耐流动腐蚀REAC复合管束设计制造关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着炼油装置的大型化、原料油劣质化和运行工况苛刻化的发展,作为加氢裂化装置的重要设备之一,加氢反应流出物空冷器(REAC)长期承受高压、临氢工况,含氯原料油加工过程中频繁发生了因管束局部穿孔泄漏引起的非计划停工事故,损失惨重。为解决管束的频繁失效问题,通常做法是材质升级,成本巨大,同时升级后的管束也出现了多种流动腐蚀失效形式,因此,研制适用于苛刻工况下的空冷器管束,具有重大的学术理论和工程应用价值。
     本文针对含氯原料油加工过程中普遍出现的管束泄漏现象,采用工艺过程分析、流动腐蚀机理和失效案例解剖验证相结合的研究方法,确定了含氯原油加工入口管束的失效机理为NH4Cl沉积导致的局部腐蚀;提出了REAC第一管层采用内衬316L不锈钢复合管的管束结构,并针对复合衬管的结构和形式建立了力学模型;运用有限元分析软件ANSYS开展了实际运行工况下管束力学行为研究,获得了不同运行工况下的管束易失效模式,提出了评价复合衬管质量的力学性能指标;利用ANSYS非线性分析功能研究了复合衬管拉拔塑性成形过程,分析了胀头直径、摩擦系数、间隙等参数对成形效果的影响;对REAC管箱焊接、质量评定、检验检测等关键制造技术进行了分析,测试复合衬管试样获得的结合强度和传热性能等指标均符合国家相关标准和要求,满足和验证了管束质量并取得了成功的工程应用。
     本论文的创新性工作:综合分析了管束的流动腐蚀失效机理,提出了局部复合衬管形式的空冷器结构,进行了复合衬管结构形式分析和优化,并对实际运行过程中的管束热应力分析确立管束失效行为;分析了不同制造工艺参数对复合衬管塑性成型效果的影响,为实际工程制造提供了理论和数据基础。研究成果示范应用过程中经济效益明显,具有一定的创新性。
As one of the most important equipment in hydoroprocessing plant, the reactor effluent air cooler (REAC) confronts the condition of hydrogenation process, high pressure and changing temperature, following the development of oil refineries. The unplanned shutdown of equipment which is attributed to the local corrosion of air cooler tubes results in a great loss for the enterprises during processing the crude oil containing chloride. The routine way by improving the materials of tubebundles comes across the cost problem and other failure styles. Therefore, designing and producing a new tube style that is applicable to the harsh running condition of REAC is quite valuable for the oil refineries.
     The technological process, flow induced corrosion mechanism and anatomy of tubes were analyzed according to the the actual failure cases of leakage in REAC tubebundles. It indicated that the corrosion failure style of tubes that attribute to the local corrosion resulted from ammonium chloride (NH4Cl) deposition. It is proposed a structure of 316L stainless steel lined tubes in REAC to solve the problem of corrosion failure induced from NH4Cl deposition. The structure and mechanical model of lined tube were analyzed by using finite element method. The mechanics behavior and the failure style of tube under different condition was obtained in the finite element analysis software ANSYS. The criteria of mechanic properties were proposed to assess the quality of tubes. The non-linear forming procedure of REAC lined tubes was studied by using ANSYS according to the different forming parameters such as drawing head diameter, friction coefficient and gap, etc. By analyzing the seal welding of tube-tubesheet, heat treatment examination and inspection after manufacture, it proved that the results meet the requirement of bonding strength and heat transfer properties according to the national and professional standards. It certified the stainless steel lined tube qualifies the request of engineering application.
     The innovative work in this thesis is concluded as follows: the flow induced corrosion failure style in REAC tubes was determined through the corrosion mechanism study. A structure of stainless steel lined tube was proposed to improve the reliability of REAC system. The structure study and mechanic optimization were executed. The behaivior and mechanic status of lined tube were simulated according to the actual running condition. There is also special work of forming effect analysis of different manufacture parameters that is useful for the practical engineering application. The specimen of lined tubes were executed and tested through national standards, of which the result qualified the requirement in engineering application and achieves the economic efficiency.
引文
[1] Horvath Richard J., Cayard Michael S., Kane Russell. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditions[C]//NACE Corrosion 2006, P 065761-0657620.
    [2] Paulo Pio Alvisi, Vanessa de Freitas Cunba Lins. Acid salt corrosion in a hydrotreatment plant of a petroleum refinery[J]. Failure Analysis, 2008, (15): 1035-1041.
