水库湖泊水质分析、模拟与预测的综合数学方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对各种水质模型与方法总结分析的基础上,针对以水库、湖泊为主的大范围、复杂地理结构区域上地表水污染的过程及规律分析、分布状态模拟、变化趋势预测给出了相应的三维数学模型和求解算法,提出了两种新的统计分析方法用于污染分布的关系分析和规律分析,并给出这些研究在密云水库水质分析中的应用实例。
     1.剖析了不同类型径向基函数的性质,系统阐述了无单元配点法及其在解微分方程时的控制技巧,给出水污染质运移模型无单元配点法求解的详细过程。
     2.建立了用于评价不同样本组数据分布间单调关系和协调关系的两种统计方法,给出其在湖泊水库水体、底泥、孔隙中水污染质分布分析的具体应用。
     3.建立了水库湖泊BOD、DO、总氮、总磷、重金属等主要污染质迁移转化的三维水质模型,讨论了其无单元法求解技术。
     4.给出了上述数值算法和统计分析工作的软件实现方法以及水污染分布的几种图形表现技术。
     5.给出上述研究方法与技术在密云水库水质分析中的详细应用。获得了有关密云水库水质富营养化的成因、机理、规律、趋势及其防治措施的有指导意义的认识和结论。
The analysis of simulation and prediction on polluted state of every kind of water resources, particularly the groundwater and surface water, is an important mission of environment science. In the water environment problem research area, the mathematic model of water quality is the main technical means on the study of water environment, water quality analysis and prediction. Water quality model techniques have already stepped into the age of multi-types and multi-projects through its development more than a half century. But the mathematic determinant model of variety of equations as representative is the most efficient all the time for description in the internal process of migrating and translating of water contamination. Therefore it is still the preferred and main tools for analysis, simulation and prediction of water quality. Because the equation models are usually complex, they are solved numerically. The finite element method and finite difference method are the main numerical methods for differential equations. But it is very difficult to solve the 3D water quality model of reservoir and lake with large area and complex geographic structure by finite element method or finite difference method, so mostly study of 3D problem are actually solved by predigesting the 3D model to 2D or ID model. Although some works have done to solve the 3D model directly, these works had to deal with the different depth of bottom and boundary by geometric approximations. The difficult still remains in solving 3D water quality model by traditional numerical methods directly.
    Recently, radial basis functions method (Element-Free Method), as a new function interpolation method or a new numerical method for differential equations, has been paid much more attention. The method can translate the multi-dimension problems to one dimension problems in order to solve them easily. The method doesn't need grid dissection, has the predominance especially for discrete points data model. At the same time, data and information digging technology based on statistic methods is widely applicable foreground. Water quality analysis methods based on statistic technology can overcome the lack of systematic parameters by qualitative analysis correction and complement the conclusions from quantitative analysis.Given the booming development of computer technology, the calculation cost decreases dramatically, accompanied by the advances of capability and efficiency, the calculation methodology and implement projects improve constantly. These progresses provide new sustentions for various researches on water environment, but it brings forward higher desires.The present paper offers corresponding 3D mathematic models and the solution methods which aims at the process, principle analysis, distribution simulation and transformation trend forecast of surface water pollution, primary in the reservoirs and lakes, which are large in area and have complex geographic geometry. We develop two new statistic analysis methods used for distribution relation and principle analysis of contamination, combined with the research works of National major project of basic research development "The mechanism and regulation principle of air, water and land pollution in Beijing and around (Item No. G1999045700)", gives some application examples of these theories.The concrete working project is as follows:1. By in-depth anatomy of radial basis functions and correlated theories, starting with types choice and parameters option of radial basis functions, boundary conditions manage techniques and equations discretization methods, gives detailed constructive expatiation and discussion for some basic problems such as function interpolation and numerical solution for
    differential equations by radial basis methods, thereby offers the numerical solution of surface water quality 3D models by radial basis functions.2. Creates appropriate statistic methods, and makes qualitative analysis and estimation for distribution law, characteristics and changing trend of water quality.3. By taking the full advantage of high-powered calculating capacity and excellent graph display technology of modern computers, devises a suit of lifelike intuitionistic simulation projects and develops corresponding specialized software. The software not only implements radial basis function methods 3D solutions of water quality models and statistic analysis of water quality distribution, but also implements computer 3D visualized static and dynamic water quality simulation of reservoirs and lakes.The innovated points are mainly listed as what follows:1. Anatomizes properties of various types of radio basis functions. Discusses various situations and managed methods (such as types selection, evaluating methods of radio basis functions coefficients, resolvents of different boundary conditions) referring to the solution of water quality models by radio basis functions methods. All these are difficult problems which have not been solved ideally.2. The complexity of solving 3D problems are simplified by directly solving 3D water quality models using radio basis functions methods, and increasing the adapted ability for problems on complex areas and irregular discrete data points.3. Two new statistical methods are presented — the measurements of concentration distributing monotonous correlativity of the same contamination and co-correlativity of distribution of one contamination between layers or distributions of two different contaminations, to dig latent information from practical data resource sufficiently.4. Water quality models are built which include the biologic effect as a source in equations, and can more detailedly and more all-sided depict the migration and translation laws of water contaminations.
