆,杨长茂,等.涡轮调节方式对增压柴油机匹配性能的影响[J].内燃机学报,2000,18(2):165-167.
    [12]陆家祥,王仁人.双舌形挡板变截面涡轮(VGT)的研究[J].内燃机学报,1999,1:75-78.
    [13]孙万臣,韩永强,刘忠长,等.可变喷嘴涡轮增压器对车用柴油机瞬态性能的影响[J].汽车工程,2006,28(2):122-124.
    [14]Wallaee F.J., Winkler G. Very High OutPut Diesel Engines-A Critical Comparison of Two Stage Turbocharged, Hyperbar and Differential Compound Engines[C]. SAE770756.
    [15]Krebs R, Szengel R, Middendorf H采用汽油直接喷射和两级增压的Volkswagen新型汽油机[J].国外内燃机,2007,3:1-7.
    [16]魏名山,李凯,马朝臣.车用柴油机的二级增压[J].汽车技术,2005,1:25-28.
    [17]Pantow E, Muiler R轿车柴油机冷却系统及欧5标准[J].国外内燃机,2006,4:51-54.
    [18]Kleeberg H, Tomazic D, Lang 0,等.高功率涡轮增压直喷汽油机的未来潜力和开发方法[J].国外内燃机,2008,3:11-15.
    [19]Kays WM, London AL. Compact Heat Exchanger Design[M], third edition, McGraw-Hill, New York.1984.
    [20]Manson S.V.. Correlations of heat transfer data and of friction data for interrupted plane fins staggered in successive rows. In:(2nd ed.), NACA Tech. Note2237, National Advisory Committee for Aeronautics, Washington,1950.
    [21]Kays W.M.. Compact heat exchangers. In:(2nd ed.), AGARD Lecture Ser. No.57 on heat exchangers, AGARD-LS-57-72, NATO, Paris(1972).
    [22]Wieting A R. Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers[J]. J.Heat Transfer.1975,97(3):488-490.
    [23]Joshi H M, Webb R L. Heat transfer and friction in the offset strip-fin heat exchanger[J]. Int. J. Heat Mass Transfer,1987,30(1):69-84.
    [24]Mochizuki S, Yagi Y, Yang W. Transport phenomena in stacks of interrupted parallel-plate surfaces[J]. Experimental Heat Transfer,1987,1(2):127-140.
    [25]Jacobi A M, Shah R K. Air-side flow and heat transfer in compact heat exchangers:a discussion of enhancement mechanisms[J]. Heat Transfer Engineering,1998,19(4):29-41.
    [26]Manglik R.M, Bergles A.E.. Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger[J]. Exp.Thermal and Fluid Sci.,1995,10(2): 171-180.
    [27]Sparrow E.M., Baliga B.R., Patankar S.V.. Heat transfer and fluid flow analysis of interrupted-wall channels with application to heat exchangers [J]. Journal of Heat Transfer, 1977,99:4-11.
    [28]Patankar S.V., Prakash C. An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted-plate passages[J]. International Journal of Heat and Mass Transfer,1981,24:1801-1810.
    [29]Patankar S.V., Liu C.H., Sparrow E.M.. Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area[J]. J. Heat Transfer,1977, 99(2):180-186.
    [30]Suzuki K., Hirai E., Miyake T., et al. Numerical and experimental studies on a two-dimensional model of an offset-strip-fin type compact heat exchanger used at low Reynolds number[J]. International Journal of Heat and Mass Transfer,1985,28(4):823-836.
    [31]Xi G.N., Hagiwara Y, Suzuki K.. Flow instability and augmented heat transfer of fin arrays[J]. Journal of Enhanced Heat Transfer,1995,2:23-32.
    [32]Mizuno M., Morioka M., Hori M., et al. Heat transfer and flow characteristics of offset fins in the low-Reynolds-number region[J]. Heat Transfer-Japanese Research,1997,26(4): 249-261.
