用户名: 密码: 验证码:
位移响应重构与机械装置误差处理方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程研究分析中,为了对结构进行健康监测(Structural health monitoring, SHM)和结构控制(Structural Control, SC),需要频繁的测量结构的动态响应。在结构的动态响应中,动态位移可能包含有很多与结构行为相关的重要信息,而这些信息可以用来对工程结构进行健康监测和结构控制。在结构健康监测中,当一个建筑物经历了较为严重的地震后,我们需要根据结构的位移信息来判断该建筑受到结构损伤的可能性;同样地,对于结构控制来说,为了辨识系统的状态我们需要知道结构的实时或者近实时位移信息。传统的接触式传感器在测量结构的位移时需要固定的参考点。但是,对于大型结构来说,参考点的选取非常困难,而且所选参考点在地震过程中是变化的。因此,在这种情境中运用传统的接触式传感器直接进行位移测量几乎是不可能的。
     相比于位移,加速度的测量比较方便。在进行加速度测量时并不需要选取参考点,而且在市面上有很多可用于测量较宽动态频率的加速度装置。从这个角度上来说,相比于对工程结构进行直接的位移测量,利用测得的结构加速度来重构系统的位移,似乎是一个很好获取结构动态响应的方法。
     文中基于离散奇异卷积法对位移响应重构进行研究,包括精确控制方程和传递函数的导出、基于逆问题控制方程和传递函数的导出、精确传递函数以及基于逆问题控制方程的传递函数基本特性以及基于离散奇异卷积的位移响应重构方法。在基于离散奇异卷积的位移响应重构方法研究中,着重分析了滤波器窗口尺寸的选取以及不同滤波器尺寸下基于离散奇异卷积的有限脉冲响应滤波器的特性。最后,对提出的位移重构方法进行仿真验证和实验验证。仿真与实验结果表明,基于离散奇异卷积的位移响应重构方法能够有效的利用加速度数据重构位移,且对噪声具有较强的抑制能力。
     加工过程中产生的加工误差以及装配过程中产生的装配误差都会对工程中机械装置的机械性能产生影响,甚至会对机械装置产生毁灭性的损伤。因此,我们需要分析研究工程中机械装置在加工及装配过程中产生的误差,以最大限度的降低这些误差对工程中机械装置机械性能的影响。
     针对工程中由于加工误差及装配误差可能产生的共振,提出了在机械产品设计阶段或者结构重设计阶段,充分考虑加工误差及安装误差对机械产品性能影响的设计思想,使最终成型的机械产品具有较强的鲁棒性,并运用该方法对叉车方向盘结构进行优化,达到了抑制叉车方向盘怠速振动的目的;针对具有相同部件的平面连杆机构,提出了基于最小输出位移方差和的寻找杆件最优组合的方法,以最大限度的降低杆件加工误差对连杆机构输出的影响,提高产品的性能,并将该方法成功运用于八连杆机械压力机最优杆组的确定问题中,求解出了最优的八连杆杆组组合。
In the engineering research, dynamic responses of structural systems are frequently measured for the purpose of structural health monitoring and structural control. Among the dynamic responses, the time history of the dynamic displacement may contain important information on structural behaviors. For example, in case a structure experiences severe events such as a strong earthquake or a typhoon, a quick decision on the possibility of structural damage could be made based on the maximum displacement of the structure. For structural control applications, information on displacement should be provided in real-time or at least in near real-time to identify the states of a structure. Unfortunately, it is very difficult to measure displacement directly in large-scale structures because fixed reference points are rarely found to install displacement transducers. Moreover, the reference points as well as a structure move together during severe events, and thus the direct measurement of displacement using contact displacement transducers becomes almost impossible.
     Unlike displacement, acceleration is easily measured without a fixed reference point, and various types of accelerometers are commercially available for a wide range of dynamic frequencies. From this perspective, the reconstruction of displacement from measured acceleration seems to be a better method than the direct displacement measurement.
