基于检索的自顶向下产品设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品设计是一个复杂的过程,需要投入大量的人为活动。而作为面向设计师的辅助设计工具,现有的CAD系统对于减轻设计师负担甚至代替设计师的终极目标仍有非常大的差距。具体来看,复杂产品的设计是从抽象到具体渐进演化的过程,其中包含多个不同的设计阶段,而每一个设计阶段的设计任务和设计模型都不尽相同,CAD系统如何处理其中的信息差异和有效实现信息传递是一个亟待解决的问题;同时,随着信息化时代的深入发展,工业界的知识爆炸已不容忽视,如何在设计活动中充分利用现有的庞大知识库也有着至关重要的意义。
     在本文中,针对上述问题,我们主要开展了以下工作:
     多层次装配模型为了表征产品设计活动中各个设计阶段的不同信息及其之间的关联关系,我们提出了一个多层次的装配模型。这个模型能够很好地支持从抽象到具体的自顶向下产品设计。
     信息继承机制在多层次装配模型的基础上,我们提出了相应的信息继承机制。基于这一机制,自顶向下产品设计中所涉及的各类信息能够顺利地在各个设计阶段之间以及内部进行传递,很好地维护了设计意图和设计结果,避免了不必要的重复建模,并有利于保证各阶段设计模型之间的一致性。
     装配模型检索为了利用大量现有的产品装配模型,我们提出了一种灵活的装配模型检索方法。基于此方法,设计师可以在产品的自顶向下设计过程中使用粗略的骨架模型来快速找到非常相关的产品装配模型,充分利用其中蕴含的设计知识,大大加速整个设计的进度。
     模型检索结果的自适应为了更好地重用现有模型,我们还提出了一种模型自适应的方法。基于此方法,设计师能够非常便捷地将装配检索的结果模型与作为查询输入的骨架模型关联在一起,并做出智能性的更改使之与骨架模型保持设计语义上的一致性,最终使得检索结果被真正融入到整个产品模型中。
Product design is a quite complex process which needs a lot of human activities. As designer-oriented tools, the existing computer-aided design (CAD) systems are still far from being satisfactory for alleviating the burden of designers or even substituting them. Specifically, modern product design evolves from abstract concepts to concrete forms, and often contains many different design phases, while each of them has different design tasks and design models. Therefore, how to handle the heterogeneous information and the corresponding information transition is an urgent problem. Meanwhile, the exploding of information and knowledge becomes quite apparent in modern industries along with the continuing rapid evolution of the Information Era. As a result, it is of a great significance to sufficiently use the abundant knowledge in existence during the design activities.
     In this paper, we conduct the following work to address the problems described above:
     Multi-level assembly model In order to represent the various information and mutual relationships in different design phases, we present a multi-level assembly model, which can well support the characteristics of top-down product design, i.e. from abstract to concrete.
     Information inheritance mechanisms Based on the multi-level assembly model, we present corresponding information inheritance mechanisms. By using the mechanisms, various kinds of inter-design phases transition and intra-design phases transition can all be executed smoothly, which guarantees the maintenance of design intents and design results during the top-down product design, avoids redundant modeling and ensures the consistence between models of different design phases.
     Assembly model retrieval In order to reuse the abundant product models in existence, we present a flexible assembly model retrieval method. On basis of that, designers can use rough skeleton model as query to find out very relevant product models during the top-down product design, which then rapidly accelerates the design works by reusing the embedded design knowledge.
     Assembly search results adaptation We also present a model adaptation method for better reusing the existing models in the world. Based on that, designers can correlate the result models obtained by the assembly retrieval method and the query skeleton model together conveniently, and intelligent modifications can then be carried out to make the retrieval results consistent with the skeleton model semantically, which finally incorporates the retrieval results into the product models seamlessly.
引文
[1]Llewelyn AI. Review of CAD/CAM. Computer-Aided Design,1989,21(5): 297-302.
    [2]Gunn T. The Mechanization of Design and Manufacturing. Scientific American, 1982,247(3):114-130.
    [3]Sutherland IE. Sketch pad:a man-machine graphical communication system. ACM,1964:6.329-326.346.
    [4]Bezier P. Definition numerique des courbes et surfaces I. Automatisme,1966, 11(625-632.
    [5]Coons SA. Surfaces for computer-aided design of space forms. DTIC Document,1967.
    [6]De Casteljau P. Courbes et surfaces a poles. Andr e Citro en Automobiles SA (Paris),1963.