    [33]Dejong N.C., Zhang L.W., Jacobi A.M., et al. A complementary experimental and numerical study of the flow and heat transfer in offset strip-fin heat exchangers [J]. Journal of Heat Transfer,1998,120(3):690-698.
    [34]张战.空调用错列翅片换热器表面传热与流动阻力特性的数值研究[D].江苏大学硕士学位论文,2002.
    [35]侯海焱.紧凑式错列翅片换热器湍流流动与换热特性的数值研究[D].江苏大学硕士学位论文,2002.
    [36]王武林,魏琪.错列翅片板翅式换热器传热性能数值研究[J].华东船舶工业学院学报(自然科学版),2003,17(4):13-16.
    [37]董军启.车辆冷却系统空气侧特性研究[D].上海交通大学博士学位论文,2007.
    [38]郭丽华.锯齿型错列翅片冷却器的传热、阻力及工艺特性的研究[D].上海交通大学博士学位论文,2007.
    [39]Davenport C J. Correlation for heat transfer and flow friction characteristics of louvered fin[C]. AIChE Symp. Ser.,1983,225:19-27.
    [40]Webb R L, Jung S H.. Air-side performance of enhanced brazed aluminum heat exchangers[J]. ASHRAE Trans.,1992,98(2):391-401.
    [41]Chang Y.J., Wang C C, Chang W J. Heat transfer and flow characteristics of automotive brazed aluminum heat exchangers [J]. ASHRAE Transactions,1994,100(2):643-652.
    [42]Chang Y. J., Wang C. C. Air side performance of brazed aluminum heat exchangers[J]. Journal of Enhanced Heat Transfer,1996,3(1):15-28.
    [43]Chang Y. J., Wang C. C. A generalized heat transfer correlation for louver fin geometry [J]. Int. J. Heat Mass Transfer,1997,40(3):533-544.
    [44]Kim M H, Bullard C W. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers [J]. Int. J. Refrig,2002,25(3):390-400.
    [45]Yang K. S., Chiang C. M., Lin Y. T., et al. On the heat transfer characteristics of heat sinks: influence of fin spacing at low Reynolds number region [J]. Int. J. Heat Mass Transfer,2007, 50:2667-2674.
    [46]Woodcock J., Baxendale A., Fish G. An evaluation of the use of CFD for investigating the performance of intercooler assemblies[J]. SAE Paper 971856.
    [47]焦安军,厉彦忠,张瑞,等.封头结构对板翅式换热器物流分配不均匀性的影响[J].化工学报,2003,54(7):907-912.
    [48]焦安军,厉彦忠,等.板翅式换热器导流片结构参数对其导流性能的影响[J].化工学报,2003,54(2):153-158.
    [49]Jiao Anjun, Li Yanzhong, Chen Chunzheng. Experimental Investigation on Fluid Flow Maldistribution in Plate-Fin Heat Exchangers [J]. Heat Transfer Engineering,2003,24(4): 25-31.
    [50]Anjun Jiao, Seungwook Baek. Effects of Distributor Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers[J]. Heat Transfer Engineering,2005,26(4): 19-25.
    [51]文键,厉彦忠,周爱,等.板翅式换热器入口结构的改进[J].吉林大学学报(工学版),2006,36(2):177-182.
    [52]文键,厉彦忠,周爱民,等.板翅式换热器入口流场的模拟及实验研究[J].化学工程,2006,34(8):24-27.
    [53]文键,厉彦忠,王斯民,等.基于PIV技术对换热器入口流场的可视化研究[J].哈尔滨工业大学学报,2008,40(1):113-117.
    [54]文键,厉彦忠,周爱民,等.板翅式换热器入口结构内流场的数值模拟[J].华中科技大学学报(自然科学版),2006,34(7):5-8.
    [55]文键,厉彦忠,周爱民,等.板翅式换热器封头内部流场的测量与改进研究[J].西安交通大学学报,2006,40(1):10-13.