    5. By the combination of qualitative analysis with quantitative analysis, the combination of equation model with statistic estimation and the combination of Microcosmic (shortdated) analysis with microscopical (long-term) analysis, the models are applied to depict and calculate the microcosmic (shortdated) partial quantitative water quality distribution and change. Statistic methods are applied to obtain the microscopical (long-term) holistic qualitative trend and the analysis of water quality evolution. Equation models, based on internal law of water contamination migration and translation, can overcome many difficulties and localizations such as the lack of sample data, very long distance of different sampling time, very short count of sample groups, etc;Statistic estimation analysis, starting with only the data on-the-spot survey and depending on internal correlative information, can overcome efficiently many disadvantages such as much system parameters, difficulty to determine values of parameters, difficulty to reflect and to control secondary infection factors, to be incapable of shield random disturbances in equation models. The combined application of these two methods supply for each other, inaugurating new approach for water analysis, simulation and forecast.6. Several kinds of visual representation technology are developed for contaminations concentration distribution analysis: Building continuous spectrum of a graph of contaminations concentration distribution or free optioned contour plots of a graph of contaminations concentration distribution through rendered images;Displaying the concentration of every points when it is pointed by mouse;Establishing color-geographical digital text of concentration distribution table.Conclusions such as distribution, changing laws, effecting mechanisms, forming causes, fathering project and controlling measures, etc of various contaminations in MiYun reservoir are obtained by applying these technologies to calculate and analyze the observed data in continuous tow yeas in the reservoir.The methods how to solve 3D water quality models by element-free method discussed by
    this paper don't need mesh-dissection, so their applications are even more convenient, agile and easily to program for calculation. Generally 3D finite element method mainly adopts mesh of pole shape, so the geometric error is commonly large for vary depth complex area. Compare with finite element method, element-free method can depict complex boundary shape exactly, so it has evident predominance for dealing with the water quality analysis problems in complex three dimensional geometric areas. The arithmetic presented in this paper is the same with two dimensional or one dimensional problem. It is needed only to delete the redundant coordinate variables and corresponding coefficients, then the discrete solving process by element-free method of two dimensional or one dimensional problem is obtained.
引文
[1] 吴宗敏.函数的径向基表示[J].数学进展.1998,27(3):202-208.
    [2] 吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报.2002,19(2):1-12.
    [3] 杨建强,罗先香.地下水动态预测的径向基函数法[J].工程勘察。2001,第5期:35-37.
    [4] 周德亮,丁继红,马生忠.基于径向基函数方法的地下水数据自动生成[J].煤炭科学技术.2002,30(5):46-48.
    [5] 张湘伟,蔡永昌.一种改进的无单元方法[J].计算力学学报.2002,19(1):26-30.
    [6] 陈红全.隐式无网格算法及其应用研究[J].空气动力学学报.2002,20(2):133-140.
    [7] 曹国金,姜弘道.无单元法研究和应用现状及动态[J].力学进展.2002,32(4):526-534.