     This paper presents a new displacement reconstruction scheme based on the discrete singular convolution finite impulse response (DSC-FIR) filter. In this study, the governing equation and transfer function of the exact and an inverse problem is derived and the selecting of filter size, the features of the DSC-FIR filter on different filter size are presented. Finally, simulation and experiment are implemented to verify the proposed displacement reconstruction scheme and the results indicate that the scheme not only can accurately reconstruct displacement from the measured acceleration, but also has the ability for noise suppression.
     In mechanical engineering, the processing and installation error will affect the machinery's mechanical properties and even may cause devastating damage. Therefore, we need to study the treatment for these errors in order to maximum decrease the impact of these errors on mechanical properties of the device.
     For possible resonance caused by the processing and installation error, we propose a robust design idea that considers the influence of these error on mechanical properties in the design or re-design stage. With the robust design, the mechanical products possess strong robustness. Using this design idea, we successfully optimize the steering wheel idle vibration of the forklift truck. For planar linkage mechanisms with the same parts, we propose a minimum sum of displacement variance(MSDV) method to find the optimal combination and minimize the influence of processing error on planar linkage mechanisms. For an eight-link linkage mechanisms, we use the MSDV method to obtain the optimal combination and simulation result indicate that the proposed method can effectively reduces the influence of machining error.
引文
王文亮,杜作润.结构振动与动态子结构法[M].上海:复旦大学出版社,1985.
    付志芳.振动模态分析与参数辨识[M].北京:机械工业出版社,1990.
    廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    李志农,何永勇,吴昭同,等.2006.ARMA模型盲辨识仿真研究及其在机械故障诊断中的应用[J].振动与冲击,25:122-124.
    庄表中,刘明杰.工程振动学[M].高等教育出版社,1989.
    胡宗武,吴天行.工程振动分析基础[M].上海交通大学出版社,2011.
    刘习军,贾启芬.工程振动理论与测试技术[M].高等教育出版社,2004.
    魏宏,王庆霞,杨建国,雷显武.天线罩测量与修磨中位置安装误差分析与控制[J].机械设计与制造,1001-3997(2012)03-0155-03.
    黄安乐.浅析机械加工误差产生原因及消除措施[J].中国新技术新产品,2011(22):151-151.
    李洪忠.平面连杆机构的误差分析[J].机械制造与研究,1671-5276(2005)04-0024-02.
    Wei GW. Discrete singular convolution for the solution of the Fokker-Planck equations. Journal of Chemistry and Physics 1999; 110:8930-42.
    Wei GW. A new algorithm for solving some mechanical problems. Computer Methods in Applied Mechanics and Engineering 2001; 190:2017-30.
    Wei GW. Vibration analysis by discrete singular convolution. Journal of Sound and Vibration 2001;244:535-53.
    Wei GW. Discrete singular convolution for beam analysis. Engineering Structures 2001;23:1045-53.
    Zhao YB, Wei GW, Xiang Y. Discrete singular convolution for the prediction of high frequency vibration of plates. International Journal of Solids and Structures 2002;39:65-88.
    Zhao YB, Wei GW, Xiang Y. Plate vibration under irregular internal supports. International Journal of Solids and Structures 2002; 39:1361-83.
    Lim CW, Li ZR, Wei GW. DSC-Ritz method for high-mode frequency analysis of thick shallow shells. International Journal for Numerical Methods in Engineering 2005;62:205-32.
    Zhao S, Wei GW, Xiang Y. DSC analysis of free-edged beams by an iteratively matched boundary method. Journal of Sound and Vibration 2005;284:487-93.
    Wei GW, Zhao YB, Xiang Y. Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1:Theory and algorithm. International Journal of Numerical Methods in Engineering 2002;55:913-46.
    Wei GW, Zhao YB, Xiang Y. A novel approach for the analysis of high-frequency vibrations. Journal of Sound and Vibration 2002;257(2):207-46.
    Yang SY, Zhao YB, Wei GW. Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Computer Physics Communications 2002;143:113-35.