    [56]Jian Wen, Yanzhong Li, Simin Wang, et al. Experimental investigation of header configuration improvement in plate-fin heat exchanger [J]. Applied Thermal Engineering, 2007(27):1761-1770.
    [57]Jian Wen, Yanzhong Li. Study of flow distribution and its improvement on the header of plate-fin heat exchanger[J]. Cryogenics,2004,44:823-831.
    [58]Zhang Z., Li Y.Z.. CFD simulation on inlet configuration of plate-fin heat exchanger [J]. Cryogenics,2003,43 (12):673-678.
    [59]Zhang Zhe, Li Yanzhong, Xu Qing. Experimental research on the effects of distributor configuration on flow distribution in plate-fin heat exchangers [J]. Heat Transfer-Asian Research,2004,33(6):402-410.
    [60]Cohen H, Bayley FJ. Heat Transfer Problems of Liquid Cooled Gas Turbine Blades[C]. Proceeding of Institution of Mechanical Engineers, London,1955:1063-1080.
    [61]Lee Y, Mital U.. A two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer,1972,15(9):1695-1707.
    [62]Al Streltsov. Theoretical and experimental investigation of optimum filling for heat pipes[J]. Heat Transfer-Soviet Research,1975,7(1):23-27.
    [63]Savchenhen G.A.. Theoretical and experimental research on low temperature thermosyphon and their application in refrigeration engineering[J]. AIAA paper,1978(8):462.
    [64]Andros F.E., Florschuetz L.W.. The two-phase closed thermosyphon:An experimental study with flow visualization[J]. Two Phase Transport and Reactor Safety,1976,4:111-129.
    [65]Shiraishi M., Kikuchi K., Yamanishi T.. Investigation of heat transfer characteristics of a two-phase closed thermosyphon[C]. Proceedings of the Fourth International Heat Pipe Conference, London,1981:95-104.
    [66]Koh JCY, Sparrow EM, Hartnett JP. The two phase boundary layer in laminar film condensation[J]. Int. J. Heat Mass Transfer,1961,2(1/2):69-82.
    [67]Chen SJ. Reed JG, Tien CL. Reflux condensation in a two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer,1984,27(9):1587-1594.
    [68]Farsi Hichem, Joly Jean-Louis, Miscevic Marc, et al. An experimental and theoretical investigation of the transient behavior of a two-phase closed thermo syphon [J]. Applied Thermal Engineering,2003,23(15):1895-1912.
    [69]Han Kyuil, Cho Dong-Hyun. A comparison of the heat transfer performance of thermosyphon using a straight groove and a helical groove[J]. Journal of Mechanical Science and Technology,2005,19(12):4475-4482.
    [70]庄昕蓓.两相闭式热虹吸管凝结换热特性的数值模拟[D].大连理工大学硕士学位论文,2006.
    [71]袁达钟.热管换热器的两相流模型与耦合传热的研究[D].大连理工大学博士学位论文,2008.
    [72]陶汉中,张红,庄骏.倾斜状态下热虹吸管冷凝段流动传热研究[J].太阳能学报, 2008,29(7):804-810.
    [73]Qi Baojin, Zhang Li, Xu Hong, et al. Heat transfer characteristics of titanium/water two-phase closed thermo syphon [J]. Energy Conversion and Management,2009,50(9): 2174-2179.
    [74]齐宝金,张莉,徐宏,等.基于滴膜共存理论热虹吸管冷凝段传热模型[J].化学工程,2010,38(8):13-17.
    [75]Kusuda H., Imura H. Boiling heat transfer in an open thermosyphon[C]. Bulletin of the JSME,1973,16(10):1723-1740.
    [76]Niro A, Beretta GP. Boiling regimes in a closed two-phase thermo syphon [J]. International Journal of Heat and Mass Transfer,1990,33(10):2099-2110.
    [77]Gross U. Falling film evaporation inside a closed thermosyphon[C]. Proc.8th IHPC. Beijing, China:1992. Paper No. A-15.
