胶质类芽孢杆菌的表型及遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质类芽孢杆菌具有溶磷解钾固氮等多种功能,广泛用于农业、废水处理及生物冶金等领域。为了了解影响胶质类芽孢杆菌功能发挥的关键因素及确定筛选高效菌株的生物指标,本研究对27株胶质类芽孢杆菌和1株土壤类芽孢杆菌的表型和遗传多样性进行了分析。
     首先,采用ERIC-PCR对28个菌株进行了遗传多样性分析,并对多糖合成关键基因-糖基转移酶家族I(GTFs I)在不同菌株中的存在情况进行了检测。ERIC-PCR获得稳定而丰富的条带,每株胶质类芽孢杆菌扩增得到7~(-1)4条条带,其中6个条带为多个菌株共有;胶质类芽孢杆菌与土壤类芽孢杆菌VKPM B-7517的ERIC扩增条带相似性极低。聚类分析表明,在70%-90%的相似度水平,25个菌株与对照菌株胶质类芽孢杆菌VKPM B-7519聚为一群,该群又分为4个簇,菌株YC12单独为1个群,与RAPD-PCR、gyr B分类结果相似。但ERIC-PCR的条带多样性与稳定性强于RAPD,表明ERIC-PCR具有较高的分辨力,可有效用于种内菌株的鉴定。另外,从11条特异性的RAPD扩增条带中,克隆得到4个功能性基因序列,其中有1个多糖合成关键基因-糖基转移酶家族I基因(960 bp),该基因分布于26株胶质类芽孢杆菌中,但菌株YC12和土壤类芽孢杆菌未扩增到该基因。ERCI-PCR和糖基转移酶家族I基因分析均证明菌株YC12与其它胶质类芽孢杆菌存在异质性,值得进一步研究。
     其次,分析了胶质类芽孢杆菌的产酸产多糖及溶磷解钾固氮等功能多样性。结果,胶质类芽孢杆菌的产糖量为2.04~(-1)3.12 mg·ml~(-1),其中12个菌株的多糖产量高于9 mg·ml~(-1),菌株CGMCC 1.2326、KNP413、CGMCC 1.3714和VKPM B-7517的多糖产量较低。菌株的荚膜面积、菌落直径、发酵液的粘度也呈现多态性,无氮培养基上培养5天菌株的荚膜面积为200.07-857.23μm2,菌落直径为2.00-5.72 mm,发酵液粘度为45.40 -8.77mPa.s。相关性分析表明,多糖产量与荚膜面积、菌落直径和发酵液粘度具有较高的相关性,相关系数分别为0.714、0.824和0.923。产酸(用pH的降低量表征)分析表明,胶质类芽孢杆菌明显产酸,使发酵液pH值降低1.21-2.62,其中菌株SCS3、SCS10、YC8、YC15、YC17、YC1、YC12、YC13、KNP414和VKPM B-7519产酸能力较强。
     功能多样性分析显示,胶质类芽孢杆菌的溶磷解钾固氮能力存在多样性。胶质类芽孢杆菌使发酵液中的可溶性P和K分别增加0.05~(-1)02.72 mg·l~(-1)和0.02-27.92 mg·l~(-1)。其中释磷能力最强的是菌株YC17(102.72 mg·l~(-1)),其次是菌株SCS17、YC15、SCS16,它们的释磷量分别是96.09 mg·l~(-1)、84.95 mg·l~(-1)、79.49 mg·l~(-1);释钾能力最强的菌株是SCS10,其次是KNP414、YC9、YC15。相关性分析表明,产酸与溶磷解钾能力存在显著的正相关,相关系数分别为0.777和0.778,产多糖能力与溶磷解钾的相关系数是0.426和0.562,因此产酸产多糖能力可作为溶磷解钾功能的生物指标。凯氏定氮检测发现,胶质类芽孢杆菌在无氮培养过程中,可使总氮量增加0.47~(-1)8.28 mg·l~(-1),表明这些菌株具有固氮能力,其中固氮能力最强的是菌株VKPM B-7519(18.28 mg·l~(-1)),其次是NYY2、YC17、YC15、YC10和SCS10,其固氮量分别为8.15 mg·l~(-1)、8.04 mg·l~(-1)、7.64 mg·l~(-1)、7.52 mg·l~(-1)、7.08 mg·l~(-1)。固氮能力和pH值降低量的相关系数为0.395,与产多糖量的相关系数为0.290,相关性较低。
     胶质类芽孢杆菌的遗传多样性和表型多样性具有一定的相关性。依据ERIC和RAPD构建的聚类图分为两组,每组又分为两个分支:一个分支的菌株多糖产量较高,另一个分支的菌株多糖产量较低。多糖产量与遗传多样性具有较强的相关性。同样,产酸与遗传多样性之间也存在类似的相关性。
     总之,本论文证实了胶质类芽孢杆菌的表型特征和遗传特性存在明显的多样性。酸与多糖产量与遗传特性之间具有较好的关联性,荚膜面积、菌落直径、发酵液粘度与多糖产量具有较高的相关性,可作为大规模菌株筛选的有效生物学指标。
Paenibacillus mucilaginosus, a potassium- and phosphate-dissolving and nitrogen-fixing bacterium in soil, has been widely used as biological fertilizer in China. To study the vital factor affecting the function of P. mucilaginosus, 27 P. mucilaginosus strains from different origins and their diversities in phenotype, genotype were investigated in this study.