    [3] Hirohito Iwawaki, Yoshi Kawauchi, Masaaki Muraki, Shinobu Matsuoka and Duane Evans. Life cycle costing (LCC) decision making for reactor effluent air coolers in refineries[C]//Corrosion 2002, Paper No. 02483.
    [4]谷其发,李文戈.炼油厂设备腐蚀与防护图解[M].北京:中国石化出版社, 2001.
    [5]《炼油装置工艺管线安装设计手册》编写小组.炼油装置工艺管线安装设计手册[M].北京:石油工业出版社, 1978, 02.
    [6]偶国富.加氢裂化空冷器管束多相流模拟与冲蚀破坏预测研究[D].博士论文,杭州:浙江大学, 2004.
    [7] J. Pei, M. I. Yousuf, F. L. Degertekin, B.V. Honein, and B. T. Khuri-Yakub. Lamb wave tomography and its application in pipe erosion/corrosion monitoring[J]. Res Nondestr Eval, 1996, 8: 189-1987.
    [8] M. Fregonese, H. Idrissi, H. Mazille. Monitoring pitting corrosion of AISI 316L austenitic stainless steel by acoustic emission technique: Choice of representative acoustic parameters[J]. Journal of materials science, 2001, (36): 557-563.
    [9] T. L. Gunale, V. V. Mahajani, P. K. Wattal, C. Srinivas. Studies in liquid hase mineralization of cation exchange resin by a hybrid process of Fenton dissolution followed by wet oxidation[J]. Chemical Engineering Journal, 2009, (148): 371-377.
    [10] Michael S. Cayard, Walter G. Giesbrecht, Richard J. Horvath, Russell D. Kane, Vishal V. Lagad. Prediction of ammonium bisulfide corrosion and validation with refinery plant experience[C]//61st Annual Conference & Exposition, Corrosion 2006, Paper No. 06577.
    [11] Yugui Zheng, Fan Yang, Zhiming Yao and Wei Ke. On the critical flow velocity for erosion-corrosion of Cu-Ni alloy BFe30-1-1 in artificial sea water[J]. Corrosion Science, 2005, 47(11): 2636-2658.
    [12] American Petroleum Institute. A Study of Corrosion in Hydroprocess Reactor Effluent Air Cooler Systems. API PUBLICATION 932-A: Washington D.C. 2002.
    [13] American Petroleum Institute. Design, Materials, Fabrication, Operation, and Inspection Guidelines for Corrosion Control in Hydroprocessing Reactor Effluent Air Cooler (REAC) Systems. API RECOMMENDED PRACTICE 932-B FIRST EDITION, JULY 2004.
    [14]加氢装置高压空冷器系统调研报告[M].中国石化集团公司, 2006, 08.
    [15] http://chinaneast.xinhuanet.com/jszb/2009-05/19/content_16561620.htm.
    [16] Harvey. C and Singh. A. Mitigate Failures for Reactor Effluent Air Coolers[J]. Hydrocarbon Processing. 1999,10, pp 59-72.
    [17] T.Hryniewicz, K. Rokosz, R. Rokicki. Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field[J]. Corrosion Science, 2008, 50:2676-2681.
    [18] Young Sik Kim, D. Bryce Mitton, Ronald M. Latanision. Corrosion Resistance of Stainless Steel in Chloride Containing Supercritical Water Oxidation System[J]. Korean J. Chem. Eng. 2000, 17(1): 58-66.
    [19] Niles Petter vedvik, Claes– Goran Gustafson. Analysis of thick walled composite pipes with metal liner subjected to simultaneous matrix cracking and plastic flow[J]. Coposites Science and Technology, 2008, 68: 2705-2716.
    [20] Meihuan Zhu, David E. Hall. Creep induced contact and stress evolution in thin– walled pipe liners[J]. Thin– Walled Structures, 2001, 39:939-959.
    [21] K. M. El– Sawy. Inelastic stability of tightly fitted cylindrical liners subjected to external uniform pressure[J]. Thin– Walled Structures, 2001, 39: 731-744.
    [22]雍兴跃,林玉珍.流动腐蚀研究的新进展[J].腐蚀科学与防护技术. 2002.01, 14(1):32-34.
    [23]吴欣强,敬和民,郑玉贵等.碳钢在高温环烷酸介质中冲刷腐蚀行为[J].中国腐蚀与防护学报, 2002, 22(5): 257-263.