    [78]Lin T. F., Lin W. T., Tsay Y. L., et al. Experimental investigation of geyser boiling in an annular two-phase closed thermo syphon [J]. Int. J. Heat Mass Transfer.,1995,38(2): 295-307.
    [79]Noie S.H.. Heat transfer characteristics of a two-phase closed thermosyphon[J]. Applied Thermal Engineering,2005,25(4):495-506.
    [80]Rohsenow W.M.. A method of correlating heat transfer data for surface boiling liquids[C]. International Journal of Heat Transfer, ASME 84 (1962) 969-978.
    [81]Imura H., Kusada H., Oyata J., et al. Heat transfer in two-phase closed-type thermosyphons. Transactions of Japan Society of Mechanical Engineers,1977,22:485-493.
    [82]Jiao B., Qiu L.M., Zhang X.B., et al. Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon[J]. Applied Thermal Engineering,2008,28:1417-1426.
    [83]陈向群,张正芳,马同泽.两相闭式热虹吸管沸腾换热的研究[J].工程热物理学报,1993,14(1):68-73.
    [84]焦波,邱利民.重力热管蒸发段气液分布形式与换热能力分析[J].低温工程,2010,4:24-27.
    [85]Amode J., Feldman K.. Preliminary analysis of heat pipe heat exchangers for heat recovery[J]. ASME paper 75-WA/Ht-36,1976.
    [86]Lee Y., Bedrossian A.. The characteristics of heat exchangers using heat pipes or thermosyphons[J]. International Journal of Heat and Mass Transfer,1978,21(2):221-229.
    [87]Huang, B.J., Tsuei J.T.. Amethod of analysis for heat pipe heat exchangers [J]. International Journal of Heat and Mass Transfer,1985,28(3):553-562.
    [88]Feldman K.T., Lu D.C.. Preliminary Design Study of Heat Pipe Heat ExchangerfC]. Proceeding 2nd int. Heat pipe conf. Bologna. Italy, Esa. Report Spl12,1976,1:451-461.
    [89]Wakiyama, K.Harada, S.Inoue, et al. Heat Transfe rCharacteristies of a Gas - Gas Heat Exchanger Using Heat Pipes[J]. HeatTransfer-JapaneseResearch.,1978,7(1):23-39.
    [90]Tan JO, Liu CY. Predicting the performance of a heat pipe heat exchanger using the NTU method[J]. International Journal Heat and Fluid Flow,1990,11(4):376-379.
    [91]Krishman KN, Rao KS. Analysis and design of a heat pipe heat exchanger[C]. In Proceedings of Fifth International Heat Pipe Conference, Tsukuba Science City, Japan,1984: 152-156.
    [92]Chaudrone S.. Modelization and optimization of heat pipe heat ex changers [C]. In Proceedings of Fifth International Heat Pipe Conference, Tsukuba Science City, Japan,1984: 53-58.
    [93]Azad E., Geoola F.. A design procedure for gravity-assisted heat pipe heat exchanger[J]. Journal of Heat Recovery Systems,1984,4(2):101-111.
    [94]Yau Y.H.. Theoretical determination of effectiveness for heat pipe heat exchangers operating in naturally ventilated tropical buildings[C]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2001,215(3):389-397.
    [95]Mathur G.D. Using heat-pipe heat exchangers for reducing high energy costs of treating ventilation air[C]. in Energy Conversion Engineering Conference, IECEC 96. Proceedings of the 31st Intersociety.1996(2):1447-1452.
    [96]Noie S.H.. Investigation of thermal performance of an air-to-air thermosyphon heat exchanger using ε-NTU method [J]. Applied Thermal Engineering,2006,26(5-6): 559-567.
    [97]Soylemez M.S.. On the thermoeconomical optimization of heat pipe heat exchanger HPHE for waste heat recovery[J]. Energy Conversion and Management,2003,44(15):2509-2517.
    [98]Noie S.H., Majideian G. R.. Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals[J]. Applied Thermal Engineering,2000,20(14):1271-1282.