    Wan DC, Zhou YC, Wei GW. Numerical solution of unsteady incompressible flows by the discrete singular convolution. International Journal of Numerical Methods in Fluids 2002;38:789-810.
    Wei GW. Solving quantum eigenvalue problems by discrete singular convolution. Journal of Physics B:Atomic Molecular and Optical Physics 2000;33:343-52.
    Wei GW. Discrete singular convolution for the sine-Gordon equation. Physica D 2000;137:247-59.
    S. Zhao, G.W. Wei, High order FDTD methods via derivative matching for Maxwell's equations with material interfaces, Journal of Computational Physics200 (2004) 60-103.
    A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing 20 (2006) 1483-1510.
    R. Kothamasu, S.H. Huang, W.H. VerDuin, System health monitoring and prognostics-a review of current paradigms and practices, International Journal of Advanced Manufacturing Technology 28 (2006) 1012-1024.
    M. Limongelli, Optimal location of sensors for reconstruction of seismic responses through spline function interpolation, Earthquake Engineering and Structural Dynamics 32 (2003) 1055-1074.
    D.C. Kammer, Estimation of structural response using remote sensor locations, Journal of Guidance Control and Dynamics 20 (1997) 501-508.
    E. Jacquelin, A. Bennani, P. Hamelin, Force reconstruction:analysis and regularization of a deconvolution problem, Journal of Sound and Vibration265 (2003) 81-107.
    G. Kerschen, et al., Past, present and future of nonlinear system identification in structural dynamics, Mechanical Systems and Signal Processing 20 (2006) 505-592.
    D.J. Ewins, W. Liu, Transmissibility properties of MDOF systems, in:Proceedings of the 16th International Modal Analysis Conference (MACXVI), Santa Barbara, California, USA,1998, pp. 847-854.
    P. Varoto, K. McConnell, Single point vs. multi-point acceleration transmissibility concepts in vibration testing, in:Proceedings of the 16th International Modal Analysis Conference (MACXVI), Santa Barbara, California, USA,1998, pp.83-90.
    A. Ribeiro, J. Silva, N. Maia, On the generalisation of the transmissibility concept, Mechanical Systems and Signal Processing 14 (2000) 29-36.
    C. Devriendt, P. Guillaume, The use of transmissibility measurements in output-only modal analysis, Mechanical Systems and Signal Processing 21 (2007) 2689-2696.
    A.P.V. Urgueira, R.A.B. Almeida, N.M.M. Maia, On the use of the transmissibility concept for the evaluation of frequency response functions, Mechanical Systems and Signal Processing 25 (2011) 940-951.
    S.S. Law, J. Li, Y. Ding, Structural response reconstruction with transmissibility concept in frequency domain, Mechanical Systems and Signal Processing 25 (2010) 952-968.
    J. Li, S.S. Law, Substructural response reconstruction in wavelet domain, Journal of Applied Mechanics. ASME 78 (2011) 041010.
    J. Li, S.S. Law, Damage identification of a target substructure with moving load excitation, Mechanical Systems and Signal Processing 30 (2012) 78-90.
    J. He, X. Guan, Y. Liu, Structural response reconstruction based on empirical mode decomposition in time domain, Mechanical Systems and Signal Processing 28 (2012) 348-366.
    J.N. Yang, et al., System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1:normal modes, Earthquake Engineering and Structural Dynamics 32 (2003) 1443-1467.
    Zhimin Wan, Shande Li, Qibai Huang, Ting Wang, Structural response reconstruction based on the modal superposition method in the presence of closely spaced modes, Mechanical Systems and Signal Processing 42 (2014) 14-30.
    B. Fornberg, Calculation of weights in finite difference formulas, SIAM Rev.40 (1998) 685.
    H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, S.W. Stinemates, B.R. Nadler, J.J. Czarnecki.2004. A review of structural health monitoring literature:1996-2001, Los Alamos National Laboratory report LA-13976-MS.