    [7]Forrest AR. Curves and surfaces for computer-aided design. University of Cambridge,1968.
    [8]Requicha AAG, Voelcker HB, Rochester Univ. NYPAP. Constructive solid geometry. Rochester Univ., N. Y. Production Automation Project,1977.
    [9]Requicha A. Solid Modeling:A Historical Summary and Contemporary Assessment. IEEE COMP. GRAPHICS & APPLIC,1982,2(2):9-24.
    [10]Requicha AAG, Voelcker HB. Solid modeling:Current status and research directions. Computer Graphics and Applications, IEEE,1983,3(7):25-37.
    [11]Requicha AAG, Voelcker HB. Boolean operations in solid modeling:Boundary evaluation and merging algorithms. Proceedings of the IEEE,1985,73(1): 30-44.
    [12]Baumgart BG. Winged edge polyhedron representation. DTIC Document. 1972.
    [13]Baumgart BG. A polyhedron representation for computer vision. ACM,1975: 589-596.
    [14]Braid IC. The synthesis of solids bounded by many faces. Commun. ACM. 1975,18(4):209-216.
    [15]Braid IC. On storing and changing shape information. SIGGRAPH Comput. Graph.,1978,12(3):252-256.
    [16]Braid IC, Hillyard RC. Geometric modelling in ALGOL 68. SIGPLAN Not.. 1977,12(6):168-174.
    [17]Parametric Technology Corporation, http://www.ptc.com
    [18]Shah J, Mantyla M, Parametric and feature-based CAD/CAM:concepts. techniques, and applications, Wiley-Interscience,1995.
    [19]SpaceClaim Corporation, http://www.spaceclaim.com/en/
    [20]Pahl G, Beitz W, Wallace K, Blessing L, Bauert F, Engineering design:a systematic approach, Springer Verlag,1996.
    [21]Andreasen MM, Kahler S, Lund T, Design for assembly, Ifs Publications,1983.
    [22]Sivaloganathan S, Hills P. Design for excellence.2001.
    [23]Suh NP, The principles of design, Oxford University Press New York,1990.
    [24]Suh NP. Axiomatic Design:Advances and Applications (The Oxford Series on Advanced Manufacturing).2001.
    [25]Libardi E, Dixon J, Simmons M. Computer environments for the design of mechanical assemblies:A research review. Engineering with computers,1988, 3(3):121-136.
    [26]刘文剑,金天国.产品自顶向下设计的研究现状及发展方向.计算机集成制造系统,2002,8(1).
    [27]Mantyla M. A modeling system for top-down design of assembled products. IBM J. Res. Dev.,1990,34(5):636-659.
    [28]Sturges R, O'Shaughnessy K, Reed R. A systematic approach to conceptual design. Concurrent Engineering,1993,1(2):93.
    [29]Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T. Supporting conceptual design based on the function-behavior-state modeler. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1996,10(4): 275-288.
    [30]Karnopp D, Margolis D, Rosenberg R, System dynamics:a unified approach, John Wiley & Sons,1990.
    [31]Gui J-K, Mantyla M. Functional understanding of assembly modelling. Computer-Aided Design,1994,26(6):435-451.
    [32]Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A. Collaborative conceptual design--state of the art and future trends. Computer-Aided Design,2002, 34(13):981-996.
    [33]Lashin G, Feldhusen J. A CAD-based tool for development of large layouts. Research in Engineering Design,1996,8(4):217-228.
    [34]Csabai A, Stroud I, Xirouchakis PC. Container spaces and functional features for top-down 3D layout design. Computer-Aided Design,2002,34(13): 1011-1035.
    [35]Csabai A, Taiber J, Xirouchakis P. Design support using constraint-driven design spaces. Geometric Constraint Solving and Applications, B. Br uderlin, D. Roller, Eds, Springer-Verlag,1998,82-106.
    [36]Mantripragada R, Whitney D. The datum flow chain:A systematic approach to assembly design and modeling. Research in Engineering Design,1998,10(3): 150-165.
    [37]Clement A, Desrochers A, Riviere A. Theory and practice of 3D tolerancing for assembly. CIRP seminar on Computer aided tolerancing, Penn State University, USA,1991.
    [38]Clement A, Riviere A, Serre P, Valade C. The TTRSs:13 constraints for dimensioning and tolerancing. Geometric design tolerancing:theories, standards and applications,1997,122-129.
    [39]Shah J, Rogers M. Assembly modeling as an extension of feature-based design. Research in Engineering Design,1993,5(3):218-237.