    [8] 胡云进,周维垣,寇晓东.三维无单元法及其应用[J].岩石力学与工程学报.2004,23(7):1136-1140.
    [9] 钱向东.基于紧支径向基函数的配点型无网格法[J].河海大学学报.2001,29(1):96-98.
    [10] 唐少武,冯振兴.关于无单元法的若干注记[J].力学进展.2003,33(4):560-561.
    [11] 贾高顺,王晓光,梁利华,马修彦.无网格方法的应用前景[J].科技通报。2003,19(5):360-364.
    [12] 王燕昌,李进.无单元方法的研究进展[J].宁夏大学学报(自然科学版).2003,24(1):43-46
    [13] 张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报.2003,20(6):730-742.
    [14] T. Belytschko, D. Organ, Y. Krongauz. A coupled finite element-element-free Galerkin method[J]. Computational Mechanics. 1995, 17(3): 186-195.
    [15] J. R. Xiao, M. A. McCarthy. A local Heaviside weighted meshless method for two-dimensional solids using radial basis functions. Computational Mechanics. July 2003, Volume 31, Numbers 3-4, Pages: 301-315.
    [16] Michael J. Johnson. An error analysis for radial basis function interpolation. Numerische Mathematik. October 2004, Volume 98, Number 4, Pages: 675-694.
    [17] R. Schaback. Approximation by Radial Basis Functions with Finitely Many Centers. Constructive Approximation. March 1996, Volume 12, Number 3, Pages: 331-340。
    [18] J. T. Chen, M. H. Chang, K. H. Chen, I. L. Chen. Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function. Computational Mechanics. Date: October 2002, Volume 29, Numbers 4-5, Pages: 392-408。
    [19] G. Yagawa, T. Yamada. Free mesh method: A new meshless finite element method. Computational Mechanics. Date: September 1996, Volume 18, Number 5, Pages: 383-386。
    [20] M. v. Golitschek. Interpolation by Polynomials and Radial Basis Functions on Spheres. Constructive Approximation. Date: January 2000, Volume 17, Number 1, Pages: 1-18。
    [21] C. J. Coleman. On the use of radial basis functions in the solution of elliptic boundary value problems. Computational Mechanics. Date: April 1996, Volume 17, Number 6, Pages: 418-422
    [22] X. Zhang, K. Z. Song, M. W. Lu, X. Liu. Meshless methods based on collocation with radial basis functions. Computational Mechanics. Date: October 2000, Volume 26, Number 4. Pages: 333-343
    [23] 谷照升,杨天行,彭泽洲.密云水库三维水质模拟技术[J].吉林大学学报(地球科学版).2004,34(1):93-96.
    [24] 谷照升,刘晓端,徐清.密云水库水质分布的相关性研究[J].岩矿测试.2004,23(4):278-284.
    [25] 彭泽洲,谷照升,刘晓端.三维水质模拟、预测及应用[J].工程勘察.2002,3:24-27.
    [26] 贾海峰,程声通,丁建华等.水库调度和营养物消减关系的探讨[J].环境科学.2001,22(4):104-107.
    [27] 杜桂森,孟繁艳,李学东等.密云水库水质现状及发展趋势[J].环境科学.1999,20(2):110-112.
    [28] 徐清,杨天行,刘晓端等.密云水库总磷的富营养化分析与预测[J].吉林大学学报(地球科学版).2003,33(3):315-318.
    [29] 刘浏,刘晓端,徐清等.密云水库沉积物中磷的形态和分布特征[J].岩矿测试.2003,22(2):81-85.
    [30] 王晓燕,苑迎冬.密云水库底质特征及吸附、释放磷的实验研究[J].首都师范大学学报(自然科学版).1997,18(3):85-90.
    [31] 陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究.水利学报.1998,第9期:14-20.
    [32] 黄廷林,卢金锁,韩宏大,何文杰,阴沛军.地表水源水质预测方法研究.西安建筑科技大学学报(自然科学版).2004,36(2):134-137
    [33] 詹世平,周集体.河流水质模型及存在问题.浙江水利科技。2004年,第4期:1-3
    [34] 汪家权,陈众,武君.河流水质模型及其发展趋势.安徽师范大学学报(自然科学版).2004,27(3):242-247.