    G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T.T. Soong, B.F. Spencer, J.T.P. Yao, Structural control:past, present, and future, Journal of Engineering Mechanics 123 (1997) 897-971.
    L.R. Rabiner, B. Gold.1975. in:Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.
    R.W. Hamming.1989. in:Digital Filters,3rd ed., Prentice-Hall, Englewood Cliffs, NJ.
    B. Kumar, D.R. Choudhury, A. Kumar. On the design of linear phase, FIR Integrators for midband frequencies, IEEE Transactions on Signal Processing 44 (10) (1996) 2391-2395.
    A. Smyth, M. Wu. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring, Mechanical Systems and Signal Processing21(2007) 706-723.
    H.S. Lee, Y.H. Hong, H.W. Park. Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures, International Journal for Numerical Methods in Engineering 82 (2010) 403-434.
    S.K. Park, H.W. Park, S.B. Shin, H.S. Lee. Detection of abrupt structural damage induced by an earthquake using time-window technique, Computers & Structures86 (2008) 1253-1265.
    Yun Hwa Hong, Ho-Kyung Kim. Hae Sung Lee, Reconstruction of dynamic displacement and velocity from measured accelerations using the variational statement of an inverse problem, Journal of Sound and "Vibration 329 (2010) 4980-5003.
    JianYi Wang, JingShan Zhao, FuLei Chu and ZbiJing Feng. Innovative design of the lifting mechanisms for forklift trucks. Mechanism and Machine Theory 45 (2010 1892-1896).
    M. J. Griffin. Discomfort from feeling vehicle vibration. Vehicle System Dynamics, Vol.45, Issue 7-8, pp.679-698 (2007).
    WanSuk Yoo SangDo Na and MinSeok Kim. Relationship between subjective and objective evaluations of steering wheel vibration. Journal of Mechanical Science and Technology 25 (7)(2011) 1695-1701.
    S. I. Hong. Determination of frequency weighting curves for the evaluation of steering wheel vibration, Transactions of KSAE,11 (4) (2003) 165-172 (in Korean).
    J. Giacomin, M.S. Shayaa, E. Dormegnie and L.Richard. Frequency weighting for the evaluation of steering wheel rotational vibration, International Journal of Industrial Ergonomics,33 (2004) 527-541.
    S. Amman et al.. Equal annoyance contours for steering wheel hand-arm vibration, SAE Techni-cal paper,2005-01-2473 (2005).
    JS Sa, TW Kang and CM Kim. Experimental study of the characteristics of idle vibrations that result from axial forces and the spider positions of constant velocity joints, International Journal of Automotive Technology, Vol. 11,No.3,pp.335-361 (2010).
    Ran Xie, Zhifeng Liu, Shucheng Long and Zilong Tian. Test and Simulation Integrated Transfer Path Analysis and Optimization of the Steering Wheel Vibration in Idle. SAE Paper F2012-105-009.
    Thanh Danh Le and Kyoung Kwan Ahn. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. Journal of Sound and Vibration 2011; 330:6311-6335.
    Norden E. Huang,Zheng Shen, Chi Chao Tung and Henry H. Liu. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis, Proc. Roy. Soc. Lond.454 A (1998) 903-995.
    Michael Feldman. Hilbert transform in vibration analysis, Mech. Syst. Sig. Process.25 (2011) F35-802.
    Zhaohua Wu and Norden.E. Huang. Ensemble empirical mode decomposition:a noise-assisted data method, Adv. Adapt. Data Anal.1 (1)(2009) 1-41.
    M. J. Griffin. Handbook of Human Vibration, Academic Press, London, UK (1996).
    Wagener, H.-W. (1997). New Developments in Sheet Metal Forming:Sheet Materials, Tools and Machinery, J. Mater. Process. Technol.,72, pp.342-357.
    R. Du, W. Z. Guo. (2003). The Design of a New Metal Forming Press With Controllable Mechanism, Transactions Journal of Mechanical Design., Vol.125, p.582-592.