     Firstly, the ERIC-PCR was carried and the glycosyltransferase group I gene(GTFs I), playing a vital role in polysaccharide biosynthesis, was cloned in genotypic diversity analysis. In the ERIC-PCR test, the P. mucilaginosus strains produced rich and stable bands, which was different from that of strain P. edaphicus VKPM B-7517. Each strain produced 7~(-1)4 bands, of which 6 were shared by many P. mucilaginosus strains. The ERIC pattern was analyzed with the NTSYS-pc software package, and the dendrogram showed that the P. mucilaginosus strains were grouped into 4 clusters according to their origins. Strain YC12 was located in one group by itself. The RAPD-PCR and gyr B gene gave the similar results. However, the numbers of diversity bands present in the ERIC-PCR fingerprintings were greater than that of RAPD-PCR analysis. This result was coincident with great distinguish ability of ERIC-PCR, which can be used to identify intraspecific species.
     Four functional gene fragments were cloned from 11 special RAPD amplification bands, which included the gene of GTFs I (960 bp). GTFs I was positively amplified from 26 P. mucilaginosus strains but not from strains YC12 and P. edaphicus VKPM B-7517. The results of ERIC-PCR and GTFs I gene analysis indicated that strain YC12 was different from other P. mucilaginosus strains, which need further research.
     Secondly, the phenotypic characteristics of Paenibacillus strains, including the sizes of capsules and colonies, productions of polysaccharides and acid, P and K dissolution, and nitrogen fixation capability, were investigated. The Paenibacillus strains produced 2.04~(-1)3.12 mg·ml~(-1) polysaccharide production. Twelve of the strains had a polysaccharide production greater than 9 mg·ml~(-1), however, strains CGMCC 1.2326, KNP413,CGMCC 1.3714 and VKPM B-7517 produced only 2.04-4.72 mg·ml~(-1) polysaccharide. The sizes of the capsules and colonies cultured on the nitrogen free medium for 5 d were 200.07-857.23μm2 and 2.00-5.72 mm, respectively. The fermented liquid viscosity varied between 45.40-8.77 mPa.s. Therefore, the correlations between polysaccharide levels and colony and capsule sizes, and the fermented liquid viscosity were calculated, and the correlation coefficients were 0.824, 0.714, 0.923 respectively. The acid production ability was different noticeably between the strains, which could be demonstrated from the pH decrease of 1.21-2.62 in the zymotic fluid. Strains SCS3, SCS10, YC8, YC15, YC17, YC1, YC12, YC13, KNP414 and VKPM B-7519 appeared to produce more acid.