    [35] 李占华,王松,董咏梅.河流水质数学模型概述.山东水利科技.1998年,第1期,16-18.
    [36] 卢小燕,徐福留,詹巍,赵臻彦,陶澍.湖泊富营养化模型的研究现状与发展趋势.水科学进展.2003,14(6):792-798.
    [37] 周勇,刘凡,吴丹等.湖泊水环境预测的原理与方法.长江流域资源与环境.1999, 8(3):305-311.
    [38] 崔宝侠,高鸿雁,左传金,张理平.人工智能在水质模型改进中的应用.沈阳工业大学学报.2004,26(5):543-546.
    [39] 何孟常,杨居荣.水质模型、生态模型及计算机模型软件.环境科学进展.1999,7(3):62-69.
    [40] 郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展.重庆建筑大学学报.2002,24(2):109-115.
    [41] 徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次.上海环境科学.2003,22(2):79-145.
    [42] G. A. Ougolnitsky, A. B. Usov. Water Quality Control in Watercourses. Water Resources. 2003, 30(2): 226-232.
    [43] J. C. Refsgaard, H. R. Sorensen, I. Mucha, D. Rodak, etc. An Integrated Model for the Danubian Lowland-Methodology and Applications. Water Resources Management. 1998, 12(6): 433-465.
    [44] K. W. Chau, H. S. Jin. Depth-averaged, two-dimensional eutrophication modelling for Tolo Harbour, Hong Kong. Environmental Modeling and Assessment. 1999, 4(2-3): 189-199.
    [45] Monzur Alam Imteaz, Takashi Asaeda, David A. Lockington. Modelling the Effects of Inflow Parameters on Lake Water Quality. Environmental Modeling and Assessment. 2003, 8(2): 63-70.
    [46] Nurkan Karahanoglu, Vedat Doyuran. Finite element simulation of seawater intrusion into a quarry-site coastal aquifer, Kocaeli-Darica, Turkey. Environmental Geology. 2003, 44(4): 456-466.
    [47] K. C. Kersebaum, K.-O. Wenkel. Modelling water and nitrogen dynamics at three different spatial scales-influence of different data aggregation levels on simulation results. Nutrient Cycling in Agroecosystems. 1998, 50(1): 313-319。
    [48] Minoru Yoneda, Shinsuke Morisawa, Naoya Takine, etc. Groundwater Deterioration Caused by Induced Recharge: Field Survey and Verification of the Deterioration Mechanism by Stochastic Numerical Simulation. Water, Air, & Soil Pollution. 2001, 127(1-4): 125-156.
    [49] 逄勇,洪晓瑜,王超.珠江三角洲河网与伶仃洋一、三维水质模型联解研究[J].中山大学学报(自然科学版).2004,43(4):110-112。
    [50] 戴正德,屈超纯.亚热带高原湖泊水质方程一类自由初边值问题.应用数学学报.2002,25(2):347-360.
    [51] 韩龙喜,周毅,朱党生.小浪底水库水环境质量预测模拟研究.水资源保护.2002年,第1期,23-68.
    [52] 饶群,芮孝芳.完全混合系统总磷随机模型研究.水科学进展.2002,13(1):21-25.
    [53] 赵棣华,姚琪,蒋艳,杨珏,逢勇.通量向量分裂格式的二维水流.水质模拟.水科学进展.2002,13(6):701-106.
    [54] 胡维平,秦伯强.太湖水动力学三维数值试验研究——4_保守物质输移扩散.湖泊科学.2002,14(4):310-316.
    [55] 丁训静,姚琪,毛永根.太湖流域水质模拟研究.水资源保护.1998年,第4期,10-62.
    [56] 熊丽君,刘凌.水质模拟及趋势分析.环境科学技术.2003,26(6):25-65.
    [57] 武周虎.水库水质预测的解析计算.环境科学研究.2000,13(4):39-43.