    [40]Van Holland W, Bronsvoort W, Jansen F. Feature modelling for assembly. Graphics and Robotics,1993,131-148.
    [41]Holland W, Bronsvoort W. Assembly features in modeling and planning. Robotics and Computer Integrated Manufacturing,2000,16(4):277-294.
    [42]Shyamsundar N, Gadh R. Internet-based collaborative product design with assembly features and virtual design spaces. Computer-Aided Design,2001, 33(9):637-651.
    [43]Singh P, Bettig B. Port-compatibility and connectability based assembly design. Journal of Computing and Information Science in Engineering,2004,4(197.
    [44]Kim K, Wang Y, Muogboh O, Nnaji B. Design formalism for collaborative assembly design. Computer Aided Design,2004,36(9):849-871.
    [45]Kim K, Manley D, Yang H. Ontology-based assembly design and information sharing for collaborative product development. Computer-Aided Design,2006, 38(12):1233-1250.
    [46]Kusiak A, Szczerbicki E. Transformation from conceptual to embodiment design. HE transactions,1993,25(4):6-12.
    [47]Brunetti G, Golob B. A feature-based approach towards an integrated product model including conceptual design information. Computer-Aided Design,2000, 32(14):877-887.
    [48]Roy U, Pramanik N, Sudarsan R, Sriram R, Lyons K. Function-to-form mapping:model, representation and applications in design synthesis. Computer-Aided Design,2001,33(10):699-719.
    [49]Bronsvoort W, Noort A. Multiple-view feature modelling for integral product development. Computer-Aided Design,2004,36(10):929-946.
    [50]Fenves S. A core product model for representing design information. US National Institute of Standards and Technology Internal Report,2002,6736(
    [51]Fenves S, Foufou S, Bock C, Bouillon N, Sriram R. CPM2:A revised core product model for representing design information. National Institute of Standards and Technology, NISTIR,2004,7185(
    [52]Sudarsan R, Fenves S, Sriram R, Wang F. A product information modeling framework for product lifecycle management. Computer-Aided Design,2005, 37(13):1399-1411.
    [53]Fenves SJ, Foufou S, Bock C, Sriram RD. CPM2:A Core Model for Product Data. Journal of Computing and Information Science in Engineering,2008, 8(1):014501-014506.
    [54]Rachuri S, Baysal M, Roy U, Foufou S, Bock C, Fenves S, Subrahmanian E, Lyons K, Sriram R. Information models for product representation:core and assembly models. International Journal of Product Development, 2005,2(3): 207-235.
    [55]Rachuri S, Han Y-H, Foufou S, Feng SC, Roy U, Wang F, Sriram RD, Lyons KW. A Model for Capturing Product Assembly Information. Journal of Computing and Information Science in Engineering,2006,6(1):11-21.
    [56]Manbub Murshed SM, Shah JJ, Jagasivamani V, Wasfy A, Hislop DW. OAM+: An assembly data model for legacy systems engineering. ASME Conference Proceedings, American Society of Mechanical Engineers, Las Vegas, NV, United states,2008:869-881.
    [57]PTC. Pro/ENGINEER Advanced Top-Down Design. Release 2000i2, T823-310-01.
    [58]Aleixos N, Company P, Contero M. Integrated modeling with top-down approach in subsidiary industries. Computers in Industry,2004,97-116.
    [59]Hwang J, Mun D, Han S. Representation and Propagation of Engineering Change Information in Collaborative Product Development using a Neutral Reference Model. Concurrent Engineering,2009,17(2):147.
    [60]Mun D, Hwang J, Han S. Protection of intellectual property based on a skeleton model in product design collaboration. Computer-Aided Design,2009,41(9): 641-648.
    [61]Bush V. As we may think.1945.
    [62]Park J, Um B. A new approach to similarity retrieval of 2-D graphic objects based on dominant shapes. Pattern Recognition Letters,1999,20(6):591-616.
    [63]Leung W, Chen T. User-independent retrieval of free-form hand-drawn sketches. IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, Citeseer,2002.
    [64]Leung W, Chen T. Hierarchical matching for retrieval of hand-drawn sketches. Proceedings of the IEEE International Conference on Multimedia and Exposition,2002.
    [65]Fonseca M, Jorge J. Towards content-based retrieval of technical drawings through high-dimensional indexing. Computers & Graphics,2003,27(1): 61-69.
    [66]Pu J, Ramani K. On visual similarity based 2D drawing retrieval. Computer-Aided Design,2006,38(3):249-259.