    D. He. Special presses, China Machine Press. Beijing, China(1989).
    Tokuz, L.C., Jones, J.R. (1991). Programmable modulation of motion using hybrid machine, Proceeding of Imeche,414/071, p.85-92.
    Tokuz, L.C. (1992). Hybrid machine modeling and control. Ph.D. Thesis, Department of Mech., Liverpool Polytechnic, UK.
    Tokuz, L.C., Jones, J.R. (1994). Power Transmission and flow in the hybrid machines, The 6th International Machine Design and Production Conference, MENU, p.209-218.
    Tokuz, L.C., Jones, J.R. (1997). A design guide for hybrid machine application, Transactions Journal of Engineering and Environment Sciences, vol.21, p.1-11.
    Greenougn, J.D., Bradshsw, W.K., Gilmartin, M,J., Douglas, S.S., Rees Jones, J. (1995). Design of hybrid machine. Proceeding of the 9th IFToMM Word Congress, p.2501-2505.
    Kirecci, A., Dulger, L.C. (2002). A study on a hybrid actuator. Mechanism and Machine Theory, vol.35, p.1141-1149.
    Dulger, L.C., Kirecci, A., Topallbekiroglu, M. (2003). Modeling and simulation of a hybrid actuator, Mechanism and Machine Theory, vol.38, p.195-404.
    Pi-Ying Cheng et al. Small mechanical press with double-axis servo system for forming of small metal products, Int J Adv Manuf Technol (2013) 68:2371-2381.
    K.V. Price, R.M. Storn, J.A. Lampinen. Differential Evolution, A Practical Approach to Global Optimization, Springer,2005.
    Yang S. H., Natarajan U (2010). Multi-objective optimization of cutting parameters in turing process using differential evolution and non-dominated sorting genetic algorithm-II approaches, Int J Adv Manuf Technol 49:773-784.
    Kazemipoor H et al (2013). A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems, Int J Adv Manuf Technol 64:1099-1111.
    Qian Bin, Wang Ling et al (2008). Scheduling multi-objective job shops using a memetic algorithm based on differential evolution, Int J Adv Manuf Technol 35:1014-1027.
    Andreas C. Nearchou (2007). Balancing large assemble lines by a new heuristic based on differential evolution method, Int J Adv Manuf Technol 34:1016:1029.
    Yucheng Kao, Chien-Chih Chen (2013). A differential evolution fuzzy clustering approach to machine cell formation, Int J Adv Manuf Technol 65:1247-1259.
    Abhishek Jha, Keshav Somani et al (2012). Minimizing transportation cost of a joint inventory location model using modified adaptive differential evolution algorithm, Int J Adv Manuf Technol 60:329-341.
    Tiammin Zheng, Mitsuo Yamashiro (2010). Solving flow shop scheduling problems by quantum differential evolutionary algorithm, Int J Adv Manuf Technol 49:643-662
    J.A. Cabrera, A. Simon, M. Prado. Optimal synthesis of mechanisms with genetic algorithm, Mechanism and Machine Theory 37 (2002) 1165-1177.
    J.A. Cabrera, F. Nadal, J.P. Munoz. A. Simon, Multi objective constrained optimal synthesis of planar mechanisms using a new evolutionary algorithm, Mechanism and Machine Theory 42 (2007) 791-806.
    R. Bulatovi 6, S. Dordevic. On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations, Mechanism and Machine Theory 44 (2009) 235-246.
    S. Acharyya, M. Mandal. Performance of EAs for four-bar linkage synthesis, Mechanism and Machine Theory 44 (2009) 1784-1794.
    J.A. Cabrera, A. Ortiz, F. Nadal, J J. Castillo. An evolutionary algorithm for path synthesis of mechanisms, Mechanism and Machine Theory 46 (2011) 127-141.
    F. Penunuri, R. Peon-Escalante, C. Villanue va, D. Pech-Oy. Synthesis of mechanism s for single and hybr id tasks using differential evolution, Mechanism and Machine Theory 46 (2011) 1335-1349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700