    [99]Yau Y.H.. Experimental thermal performance study of an inclined heat pipe heat exchanger operating in high humid tropical HVAC systems[J]. International Journal of Refrigeration, 2007,30(7):1143-1152.
    [100]Yau Y.H., Tucker A.S.. The performance study of a wet six-row heat-pipe heat exchanger operating in tropical buildings[J]. International Journal of Energy Research,2003,27(3): 187-202.
    [101]Rudiger Demark, M.G., Georg Ruetz, Die neue Dieselmotoren-Baureihe 890 von MTU[J]. MTU,2006(2):80-86.
    [102]张玉申.高功率密度柴油机及其关键技术[J].车用发动机,2004(3):47-52.
    [103]Abd El-Baky M.A., Mohamed M.M.. Heat pipe heat exchanger for heat recovery in air conditioning[J]. Applied Thermal Engineering,2007,27(4):795-801.
    [104]Hagens H., Ganzevles F.L.A., van der Geld C.W.M., et al. Air heat exchangers with long heat pipes:Experiments and predictions [J]. Applied Thermal Engineering,2007,27(14-15): 2426-2434.
    [105]袁胜利.利用汽车废气取暖的热管换热器[J].节能,1991,11:35-36.
    [106]苏俊林,郝玉福.导热姆热管在汽车上的应用[J].吉林工业大学学报,1990,2:35-37.
    [107]崔淑琴.回收汽车发动机中温余热的节能新装置[J].节能技术,1995,8:20-21.
    [108]粱和平,梁桂森.高效低成本柴油机余热利用暖空调设计[J].柴油机,2002,1:46-49.
    [109]陈丹.高温热管换热器的模拟优化研究[D].南京工业大学硕士学位论文,2002.
    [110]冯晓强.中温热管空气换热器的模拟优化研究[D].武汉理工大学硕士学位论文,2003.
    [111]Yang F., Yuan X., Lin G. Waste heat recovery using heat pipe heat exchanger for heating automobile using exhaust gas. Applied Thermal Engineering,2003,23(3):367-372.
    [112]孙世梅,张红.热管换热器流动与传热的CFD模拟及试验[J].南京工业大学学报(自然科学版),2004(02):62-66.
    [113]孙世梅,张红.热管换热器传热性能及温度场数值模拟[J].化工学报,2004(03):472-475.
    [114]王春强.热管技术在增压内燃机中的应用[D].广西大学硕士学位论文,2004.
    [115]荆汝林,王春强,肖坤胜,等.热管在增压柴油机中冷器上的应用研究[J].装备制造技术,2005(2):24-26.
    [116]乔国辉.热管技术在高强化柴油机中的应用研究[D].北京交通大学硕士学位论文,2005.
    [117]张立中,郭威,郭岩.以发动机余热为热源的公共汽车供暖空调研制[J].汽车工程,2005,2:230-232,268.
    [118]孙世梅,张红.高温热管换热器局部强化传热数值模拟[J].石油化工设备,2007(06):55-58.
    [119]黎长青.采用热管技术的车用中冷器设计及其仿真[D].西华大学硕士学位论文,2008.
    [120]王凯.热管在增压内燃机中冷器上的应用研究[D].北京交通大学硕士学位论文,2009.
    [121]刘晓丽.发动机热管式中冷器热力性能优化设计研究[D].北京交通大学硕士学位论文,2010.
    [122]Chiou J.P.. Study of the arrangement of automobile air-conditioning condenser and engine radiator in the cooling air circuit[C]. SAE Paper 810503.
    [123]罗尔夫,布赫海姆.机动车辆驱动电动机的冷却装置[P].中国专利:CN85109051A,1987-06-17.
    [124]何金戈.韩国现代奏鸣曲(SONATA)牌轿车冷却风扇的控制系统.汽车电器,1997,5:28-29.
    [125]Ngy S A. A Simple Engine Cooling System Simulation Model[C], SAE 1999-01-0237.