    [67]Hou S, Ramani K. Classifier combination for sketch-based 3D part retrieval. Computers & Graphics,2007,31(4):598-609.
    [68]Hou S, Ramani K. Structure-oriented contour representation and matching for engineering shapes. Computer-Aided Design,2008,40(1):94-108.
    [69]Fonseca M, Ferreira A, Jorge J. Sketch-based retrieval of complex drawings using hierarchical topology and geometry. Computer-Aided Design,2009.
    [70]Chang S, Perry B, Rosenfeld A. Content-Based Multimedia Information Access. Kluwer Press,1999.
    [71]Rui Y, Huang T, Chang S. Image Retrieval:Current Techniques, Promising Directions, and Open Issues. Journal of visual communication and image representation,1999,10(1):39-62.
    [72]Tangelder J, Veltkamp R. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications,2008,39(3):441-471.
    [73]Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K. Three-dimensional shape searching:state-of-the-art review and future trends. Computer-Aided Design,2005,37(5):509-530.
    [74]Cardone A, Gupta S, Karnik M. A survey of shape similarity assessment algorithms for product design and manufacturing applications. Journal of Computing and Information Science in Engineering,2003,3(109.
    [75]Bimbo A, Pala P. Content-based retrieval of 3D models. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 2006,2(1):20-43.
    [76]Cardone A, Gupta SK, Deshmukh A, Karnik M. Machining feature-based similarity assessment algorithms for prismatic machined parts. Computer-Aided Design,2006,38(9):954-972.
    [77]Funkhouser T, Shilane P. Partial matching of 3D shapes with priority-driven search. Proceedings of the fourth Eurographics symposium on Geometry processing, Eurographics Association,2006:142.
    [78]Gao W, Gao SM, Liu YS, Bai J, Hu BK. Multiresolutional similarity assessment and retrieval of solid models based on DBMS. Computer-Aided Design,2006,38(9):985-1001.
    [79]Kuo C, Cheng S.3D model retrieval using principal plane analysis and dynamic programming. Pattern Recognition,2007,40(2):742-755.
    [80]Hu B, Liu Y, Gao S. Sun R, Xian C. Parallel relevance feedback for 3D model retrieval based on fast weighted-center particle swarm optimization. Pattern Recognition,2010.
    [81]张开兴,张树生,白晓亮.三维CAD模型公共可重用局部结构自动提取.计算机辅助设计与图形学学报,2011,23(9):1512-1519.
    [82]Li M, Zhang YF, Fuh JYH, Qiu ZM. Toward Effective Mechanical Design Reuse:CAD Model Retrieval Based on General and Partial Shapes. Journal of Mechanical Design,2009,131(12):8.
    [83]Bai J, Gao S, Tang W, Liu Y, Guo S. Design reuse oriented partial retrieval of CAD models. Computer-Aided Design,2010.
    [84]Ma L, Huang Z, Wu Q. Extracting common design patterns from a set of solid models. Computer-Aided Design,2009,41(12):952-970.
    [85]Chandrasekaran B. Design problem solving:A task analysis. AI magazine, 1990,11(4):59.
    [86]Aamodt A, Plaza E. Case-based reasoning:Foundational issues, methodological variations, and system approaches. AI communications,1994, 7(1):39-59.
    [87]Wood W. Case-based conceptual design information server for concurrent engineering. Computer-Aided Design,1996,28(5):361-369.
    [88]Kim G. Case-based design for assembly. Computer-Aided Design,1997,29(7): 497-506.
    [89]HU L, XU C, WANG Y, LIU G. Mechanical Product Case Representation and Case Retrieval Based on Object-oriented Technique. Journal of Nanjing University of Science and Technology (Natural Science),2009.
    [90]Wu SF, Wang ZY, Pang LL. Rapid Design Platform for Mechanical Products Based on CBR. Advanced Materials Research,2010,102(262-266.
    [91]Chao YS, Liu HJ. Case retrieval in body-in-white parts based on similarities of welding and assembly process. COMPUTER INTEGRATED MANUFACTURING SYSTEMS,2011,17(1):30-36.
    [92]Maher ML, Gomez de Silva Garza A. Case-based reasoning in design. IEEE Expert,1997,12(2):34-41.
    [93]Goel A. Craw S. Design, innovation and case-based reasoning. The Knowledge Engineering Review,2006,20(03):271-276.
    [94]Azuaje F, Dubitzky W, Black N, Adamson K. Retrieval strategies for case-based reasoning:a categorised bibliography. The Knowledge Engineering Review,2000,15(4):379.