     The capacities of P, and K-dissolution and N-fixation were also various between the strains. the concentration of soluble P and K increased by 0.05~(-1)02.72 mg·l~(-1) and 0.02-27.92 mg·l~(-1), respectively. The maximum increase of P was observed in strain YC17 (102.72 mg·l~(-1)), followed by strains YC15, SCS16, SCS17, the concentration of soluble P increased were 96.09 mg·l~(-1),84.95 mg·l~(-1),79.49 mg·l~(-1) respectively. The maximum increase of soluble K was observed in strain SCS10(27.92 mg·l~(-1)), followed by strains KNP414, YC9, YC15. A positive correlation was obtained between acid production and solubilized P and K, with correlation coefficients of 0.777 and 0.778, respectively. The correlation coefficient between polysaccharide production and solubilized P and K were 0.462 and 0.526, respectively. Obviously, both acid and polysaccharide could be the biomarker of P and K dissolution. All the strains appeared to fix nitrogen, and the maximum N-fixing was observed in strain VKPM B-7519 (18.28 mg·l~(-1)), followed by strains NYY2, YC17, YC15, YC10 and SCS10 with nitrogen increment of 8.15 mg·l~(-1), 8.04 mg·l~(-1), 7.64 mg·l~(-1), 7.52 mg·l~(-1) and 7.08 mg·l~(-1), respectively. The correlation coefficients between N and polysaccharides and acid production were 0.290 and 0.395, respectively.
     Interestingly correlation analysis revealed a clear relationship between polysaccharide diversity and molecular (gyrB gene and RAPD) diversity. In the case of polysaccharide diversity, each of the two groups in the phylogenetic trees based on ERIC and RAPD was divided into two branches. One branch contained the strains with higher polysaccharide production, and the other branch contained the strains with lower polysaccharide production. In the case of acid production, a similar relationship can be found. The relationship between molecular markers and phenotypic traits is accordingly apparent.
     In conclusion, there were large diversities observed in the phenotype and genetic traits of P. mucilaginosus strains. The diversity of genotypic showed good correspondence with that of acid and polysaccharide productions. Colony, capsule sizes, and the fermented liquid viscosity may be the biomarker of polysaccharide production and thus could be used conveniently during preparatory isolation of functional strains on a large scale.
引文
[1]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报, 2004, 15 (5): 899-904.
    [2] Schlesinger W. Evidence from chronosequence studies for a low carbon-storage potential of soils [J]. 1990: , 348(15):232 - 234.
    [3] Lamar RDietrich D. In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp [J]. Applied and Environmental Microbiology, 1990, 56 (10): 3093-3097.
    [4]尹睿,张华勇,黄锦法,等.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报, 2004, 10 (1): 57-62.
    [5]薛超波,王国良,金珊,等.海洋微生物多样性研究进展[J].海洋科学进展, 2004, 22 (3): 377-384.
    [6]朱国锋.鄱阳湖南湖区细菌的16SrDNA多样性研究[D].南昌大学, 2008.
    [7]车玉伶,王慧,胡洪营,等.微生物群落结构和多样性解析技术研究进展[J].生态环境, 2005, 14 (1): 127-133.
    [8] Busse H, Denner ELubitz W. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics [J]. Journal of Biotechnology, 1996, 47 (1): 3-38.
    [9]王仁卿,张明才.土壤微生物多样性研究现状评述[J].面向21世纪的中国生物多样性保护,2001,53(7):141-147.
    [10] Laguerre G, Allard M, Revoy F, et al. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes [J]. Applied and Environmental Microbiology, 1994, 60 (1): 56-60.
    [11]黄艳霞,白昌军.分子标记技术及其在牧草中的应用[J].热带农业科学, 2008, 28 (4): 81-85.
    [12] Masuelli R, Tanimoto E, Brown C, et al. Irregular meiosis in a somatic hybrid between S. bulbocastanum and S. tuberosum detected by species-specific PCR markers and cytological analysis [J]. TAG Theoretical and Applied Genetics, 1995, 91 (3): 401-408.
    [13]张丽娟,蔡子微. RAPD在双歧杆菌菌种鉴定及分型研究中的应用[J].中国微生态学杂志, 1999, 11 (006): 334-335.
    [14]白生文,范惠玲. RAPD标记技术及其应用进展[J].河西学院学报, 2008, 24 (2): 52-54.
    [15] Sharples GLloyd R. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes [J]. Nucleic acids research, 1990, 18 (22): 6503-5609.
    [16]曹又方,赵立平. ERIC序列在不同细菌基因组中分布的分析[J].山西大学学报:自然科学版, 2002, 25 (4): 354-357.