    [58] 尹魁浩,阮娅,李金龙,袁弘任,翁立达,刘宝章.水库水体生态系统数值模拟模型及其应用.水科学进展.2001,12(2):165-171.
    [59] 雒文生,周志军.水库垂直二维湍流与水温水质耦合模型.水电能源科学.1997,15(3):1-7.
    [60] 李然,李嘉,赵文谦.水环境中重金属污染研究概述.四川环境.1997,16(1):18-22.
    [61] 李进,许武德,郭守坤.数学模型在水质预测中的应用.东北水利水电.1999年,第6期:39-47.
    [62] 姚磊华.二维溶质运移问题的分步广义迎风解法.长春地质学院学报.1997, 27(4):424-428.
    [63] 马生伟,张秀敏,李荫玺.深水湖泊水质模型研究及其在抚仙湖中的应用.云南环境科学.1997,16(3):37-39.
    [64] 欧阳球林.清林径水库水体富营养化的初步调查研究.江西水利科技.2000,26(3):151-155.
    [65] 蒋艳,杨珏,赵棣华,何海.浅水流动有限体积法/Osher格式的二维水流.水质模拟.农村生态环境.2002,18(3):30-33
    [66] 金腊华,林波.浅水湖泊群水质模型的近似解析解法.中国环境科学.1995,15(2):59-65.
    [67] 赵棣华,戚晨,庾维德,徐葆华,裴中平.平面二维水流-水质有限体积法及黎曼近似解模型.水科学进展.2000,11(4):368-374.
    [68] 吴时强,丁道扬,吴碧君,马英.平面二维动态水质数学模型.水动力学研究与进展.1996,11(6):653-660.
    [69] 李勇,田伟君,吴亚帝.龙滩水电站库区有机污染预测研究.红水河.2003,22(4):77-80.
    [70] 王有乐,张庆芳.利用历史监测数据建立河流水质数学模型的研究.甘肃环境研究与监测.2002,15(1):6-15.
    [71] 洪晓瑜.利用二维模型求解太湖水质COD_(Mn)的研究.新疆环境保护.2004,26(3):01-04.
    [72] 沈永明,郑永红,邱大洪.近海水域三维水动力学和水质的精细模型研究.云南环境科学.2000,19(增刊):17-21.
    [73] 朱延彬,林丽明,郭周义,张秋云,张宏绶,吴燕燕.建立河流水质多参数测控数学模型的方法.生态科学.1998,17(2):59-62.
    [74] 徐祖信,尹海龙.黄浦江二维水质数学模型研究.水动力学研究与进展.2003,18(3):261-265.
    [75] 李玉梁,李玲.环境水力学的研究进展与发展趋势.水资源保护.2002年第1期:1-6.
    [76] 彭虹,张万顺,夏军,王中根.河流综合水质生态数值模型.武汉大学学报(工学版).2002,35(4):56-59.
    [77] 陈友超.河流水质预测模型的应用研究.中国环境监测.2002,18(5):52-54.
    [78] 朱春龙,俞国青,丁晓红,熊亚南.河流水质演算模型的逆倒演算法。水资源保护.2003年第6期:54-55.
    [79] 吴燮荪.河流水质数学模型及其解.污染防治技术.1995,8(1):23-27.
    [80] 张解放,史忠科.河流水质分析的状态方法.重庆环境科学.2002,24(2):40-42.
    [81] 李莹,邹经湘,张新政,蔡楠.河流水质的预测模型研究.系统仿真学报.2001,13(2):139-142.
    [82] 裴洪平,何金土,王维维.杭州西湖总磷动态变化预测.湖泊科学.1996,8(2):139-143.
    [83] 何金土,裴洪平,章向明.杭州西湖水质预测方法和结果分析.生物数学学报.1994,9(2):85-90.
    [84] 郭天恩,孙西欢.国内外水质t数学模型的研究与发展.西北水资很与水工程.1994,5(3):9-12.
    [85] 黄国如,芮孝芳.官厅水库水质模型研究.水科学进展.1999,10(1):20-24.
    [86] 许金电,江毓武.港湾三维水动力和污染物扩散数值模型.台湾海峡.2003,22(1):85-91.