    [95]Regli W, Cicirello V. Managing digital libraries for computer-aided design. Computer Aided Design,2000,32(2):119-132.
    [96]Deshmukh A, Gupta S, Karnik M, Sriram R. A system for performing content-based searches on a database of mechanical assemblies. ASME International Mechanical Engineering Congress & Exposition. Orlando, FL, 2005.
    [97]Gupta SK, Cardone A, Deshmukh A. Content-based search techniques for searching CAD databases. Computer-Aided Design and Applications,2006, 3(6):811-819.
    [98]Deshmukh AS, Banerjee AG, Gupta SK, Sriram RD. Content-based assembly search:A step towards assembly reuse. Computer-Aided Design,2008,40(2): 244-261.
    [99]Ullmann J. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),1976,23(1):31-42.
    [100]Gaag A, Kohn A, Lindemann U. Function-based solution retrieval and semantic search in mechanical engineering.2009.
    [101]Chakrabarty S, Chougule R, Lesperance RM. Ontology-guided knowledge retrieval in an automobile assembly environment. The International Journal of Advanced Manufacturing Technology,2009,44(11):1237-1249.
    [102]Eriksen EP, Moffitt ME, Warren TM. Retrieval of bottom hole assembly during casing while drilling operations. Google Patents,2010.
    [103]Kim BC, Mun D, Han S. Retrieval of CAD model data based on Web Services for collaborative product development in a distributed environment. The International Journal of Advanced Manufacturing Technology,2010,50(9): 1085-1099.
    [104]Fisher M, Savva M, Hanrahan P. Characterizing structural relationships in scenes using graph kernels. ACM Transactions on Graphics (TOG),2011,30(4): 1-10(no.34).
    [105]Fisher M, Hanrahan P. Context-based search for 3D models. ACM Trans. Graph.,2010,29(6):1-10 (no.182).
    [106]Ovsjanikov M, Li W, Guibas L, Mitra NJ. Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph.,2011,30(4):1-10 (no.33).
    [107]Chaudhuri S, Kalogerakis E, Guibas L, Koltun V. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph.,2011,30(4):1-10 (no.35).
    [108]Fischer G, McCall R, Morch A. Design environments for constructive and argumentative design. ACM,1989:269-275.
    [109]Barber J, Bhatta S, Goel A, Jacobson M, Pearce M, Penberthy L, Shankar M, Simpson R, Stroulia E. AskJef:Integration of case-based and multimedia technologies for interface design support. Citeseer,1992:457-474.
    [110]Maher ML, Balachandran M, Zhang DM, Case-based reasoning in design, Lawrence Erlbaum,1995.
    [111]Domeshek E, Kolodner J. The designer's muse, Hillsdale, NJ:Lawrence Erlbaum Associates,1997.
    [112]Hinrichs T, Kolodner J. The roles of adaptation in case-based design. Proceedings of the Ninth National Conference on Artificial Intelligence.1991: 28-33.
    [113]Hua KF, Faltings B, Smith I. CADRE:case-based geometric design. Artificial Intelligence in Engineering,1996,10(2):171-183.
    [114]Faltings B. Case reuse by model-based interpretation. Issues and Applications of Case-Based Reasoning in Design,1997,39-60.
    [115]Fuchs B, Lieber J, Mille A, Napoli A. Towards a unified theory of adaptation in case-based reasoning. Case-Based Reasoning Research and Development,1999, 723-723.
    [116]Faltings B, Chakrabarti A. FAMING:Supporting innovative design using adaptation-a description of the approach, implementation, and illustrative example and evaluation. Engineering Design Synthesis:Understanding, Approaches, and Tools,2002,285-302.
    [117]Medjdoub B. Constraint-based adaptation for complex space configuration in building services. ITcon,2009.
    [118]Neagu N, Faltings B. Exploiting interchangeabilities for case adaptation. Case-Based Reasoning Research and Development,2001,422-436.
    [119]Neagu N, Faltings B. Soft interchangeability for case adaptation. Case-Based Reasoning Research and Development,2003,1066-1066.
    [120]Tsatsoulis C, Alexander P. Integrating cases, sub-cases, and generic prototypes for design. Issues and Applications of Case-Based Reasoning in Design,1997, 261.
    [121]Flemming U, Aygen Z, Coyne R, Snyder J. Case-based design in a software environment that supports the early phases in building design. Issues and Applications of Case-Based Reasoning in Design,1997,61-86.