    [126]Jorg Soldner, Werner Zobel, Michael Ehlers, et al. A Compact Cooling System (CCSTM): The Key to Meet Future Demands in Heavy Truck Cooling[C]. SAE 2001-01-1709.
    [127]Zhigang Yang, Jeffrey Bozeman, Fred Z. Shen, et al. CFRM Concept for Vehicle Thermal System[C]. SAE Paper.2002-01-1207.
    [128]Ngy S. A., Pascal G., Philippe J.. Influence of Front End Vehicle, Fan and Shroud on the Heat Performance of A/C Condenser and Cooling Radiator [C]. SAE Transactions 2002-01-1206:1580-1588.
    [129]Ap NS, Guerrero P. UltimateCooling (TM) new cooling system concept using the same coolant to cool all vehicle fluids[C]. VTMS 6 Conference,2003:661-674.
    [130]David Alexander. Cooling fan from Johnson Electric improve efficiency. AEI.2003(9) 35.
    [131]陈志宁.星王ZA6440轻望客车冷却果的改进设计[J].汽车技术,2000,3:4-6.
    [132]张毅.车辆热交换器模块流动与传热问题的数值分析与实验研究[D].浙江大学博士学位论文,2006.
    [133]陆国栋,俞小莉,张毅,等.装载机冷却组优化匹配的试验研究[J].内燃机工程,2005,26(4):47-49.
    [134]Asanuma T., Kojima K., Muramoto H., et al. Analysis of mutual thermal effects in radiator and condenser cooling [C]. SAE Paper 971774.
    [135]Celik E. Truck Airflow Management Influence on Cooling Module Performance-Experimental and Numerical Study [C]. SAE Paper 2000-01-0969.
    [136]Jones M. R., Fletcher D. W. Thermal Performance Prediction of Front-End Heat-Exchange Modules[C], SAE 2001-01-1765.
    [137]董军启,陈江平,何新燕.车辆发动机冷却模块试验与仿真研究[J].内燃机工程,2008,29(5):75-79.
    [138]黄钰期.基于场协同原理的车用冷却系统流动传热耦合分析与结构优化[D].浙江大学博士学位论文,2010.
    [139]Olson M E. Aerodynamic effects of front end design on automobile engine cooling systems[C]. SAE Paper 760188.
    [140]Williams J. An automotive front-end design approach for improved aerodynamics and cooling[C]. SAE Transactions,850281,1985,94(2):662-685.
    [141]Couetouse H, Gentile D. Cooling System Control in Automotive Engines[C]. SAE Paper 920788.
    [142]Refki El-Bourini. Road Measurements of Front End Components'Effect on Vehicle Engine Compartment Air Flow[C]. SAE Paper 930145
    [143]Refki El-Bourini, Samuel Chen. Engine Cooling Module Development Using Air Flow Management Techniques [C]. SAE Paper 931115.
    [144]Berneburg H., Cogotti A.. Development and Use of LDV and Other Airflow Measurement Techniques as a Basis for the Improvement of Numerical Simulation of Engine Compartment Air Flows[C]. SAE International-Vehicle Thermal Management, SP-46, 930294.
    [145]Brace CJ, Burnham-Slipper H, Wijetunge RS, et al. Integrated Cooling Systems for Passenger Vehicles[C]. SAE Paper 2001-01-1248.
    [146]Patrick H. Front end airflow modeling in E-Thermal[R]. General Motor Aero/Thermal/Sealing Integration Center Report,2001.3.
    [147]皮钧,何刚.工程机械的技术发展动向[J].工程机械,2003(11):27-30.
    [148]Ap N S, Maire A, Jouanny P.经济型发动机冷却系统[J].国外内燃机,2003,2:56-60.
    [149]Robert D. Chalgren, David J. Allen. Light Duty Diesel Advanced Thermal Management[C]. SAE Paper 2005-1-2020.