    [24]偶国富,沈春夜.加氢裂化装置加工高硫原料油的防腐对策[J].石油化工腐蚀与防护,2002, 19(6): 9-13.
    [25] R. L.Piehl. Survey of Corrosion in Hydrocracker Effluent Air Coolers[J]. Materials Performance, 1976, 15 (1): 15-20.
    [26]王德会.加氢反应流出物空冷器的堵塞和腐蚀[J].炼油设计, 1988(1): 18-20.
    [27]顾望平.风险检验技术在茂名石化的应用[J].安全,健康和环境, 2004, (8): 25-27.
    [28]韩建宇,苏国柱.加氢裂化高压空冷器管束穿孔失效分析[J].石油化工设备与技术, 2004, 25(2): 50.
    [29]田青超,樊新民,张越等.镀铬衬管钢烧蚀的失效分析[J].机械工程材料, 2000, 24(3): 43-46.
    [30]姚辉,叶拥拥,陆传荣等.缸体材料激光处理后的残余应力测试及分析[J]. Drive System Technique, 2003, 9: 39-41.
    [31]胡洋,王昌龄等.重油加氢装置反应系统高压空冷器的腐蚀[J].石油化工腐蚀与防腐, 2003, 20(1): 33-36.
    [32]偶国富,许根富,朱祖超等.弯管冲蚀失效流固耦合机理及数值模拟研究[J].机械工程学报, 2009, 45(11):119-124.
    [33]代真,沈士明.高压空气冷却器管束冲蚀破坏的数值模拟及其结构优化[J].核动力工程, 2006, 28(4): 104-107.
    [34]王建江,胡仁喜,刘英林. ANSYS 11.0结构与热力学有限元分析[M].北京:机械工业出版社, 2008, 03.
    [35] Aroslaw Mackerle. Finite element anslysis of fastening and joining: A bibliography (1990-2002)[J]. Pressure Vessels and Piping, 2003, 80:253-271.
    [36] Xiaojun Jin, Lixing Huo, Yufeng Zhang, Bingren Bai, Xiaowei Li and Jun Cao. Finite Element Analysis of Modeling Residual Stress Distrbution in All– position Duples Stainless Steel Welded Pipe[J]. J. Mater. Sci. Technol., 2004, 20(4):387-390.
    [37] Yu Jianrong, Wu Bo, Zhao Zenghui, Ling Xingzhong, Xiao Yunfeng and Chen Haiyang. Finite element synthesized analysis of the forming process of spiral welded pipe[J]. China Welding, 2006, 15(4):71-74.
    [38] Sung Wen-pe, Go Cheer-germ , Shih Ming-hsiang. Finite element modeling for analysis of cracked cylindrical pipes[J]. Journal of Zhejiang University SCIENCE, 2007 8(9): 1373-1379.
    [39]张越,徐万和.圆柱形复合管力学分析中的有限元方法[J].设计与研究, 2002: 21-22.
    [40]贾慧灵.受外载作用焊制三通塑性极限载荷的有限元分析[D].硕士论文,北京:北京化工大学, 2004.
    [41]王宇飞,杨振国,郭宝山. SHS-离心法制备陶瓷复合管道热应力的有限元分析[J].材料工程, 2005, (2): 6-9.
    [42]王勋称.有限元单元法基本原理和数值方法[M].北京:清华大学出版社, 1997.
    [43] J Saeed Moaveni. Finite Element Analysis Theory and Application with ANSYS[M].北京:电子工业出版社, 2003, 06.
    [44]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社, 2007, 10.
    [45]欧阳宇,王崧等译.有限元分析——ANSYS理论与应用[M].北京:电子工业出版社, 2003, 06.
    [46] S Berski, H Dyja, A Maranda, J Nowaczewski, G Banaszek. Analysis of quality of bimetallic rod after extrusion process[J]. Journal of Materials Processing Technology, 2006: 177, 852.
    [47]张越.复合层合枪管强度及温度场的理论分析与试验研究[D].南京:南京理工大学,2007, 09.
    [48]张志坤.金属复合管的制造[P]. 00113051.X, 2003.
    [49]王国飞.耐磨耐蚀层状复合管的指标及其冲蚀模拟分析[D].博士学位论文,上海:复旦大学, 2008, 02.
    [50] J. L. Alcaraz, J. Gil-Sevillano. An analysis of the extrusion of bimetallic tubes by numerical simulation[J]. International Journal of Mechanical Science, 1996, 38:153-157.