    [17] Versalovic J, Kapur VJR L. Distribution of repetitive DNA sequences ineu bacteria an dapplication to finger printing of bacterial genomes [J]. Nucleic Acids Res 1991, 19(24): 6823-6831.
    [18] Niemann S, Puehler A, Tichy H, Simon R, Selbitschka W. (1997) Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population [J]. Journal of applied microbiology ,1997, 82: 477-484.
    [19] Gillings MHolley M. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements [J]. Letters in applied microbiology, 1997, 25 (1): 17-21.
    [20]陈敏,赵立平.焦化废水处理系统中不同培养基分离的细菌种群多样性[J].微生物学报, 2003, 43 (3): 366-371.
    [21]赵立平,肖虹,李艳琴,等. ERIC-PCR:一种快速鉴别环境细菌菌株的方法[J].应用与环境生物学报, 1999, 5 (1): 30-33.
    [22]李艳琴,孙永艳,崔丽方,等. ERIC-PCR在人工混合菌体系中的检出灵敏度[J].微生物学通报, 2004, 31 (4):
    [23] Muyzer G, de Waal EUitterlinden A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59 (3): 695-700.
    [24] Heuer H, Krsek M, Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients [J]. Applied and Environmental Microbiology, 1997, 63 (8): 3233-3241.
    [25] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion in Microbiology, 1999, 2 (3): 317-322.
    [26] Simpson J, McCracken V, White B, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota [J]. Journal of Microbiological Methods, 1999, 36 (3): 167-179.
    [27]姚文,朱伟云,韩正康,等.应用变性梯度凝胶电泳和16S rDNA序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学, 2004, 37 (9): 1374-1378.
    [28] Randazzo C, Vaughan ECaggia C. Artisanal and experimental Pecorino Siciliano cheese: microbial dynamics during manufacture assessed by culturing and PCR-DGGE analyses [J]. International journal of food microbiology, 2006, 109 (2): 1-8.
    [29]王小芬,王伟东,高丽娟,等.变性梯度凝胶电泳在环境微生物研究中的应用详解[J]. Journal of China Agri, 2006, 11 (5): 1-7.
    [30]罗海峰,齐鸿雁,薛凯,等. PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报, 2003, 23 (8): 1570-1575.
    [31] Sheffield V, Cox D, Lerman L, et al. Attachment of a 40-base-pair G+ C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86 (1): 232-236.
    [32] Tiedje J, Asuming-Brempong S, Nüsslein K, et al. Opening the black box of soil microbial diversity [J]. Applied Soil Ecology, 1999, 13 (2): 109-122.
    [33] Liesack W, Weyland HStackebrandt E. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria [J]. Microbial Ecology, 1991, 21 (1): 191-198.
    [34] Wang L, Lee F, Tai C, et al. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA DNA hybridization in the Bacillus subtilis group [J]. International journal of systematic and evolutionary microbiology, 2007, 57 (8): 1846-1850.
    [35] Colwell R. Microbial diversity: the importance of exploration and conservation [J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18 (5): 302-307.
    [36]廖延雄,傅筱冲.一株硅酸盐细菌的表型特征[J].江西科学, 2000, 18 (3): 149-153.
    [37]胡秀芳,应飞祥,陈集双.胶质芽孢杆菌突变株021120的培养条件及发酵工艺优化[J].中国生物工程杂志, 2007, 27 (9): 58-62.
    [38]刘贵才.生物钾肥的作用机理与增产效果[J].中国稻米, 1995, (6): 18-18.
    [39] Basak BBiswas D. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols [J]. Plant and soil, 2009, 317 (1): 235-255.
    [40] Mei RAO, Zheng-hua SUN, Yan-xing YAO, Jun XING, Li-jun LI. Identification and Practical Application of Silicate-dissolving Bacteria [J].中国农业科学:英文版, 2002, (1): 81-85.
    [41]苗艳芳,王澄澈,张会民,等.生物钾肥的增产效应及对蔬菜养分吸收的影响[J].洛阳农业高等专科学校学报, 2000, 20 (2): 19-20.
    [42]连宾,陈烨,袁生,等.硅酸盐细菌GY03菌株的絮凝特性[J].矿物学报, 2003, 23 (4): 303-307.