    [150]Riegner J, Zahlmann S, Fitzen M, et al. Der Audi 3.01 TFSI-auslegung des aufladesystems unter konstruktiven und thermodynamischen gesichtspunkten[R].13. Aufladetechnische Konferenz, Dresden 2008.
    [151]赵东梅,谷中丽,王义春.电传动车辆冷却系统优化设计[J].车用发动机,2003,144(2):16-19.
    [152]刘西侠.主战坦克动力舱空气流动与传热数值模拟研究[D].装甲兵工程学院博士学位论文,2004.
    [153]郭新民,高平,吴海荣,等.汽车发动机电控冷却系统的试验研究[J].内燃机,2006(3):28-30.
    [154]郭新民,邢娟王会明,等.汽车发动机自控电动冷却风扇的发展与研究[J].内燃机工程,1999,3:12-15.
    [155]郭新民,高平,孙世民,等.自控电动冷却风扇在汽车发动机上的应用[J].内燃机工程,1993,1:79-82.
    [156]郭新民,翟丽,高平,等.汽车发动机智能冷却系统的研究[J].内燃机工程,2001,22(1):15-17.
    [157]俞小莉,李婷.发动机热平衡仿真研究现状与发展趋势[J].车用发动机,2005,5:1-5.
    [158]谭建勋.工程机械热管理系统实验平台的开发[D].浙江大学硕士学位论文,2005.
    [159]Vijay Damodaran, Moududur Rahman. Front-end Cooling Airflow Performance Prediction Using Vehicle System Resistance[C]. SAE International-Thermal Management SP1751, SAE Paper 2003-01-0273.
    [160]Dube P., Natarajan S., Mulemane A., et al. A Numerical Approach to Develop the Front End Cooling Package in a Vehicle Using Predicted Engine Fan Performance Data and Vehicle System Resistances[C]. SAE paper 2007-01-0542.
    [161]Uhl B., Brotz F., Fauser J., et al. Development of Engine Cooling Systems By Coupling CFD Simulation and Heat Exchanger Analysis Programs [C]. SAE Paper 2001-01-1695.
    [162]Zhigang Y, Jeffrey B, Fred Z. CFRM Concept at Vehicle Idle Conditions[C]. SAE2003-01-0613.
    [163]Valaszkai L, Jouannet B欧4-EPA/02重载卡车冷却系统的优化[J].国外内燃机,2003,3:35-43.
    [164]Troje D S, Seider G, Ohlendorf U宝马BMW Z4冷却系统的虚拟开发[J].国外内燃机,2003,4:60-63.
    [165]Vijay Damodaran, S. Kaushik. Simulation to Identify and Resolve Underhood/Underbody Vehicle Thermal Issues. Journal Articles by Fluent Software Users, JA188,2000.
    [166]Anders J. On the thermodynamics development of the New Volvo XC 90 using FLUENT[C].1st European Automotive CFD Conference, Germany,2003:37-50.
    [167]Tim J.. Investigation and Assessment of Factors Affecting the Underhood Cooling Air Flow Using CFD [C]. SAE paper 2008-01-2658.
    [168]Kim H.J., Kim C.J.. A Numerical Analysis for the Cooling Module Related to Automobile Air-Conditioning System[J]. Applied Thermal Engin.,2008,28:1896-1905.
    [169]Timothy C. Scott, Dhananjay S. Joshi. Engine Cooling Module Sizing Using Combined 1-Dimensional and CFD Modeling Tools[C]. SAE 2009-01-1177.
    [170]毕小平,马志雄,韩树,等.装甲车辆发动机冷却系统空气流动的仿真模型[J].内燃机学报,2002,20(4):374-377.
    [171]毕小平,刘西侠,赵以贤,等.坦克动力舱内三维空气流动数值模拟[J].内燃机工程,2003,24(3):12-15.
    [172]张钊,张扬军,诸葛伟林.发动机电控冷却系统性能仿真研究[J].汽车工程,2005,27(3):296-299.
    [173]白文龙.工程机械动力舱内部热环境仿真[D].大连理工大学硕士学位论文,2007.