    [51] John J. Hunter. Method and apparatus for forming plastic lined junction in lined pipe[P]. U.S. Patent: 3968552, 1976, 07.
    [52] John Werner. Method of sealing and protecting a plastic lined pipe joint[P]. U.S. Patent: 4507842, 1985, 04.
    [53] Katsuaki Zenbayashi, Akio Morinaga, Masao Hirayama, Akira Morita. Method and apparatus for providing the inner surface of a pipe line with a lining[P]. U.S. patent: 4350548, 1982, 09.
    [54]郭明海,蔡玉丽,孙红波等.离心铸造碳钢-高铬铸铁双金属复合管工艺初探[J].试验与研究, 2008,37(1): 38-41.
    [55]徐恩霞,黄少平,钟香崇.耐火材料高温弯曲应力-应变关系测试方法及影响因素[J].装备与检测, 2006, 40(5): 382-385.
    [56]宋彬.双金属复合管的制造及应用[J].给水排水, 2002, 28(20): 65-66.
    [57]张宝庆.双金属复合管的制造技术浅析[J].机电工程技术, 2009, 38(3): 106-108.
    [58]陈明微.双金属复合管制造和加工的关键技术及其用途[J].综合评述, pp11-16.
    [59]刘伟,宣征南,冀晓辉.加氢裂化装置空冷器管束衬管结构的优化设计[J].石油炼制与化工, 2009, 40(1): 48-51.
    [60] Wang Xuesheng, Li Peining, Wang Ruzhu. Estimation of residual contact pressure in hydraulically expanded CRA-lined pipe[J]. Chinese Journal of Mechanical Engineering, 2004, 17(4): 598-601.
    [61]王学生,李培宁.液压胀合有缝不锈钢管衬里复合管的制造技术[J].压力容器, 2001, 18(4):50-52.
    [62] Xuesheng Wang, Peining Li, Ruzhu Wang. Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe[J]. International of Machine Tools & Manufacture, 2005, 45: 373-378.
    [63]陈海云.双金属复合管塑性成型力学分析及其装置的研究[D].硕士论文,杭州:浙江工业大学, 2006.
    [64]董大伟,闫牧夫.复合管金属增强体结构优化设计[J].机械工程师, 2003, 9:56-59.
    [65]李讫永.复合管换热器芯子制造中的焊接工艺分析[J].焊接, 2001, (11): 27.
    [66]姜伟.极限工况条件下膨胀衬管长度设计方法研究与应用[J].中国海上油气, 2009, 21(1): 43-46.
    [67]郑新,陆晓峰.基于有限元模拟的20/316L复合管拉拔成形分析[J].塑性工程学报,2010, 17(2): 154-159.
    [68]何亚峰.基于ANSYS/LS-DYNA的钢管冷拔工艺有限元分析[D].硕士学位论文,西安:西安理工大学,2006,03.
    [69]李静.复合材料力学性能的试验评价方法及其标准化动向[J].中国标准化,2003,12:30-32.
    [70]许根富.流体管道冲蚀失效流固耦合数值模拟研究[D].硕士学位论文,杭州:浙江理工大学, 2008, 03.
    [71]裘杰.加氢空冷系统氯化铵沉积机理及多场耦合数值模拟[D].硕士学位论文,杭州:浙江理工大学, 2010, 03.
    [72] GB/T 15386-1994,空冷式换热器[S].
    [73]徐秉业,沈新普,崔振山.固体力学[M].北京:中国环境科学出版社, 2003, 12.
    [74]毕继红,王晖.工程弹塑性力学[M].天津:天津大学出版社,2003, 04.
    [75]卓卫东.应用弹塑性力学[M].北京:科学出版社, 2005, 01.
    [76]尚晓江,苏建宇,王化峰等. ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社, 2008, 06.
    [77] F. P. Incropera(弗兰克P.英克鲁佩勒), D.P. DeWitt(大卫P.德维特), T. L. Bergman(狄奥多尔L.伯格曼) et al. Fundamentals of Heat and Mass Transfer(传热和传质基本原理)[M].北京:化学工业出版社, 2007, 07.
    [78] JB/T 4730-2005,承压设备无损检测[S].
    [79] GB/T 14975-2002,结构用不锈钢无缝钢管[S].
    [80] JB 4708-2000,钢制压力容器焊接工艺评定[S].
    [81] CJ/T 192-2004,内衬不锈钢复合钢管[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700