    [43]代淑娟,周东琴,魏德洲,等.胶质芽孢杆菌对水中Pb2+生物吸附-浮选性能研究[J].金属矿山, 2007, (5): 70-74.
    [44]夏彬彬,仲崇斌,魏德州,等.胶质芽孢杆菌对Zn2+、Cd2+的生物吸附[J].生物技术, 2008, 18 (3): 80-84.
    [45]王平宇,张树华.硅酸盐细菌的分离及生理生化特性的鉴定[J].南昌航空工业学院学报, 2001, 15 (2): 78-82.
    [46] Sheng XF, Jiang Che L. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil [J]. Canadian journal of microbiology, 2008, 54 (5): 417-422.
    [47]陆引罡,钱晓刚,龙键.硅酸盐细菌对含钾矿物的解钾作用[J].贵州农业科学, 1999, 27 (3): 26-28.
    [48]胡岳华,贺治国,胡维新.硅酸盐细菌在资源加工中的应用及现状[J].矿冶工程, 2003, 23 (1): 22-24.
    [49]孙德四,钟婵娟,张强.硅酸盐矿物的硅酸盐细菌浸出工艺研究[J].金属矿山, 2008, (2): 70-73.
    [50]李军亮,周吉奎,钮因键,等.浅论铝土矿生物冶金的研究进展[J].铝镁通讯, 2005, (2): 1-3.
    [51]黄昭贤.硅酸盐细菌的研究现状及展望[J].世界农业, 1998, (5): 28-31.
    [52]冯雅丽,王宏杰,李浩然,等.一株产絮凝剂硅酸盐细菌的筛选及其絮凝特性[J].中南大学学报:自然科学版, 2008, 39 (5): 934-939.
    [53] Lian B, Chen Y, Zhao J, et al. Microbial flocculation by Bacillus mucilaginosus: Applications and mechanisms [J]. Bioresource technology, 2008, 99 (11): 4825-4831.
    [54] Lian B, Prithiviraj B, Souleimanov A, et al. Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92 [J]. Microbiological research, 2001, 156 (3): 289-292.
    [55]孙德四,万谦,赵薪萍,等.胶质芽孢杆菌JXF菌株代谢产物与脱硅作用研究[J].矿冶工程, 2008, 28 (3): 52-56.
    [56] Deng S, Bai R, Hu X, et al. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment [J]. Applied microbiology and biotechnology, 2003, 60 (5): 588-593.
    [57]张蕾,赵春燕,祁丹,等.胶质芽孢杆菌(Bacillus mucilaginosus)胞外多糖的分离纯化[J].沈阳农业大学学报, 2006, 37 (5): 779-781.
    [58]陈廷伟,陈华癸.钾细菌的形态生理及其对磷钾矿物的分解能力[J].微生物, 1960, 2 (3): 104-112.
    [59] Vaiberg S N, Vlasov A S, Skripnik V P. Treating Clays with Silicate Bacteria [J]. Glass Ceram, 1980, 37 (8): 387-389.
    [60]孙德四,万谦,赵薪萍.硅酸盐细菌JXF菌株浸矿脱硅条件研究[J].矿业研究与开发, 2008, 26(3): 34-37.
    [61]孙德四,赵薪萍,张强.胶质芽孢杆菌JXF释硅特性研究[J].有色金属:选矿部分, 2007, (6): 28-32.
    [62]方琼楼.设施土壤胶质芽孢杆菌的分离及其多样性分析[D].杭州:浙江理工大学, 2009.
    [63]廖延雄,傅筱冲.一株硅酸盐细菌的表型特征[J].江西科学, 2000, 18 (3): 149-153.
    [64]何琳燕,殷永娴.一株硅酸盐细菌的鉴定及其系统发育学分析[J].微生物学报, 2003, 43 (2): 162-168.
    [65]贺积强,李登煌,张小平,等.紫色土硅酸盐细茵的表型特征及溶磷解钾能力[J].应用与环境生物学报, 2003, 9 (7): 77-84.
    [66]盛下放,黄为一.硅酸盐细菌NBT菌株生理特性的研究[J].土壤学报, 2001, 38 (4): 569-574.
    [67]吴作为,吴颖运,李欣,等.胶质芽胞杆菌(Bacillus mucilaginosus) D4B1菌株生理特性研究[J].土壤肥料, 2004, (2): 40-43.