    [174]邵世婷,周健.格栅对发动机冷却模块性能影响的模拟与试验分析[C].2010中国汽车工程学会年会论文集,SAE-C2010P101:3-7.
    [175]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000:4-6.
    [176]Briggs D.E., Young E.H.. Convection heat transfer and pressure drop of air flowing across triangular pitch banks of finned tubes[J]. Chem. Eng. Progr. Symp. Ser.1963,59 (41): 1-10.
    [177]Collier J.G., Thome J.R.. Convective Boiling and Condensation[M], USA:Oxford University Press,1994.
    [178]Rohsenow W.M., Hartnett J.P., Cho Y.I.. Handbook of Heat Transfer[M], third ed., McGraw-Hill,1998.
    [179]Robinson K. K., Briggs D. E.. Pressure Drop of Air Flowing across Triangular Pitch Banks of Finned Tubes[J]. Chem. Eng. Prog. Symp. Ser.,1966,62(64):177-182
    [180]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001:15.
    [181]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:22-26.
    [182]过增元.对流换热的物理机制及控制[J].科学通报,2001,45(19):2118-2122.
    [183]过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003,39(12):1-9.
    [184]张华,赵文柱.热工测量仪表[M].北京:冶金工业出版社,2007:70-94.
    [185]Sen M, Yang K T. Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering, in:The CRC Handbook of Thermal Engineering,2000:620-661.
    [186]Yang K T. Role of Artificial Intelligence(AI) in Thermal Sciences and Engineering[C]. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, Paper No. HT-2007-32042:871-883.
    [187]Yang K T. Artificial Neural Networks(ANNs):A New Paradigm for Thermal Science and Engineering[J].ASME J. Heat Transfer,2008,130(9):1-19.
    [188]Ermis K, Erek A, Dincer I. Heat Transfer Analysis of Phase Change Process in a Finned-Tube thermal Energy Storage System Using Artificial Neural NetworkfJ]. International Journal of Heat and Mass Transfer,2007,50:3163-3175.
    [189]陈彦泽,丁信伟,喻建良.重力热管振荡传热特性RBF神经网络动态建模[J].化工学报,2005,56(5):890-893.
    [190]Xie G N, Wang Q W, Zeng M, et al. Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach[J]. Applied thermal engineering,2007,27:1096-1104.
    [191]Islamoglu Y. A New Approach for the Prediction of the Heat Transfer Rate of the Wire-on-tube Type Heat Exchanger-Use of an Artificial Neural Network Model[J]. Applied Thermal Engineering,2003,23(2):243-249.
    [192]Islamoglu Y, A. Kurt. Heat Transfer Analysis Using ANNs with Experimental Data for Air Flowing in Corrugated Channels[J]. Int. J. Heat Mass Transfer,2004,47:1361-1365.
    [193]Wu Z G, Zhang J Z, Tao Y B, et al. Application of Artificial Neural Network Method for Performance Prediction of a Gas Cooler in a CO2 Heat Pump[J]. Int. J. Heat Mass Transfer, 2008,51:5459-5464.
    [194]Diaz G, Sen M, Yang K T, et al. Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks[J]. Int. J. Heat Mass Transfer,2001,449:1671-1679.
    [195]Pacheco-Vega A, Sen M, Yang K T, et al. Neural Network Analysis of Fin-Tube Refrigerating Heat Exchanger With Limited Experimental Data[J]. Int. J. Heat Mass Transfer,2001,44:763-770.
    [196]张亚军,张红,庄骏.小热管换热器性能分析与结构优化[J].石油化工设备,2004,33(4):1-3.
    [197]孙世梅,张红.高温热管换热器稳定性设计及结构参数优化[J].石油化工设备,2007,36(4):36-40.
    [198]Mishra D, Yadav A., Ray S, et al. Levenberg-Marquardt learning algorithm for Integrate-and-Fire Neuron Model [J]. Neural Information Processing-Letters and Reviews, 2005,9(2):45-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700