    [122]Goel A, Bhatta S, Stroulia E. Kritik:An early case-based design system. Issues and Applications of Case-Based Reasoning in Design,1997,87-132.
    [123]Voss A. Case design specialists in fabel. Issues and Applications of Case-Based Reasoning in Design (Mahwah, NJ)(Mary Lou Maher and Pearl Pu, eds.), Lawrence Erlbaum Associates,1997,301-336.
    [124]Watson I, Perera S. Case-based design:A review and analysis of building design applications. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing,1997,11(01):59-87.
    [125]Maher ML, de Silva Garza AG. The adaptation of structural system designs using genetic algorithms. Information Technology in Civil and Structural Engineering Design, Citeseer,1996.
    [126]Gu P, Xue D, Nee A. Adaptable design:concepts, methods, and applications. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2009,223(11):1367-1387.
    [127]Li Y, Xue D, Gu P. Design for product adaptability. Concurrent Engineering, 2008,16(3):221-232.
    [128]Chakrabarti A, Shea K, Stone R, Cagan J, Campbell M, Hernandez NV, Wood KL. Computer-Based Design Synthesis Research:An Overview. Journal of Computing and Information Science in Engineering,2011,11(021003.
    [129]Lopez De Mantaras R, McSherry D, Bridge D, Leake D, Smyth B, Craw S, Faltings B, Maher M, Cox M, Forbus K. Retrieval, reuse, revision and retention in case-based reasoning. The Knowledge Engineering Review,2006,20(03): 215-240.
    [130]Lee K, Gossard DC. A hierarchical data structure for representing assemblies: part 1. Computer-Aided Design,1985,17(1):15-19.
    [131]Szykman S, Racz J, Sriram R. The representation of function in computer-based design. Citeseer,1999.
    [132]Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2000,22(12):1349-1380.
    [133]Ambrosio JAC, Eberhard P, Advanced Design of Mechanical Systems:From Analysis to Optimization, Springer Verlag,2009.
    [134]Molian MS. Storage and retrieval of description of mechanisms and mechanical devices according to kinematic type. Journal of Mechanisms,1969. 4(4):311-323.
    [135]Chiou SJ, Sridhar K. Automated conceptual design of mechanisms. Mechanism and Machine Theory,1999,34(3):467-495.
    [136]Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions. ACM Trans. Graph.,2002,21(4):807-832.
    [137]Ip C, Lapadat D, Sieger L, Regli W. Using shape distributions to compare solid models. Proceedings of the seventh ACM symposium on Solid modeling and applications, ACM,2002:273-280.
    [138]Xiaoning G. Technical Report:A kinematics analysis and simulation system for the complex virtual prototyping under CAVE.2005.
    [139]Turner JU, Subramaniam S, Gupta S. Constraint representation and reduction in assembly modeling and analysis. IEEE Transactions on Robotics and Automation,1992,8(6):741-750.
    [140]Cordella L, Foggia P, Sansone C, Vento M. A (sub) graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,1367-1372.
    [141]Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence,2004,18(3):265-298.
    [142]Chung FRK. Spectral graph theory, Amer Mathematical Society,1997.
    [143]Gori M, Maggini M, Sarti L. Exact and approximate graph matching using random walks. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(7):1100-1111.
    [144]Bohm C, Berchtold S, Keim D. Searching in high-dimensional spaces:Index structures for improving the performance of multimedia databases. ACM Computing Surveys (CSUR),2001,33(3):322-373.
    [145]Horton JD. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing,1987,16(358.
    [146]Johnson DB. Finding all the elementary circuits of a directed graph. Siam J. Comput.,1975,4(1):77-84.
    [147]3d Content Central, http://www.3dcontentcentral.com
    [148]Manning CD, Raghavan P, Schutze H, Introduction to information retrieval, Cambridge University Press Cambridge,2008.
    [149]Freeman E, Sierra K, Bates B, Head first design patterns, O'Reilly Media, 2004.
    [150]Sumner RW, Popovic J. Deformation transfer for triangle meshes. ACM,2004: 399-405.
    [151]Kuhn HW. The Hungarian method for the assignment problem. Naval research logistics quarterly,1955,2(1-2):83-97.
    [152]Munkres J. Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics,1957,5(1):32-38.
    [153]SolidWorks, http://www.solidworks.com/
    [154]MySQL, http://www.mysql.com/
    [155]VFLib tools, http://am.alfi.dis.unina.it/graph/
    [156]Graphviz. http://www.graphviz.org/
    [157]Wolfram Mathematica, http://www.wolfram.com/mathematica/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700