    [68] Aleksandrov VG B R, Ilev IP. Liberation of phosphoric acid from apatite by silicate bacteria [J]. Mikrobiol Z(Kiev), 1967, 29:111-114
    [69]盛下放,黄为一.硅酸盐细菌NBT菌株解钾机理初探[J].土壤学报, 2002, 39 (6): 863-871.
    [70]孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程, 2006, 26 (3): 27-29.
    [71]农业化学.北京:农业出版社[J]. 1990.
    [72]吴衍庸.硅酸盐细菌岩石肥料研究初报[J]. 1964, 3(7):27-38.
    [73]薛智勇,汤江武,钱红,等.硅酸盐细菌在不同土壤中的解钾作用及对甘薯的增产效果[J].土壤肥料, 1996, (2): 23-26.
    [74]刘五星,徐旭士,杨启银,等.胶质芽孢杆菌对土壤矿物的分解作用及机理研究[J].土壤, 2004, 36 (5): 547-550.
    [75]薛泉宏,张红娟,蔡艳,等.钾细菌对江西酸性土壤养分活化作用的研究[J].西北农林科技大学学报, 2002, 30 (1): 27-31.
    [76]吴洪生,郭勋斌,刘怀阿,等.钾细菌制剂肥效试验[J].上海农业学报, 2001, 17 (4): 69-73.
    [77]李明,张灼.硅酸盐细菌JF88菌株磷化作用的研究[J].云南环境科学, 2000, 19 (4): 11-12.
    [78]王志,花爱军.固氮,解磷,解钾细菌制剂的肥效试验[J].辽宁农业科学, 2003, 6: 7-8.
    [79]林启美,孙焱鑫.一株胶质芽孢杆菌RGBc13的解磷解钾作用[J].华北农学报, 2000, (4): 116-119.
    [80]赵志英.固氮微生物[J].生物学教学, 2007, 32 (9): 60-62.
    [81]赵琳.生物固氮与生态农业[J].江西农业学报, 2006, 18 (5): 166-168.
    [82]许齐放,陈廷伟.八株芽孢杆菌菌株的分类及固氮活性的测定[J].微生物学通报, 1998, 25 (5): 253-258.
    [83]农业微生物肥料质检中心.微生物肥料生产应用基本知识,硅酸盐细菌[M]. 1998.
    [84]连宾,陈烨,袁生,等.硅酸盐细菌GY03菌株的絮凝特性[J].矿物学报, 2003, 23 (4): 303-307.
    [85]赵金.胶质芽孢杆菌絮凝剂的絮凝作用与絮凝机理研究[D].贵州大学, 2006.
    [86]代淑娟,周东琴,魏德洲,等.胶质芽孢杆菌对水中Pb2+生物吸附-浮选性能研究[J].金属矿山, 2007, (5): 70-74.
    [87] Li, X., Wu, Z., Li, W.,等. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting [J]. Appl Microbiol Biotechnol, 2007, 74 (5): 1120-1125.
    [88]何佳,赵启美.硅酸盐细菌G10菌株对食用菌的影响[J].中国食用菌, 2000, 19 (3): 35-36.
    [89]钟冬梅,马光庭.硅酸盐细菌在农业中应用的研究动态[J].广西农学报, 2006, 21 (3): 32-35.
    [90] Avakyan Z A. Silicon compounds in solution bacteria quartz degradation [J]. Mikrobiologia, 1984, 54 (2): 301-307.
    [91] Rozanova E P. Leaching of glass sand during microbiologial oxidation of oil [J]. Mikrobiologia, 1986, 55 (5): 787-791.
    [92]刘五星,徐旭士,杨启银.胶质芽孢杆菌对土壤矿物的分解作用及机理研究[J].土壤, 2004, (5): 547-550.
    [93]刘五星,杨启银,徐旭士.一株胶质芽孢杆菌的解钾能力[J].南京师大学报:自然科学版, 2003, (2): 118-120.
    [94]盛下放,黄为一.硅酸盐细菌nbt菌株解钾机理初探[J].土壤学报, 2002, (6): 863-871.
    [95] Malinovskaya I M, Kosenko L V, Votselk S K, et al. The role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. [J]. Mikrobiologiya, 1990, 59 (1): 70-78.