    [87] 张青,杜禹,张华孝,徐泽海.干旱区湖泊水质预测的数学模型.数学的实践与认识.2003,33(12):4-8.
    [88] 万幼川,林开愚,李植生,雷志洪.二维水质扩散模型的建立及应用.武汉测绘科技大学学报.1995,20(1):28-34.
    [89] 陈毓龄.滇池湖泊网络富营养化水质预测模型的研究.环境监测管理与技术.1994,6(1):21-23.
    [90] 杨具瑞,方铎.滇池二维分层水质模拟研究.环境科学学报.2000,20(5):533-536.
    [91] 胡治飞,张振兴,郭怀成,王建厅,冯伶亲.北京市官厅水库水质预报系统.中国环境 科学.2001,21(3):275-278.
    [92] 罗英明,罗麟,程香菊.Dobbins Camp水质模型的修正.环境科学学报.2003,23(2):273-275.
    [93] 郭琳,蔡固平,,曾光明.二维随机水质模型在模拟污染带中的应用.中南大学学报(自然科学版).2004,35(4):573-576.
    [94] 吴飞,曹玉清,李苍松.二维水动力弥散的随机数学模型.数学的实践与认识.2004,34(6):106-111.
    [95] 李世本,朱芳.“时间数列预测法”在地表水水质污染预测中的应用.江苏环境科技.1995年第4期:20-26.
    [96] 张友权,张赛珍,徐文斌,庄体仁.滇池入流径流模型.云南工学院学报.1994,10(1):63-67.
    [97] 王祥三,陈小江.二维随机水质预测模型及其应用.武汉大学学报(工学版).2001,34(5):16-20.
    [98] 王超.河流水质随机分析模型及其应用.水利学报.1996年第11期:62-68.
    [99] 徐敏,曾光明,谢更新,黄国和,苏小康.混沌理论在河流溶解氧预测中的应用初探.环境科学学报.2003,23(6):776-780.
    [100] 徐敏,曾光明,苏小康.混沌理论在水质预测中的应用初探.环境科学与技术.2004,27(1):51-55.
    [101] 曾思育,陈吉宁,王志石.基于不确定性分析技术的两种水质模型率定方法比较.系统工程理论与实践.2004年第2期:138-141.
    [102] 李如忠,钱家忠,汪家权,王超,金菊良.基于盲数理论的河流水质未确知风险分析初探.水电能源科学.2003,21(1):18-21.
    [103] 李如忠,王超,汪家权,钱家忠,金菊良.基于未确知信息的河流水质模拟预测研究.水科学进展.2004,15(1):35-39.
    [104] 许其功,刘鸿亮,曾光明,苏小康,何理,徐敏.三峡水库二维随机水质模拟预测研究.环境科学研究.2004,17(5):23-26.
    [105] RAO Qun, RUI Xiao-fang. Research on Analytical Solution of Stochastic Water Eutrophication Model. International Journal HYDROELECTRIC ENERGY. 2001, 19(4): 86-88.
    [106] N. V. Zemlyanaya, V. N. Lyakhov. Long-Term Prediction of Water Quality in Marine Water Areas. Water Resources. 2003, 30(4): 445-452.
    [107] Rui Zou, Wu-Seng Lung. Uncertainty Analysis for a Dynamic Phosphorus Model with Fuzzy Parameters. Water Quality and Ecosystems Modeling. 2000, 1(1-4): 237-252.
    [108] C. Bellehumeur, D. Marcotte, P. Legendre. Estimation of regionalized phenomena by geostatistical methods: lake acidity on the Canadian Shield. Environmental Geology. 2000, 39(3-4): 211-220.
    [109] J. BARTHOLOW, R. B. HANNA, L. SAITO, etc. Simulated Limnological Effects of the Shasta Lake Temperature Control Device. Environmental Management. 2001, 27(4): 609-626.
    [110] 殷建华.九龙甸水库水质预测及分析.云南环境科学.2004,23(2):54-56.
    [111] 李如忠,汪家权,钱家忠.基于灰色动态模型群法的河流水质预测研究.水土保持通报.2002,22(4):10-12.