    [96]孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程, 2006, 26 (3): 27-29.
    [97] Welch S, Barker WBanfield J. Microbial extracellular polysaccharides and plagioclase dissolution [J]. Geochimica et Cosmochimica acta, 1999, 63 (9): 1405-1419.
    [98] Shelobolina E, Avakyan Z, Bulygina E, et al. Description of a New Species of Mucilaginous Bacteria, Bacillus edaphicus sp. nov., and Confirmation of the Taxonomic Status of Bacillus mucilaginosus Avakyan et al. 1986 Based on Data from Phenotypic and Genotypic Analysis [J]. Microbiology, 1997, 66 (6): 681-689.
    [99]赵艳,洪坚平,张晓波.胶质芽孢杆菌遗传多样性ISSR分析[J].草地学报, 18 (2): 212-218.
    [100]赵飞,盛下放,黄智,等.山东地区钾矿物分解细菌的分离及生物学特性[J].生物多样性, 2008, 16 (6): 593-600.
    [101]胡桦,陈强,李登煜,等.紫色土硅酸盐细菌的遗传多样性研究[J].土壤学报, 2007, 44 (002): 379-383.
    [102]胡桦,陈强,李登煜,等. 38株紫色土硅酸盐细菌的遗传多样性和分类地位[J].武汉大学学报:理学版, 2008, 54 (2): 239-243.
    [103]宋国安,宋玉峰.黄原胶的性能及其应用[J].山东化工, 1997, 33(21): 4-8.
    [104] KOBAYASHI T, TAKIGUCHI Y, YAZAWA Y, et al. Structural analysis of an extracellular polysaccharide bioflocculant of Klebsiella pneumoniae [J]. Bioscience, biotechnology, and biochemistry, 2002, 66 (7): 1524-1530.
    [105] Cerning J. Exocellular polysaccharides produced by lactic acid bacteria [J]. FEMS Microbiology Letters, 1990, 87 (1-2): 113-130.
    [106]刁虎欣,周与良.细菌胞外多糖的生物合成[J].微生物学杂志, 1990, 10 (4): 64-71.
    [107]刘秀芳,王修垣.野油菜黄单胞菌L4生产黄单胞菌多糖的适宜条件[J].微生物学报, 1993, 33(1): 40-47.
    [108] Frosch M, Edwards U, Bousset K, et al. Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides [J]. Molecular Microbiology, 1991, 5 (5): 1251-1263.
    [109] Robbins J, McCracken Jr G, Gotschlich E, et al. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis [J]. The New England journal of medicine, 1974, 290 (22): 1216-1221.
    [110] Arbeit R, Karakawa W, Vann W, et al. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus [J]. Diagnostic microbiology and infectious disease, 1984, 2 (2): 85-89.
    [111] Sutherland I. Microbial polysaccharides from Gram-negative bacteria [J]. International Dairy Journal, 2001, 11 (9): 663-674.
    [112] Roberts I. The biochemistry and genetics of capsular polysaccharide production in bacteria [J]. Annual Reviews in Microbiology, 1996, 50 (1): 285-315.
    [113]蓝云龙,吴令上,裘波音.鱼腥草RAPD分子标记的多态性[J].浙江林学院学报, 2008, 25 (3): 309-313.
    [114]李杨.北方盐碱土硅酸盐细菌表型多样性研究及溶磷解钾高效菌株的筛选[D].四川雅安:四川农业大学, 2005.
    [115]胡思刚,刘革伟,赵文庆.凯氏定氮法检测脱脂奶粉中蛋白质的含量[J].饮料工业, 2006, 9 (002): 42-43.
    [116]姚振刚.中华人民共和国药典[J].中国药品监督管理年鉴, 2002, (1): 354-354.
    [117]盛下放,黄为一.硅酸盐细菌NBT菌株释钾条件的研究[J].中国农业科学, 2002, 35 (6): 673-677.
    [118] Liu W, Xu X, Wu X, et al. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture [J]. Environmental geochemistry and health, 2006, 28 (1): 133-140.
    [119]陈廷伟.胶质芽胞杆菌分类名称及特性研究(综述) [J].土壤肥料, 2002, 4: 5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700