    [112] 万幼川,李植生,梁小民,刘良明.湖泊水质预测模型的建立及其应用.武汉测绘科技大学学报.1996,21(4):375-387.
    [113] 曾光明,张国强,曾北危.河流水质系统灰色模型的识别、模拟和应用.中国环境科学.1994,14(1):57-61.
    [114] Zeng Guangming, Jiang Yimin, Zhuo Ll Zhang Panyue. Grey Model and Grey Modeling for River Water Quality. International Journal HYDROELECTRIC ENERGY. 1999, 17(4): 62-65.
    [115] 郑国强,于兴修,江南,何隆华.洱海水质的演变过程及趋势.东北林业大学学报.2004,32(1):99-102.
    [116] 郭劲松,霍国友,龙腾锐.BOD DO耦合人工神经网络水质模拟的研究.环境科学学报.2001,21(2):140-143.
    [117] 常沁春.BP神经网络改进算法预测水质浓度的应用.甘肃环境研究与监测.2002,15(3):186-188.
    [118] 龙腾锐,郭劲松,霍国友,李胜海.DBD演算法BP神经网络水质综合模拟研究.2002,35(4):38-46.
    [119] 陆琦,郭宗楼,姚杰.灰色神经网络模型在湖泊水质预测中的应用.农机化研究.2004年第3期:159-161.
    [120] 魏文秋,孙春鹏.灰色神经网络水质预测模型.武汉水利电力大学学报.1998,31(4):27-31.
    [121] 王海云,冯裕钊,张晓清,赵宏伟.一种基于补偿模糊神经网络的水质预测方法.重庆建筑大学学报.2004,26(5):77-81.
    [122] 崔宝侠,段勇,高鸿雁,左传金.神经网络在水质模型中的应用.沈阳工业大学学报.2003,25(3):220-222.
    [123] 梁辉,赵新泉,田一平.Matlab在Qual-Ⅱ水质模型计算中的应用.环境监测管理与技术.2004,16(2):10-13.
    [124] 袁兴中,时进钢,曾光明,晏铭.二维稳态河流水质模型的河岸镜像问题及其计算机模拟研究.湖南大学学报(自然科学版).2004,31(2):40-44.
    [125] 王腊春,陈晓玲,都金康,杨晓轩.计算机辅助绘制流域等流时线.地理科学.1996,16(2):184-190.
    [126] 詹世平,周集体,沈永明.基于Matlab进行大连湾水质模拟可视化研究.计算机辅助设计与图形学学报.2004,16(3):368-370.
    [127] 任秀丽,王洪君.计算机可视化技术在水质量评价中的应用.松辽学刊(自然科学版).1999年第3期:34-36.
    [128] 马飞,党志良,胡晓寒,阮仕平.基于MATLAB的河流水质仿真研究.环境科学与技术.2004,27(6):33-37.
    [129] 邓义祥,陈吉宁,杜鸥飞.HSY算法在水质模型参数识别中的应用探讨.上海环境科学.2002,21(8):497-513.
    [130] 李兰,周鑫玉,王力.动态水质模型中E(x)和K(x)的反演算法.武汉水利电力大学学报.1998,第4期:18-21.
    [131] 刘青勇,刘春华,李存法,宋玉田.反求弥散度的一种数值解法.水文.2000,20(4):44-45.
    [132] 陈光明.河流水质模型参数估值方法探讨.中国测试技术.2004,30(5):31-34.
    [133] 金保明,杨晓华,金菊良,丁晶.确定河流横向扩散系数的实码遗传算法.水电能源科学.2000,18(1):9-12.
    [134] 李兰.水质多参数辩识与反演算法.水利学报.1998,第6期:46-52.
    [135] 申玮,郭宗楼,周新超.直接搜索—模拟退火算法在水质模型参数识别中的应用.西北农林科技大学学报(自然科学版).2004,32(5):101-109.
    [136] 王薇,曾光明,何理.用模拟退火算法估计水质模型参数.水利学报.2004,第6期:62-67.
    [137] 袁利敏,黄川友,胡波.遗传算法在水质模型参数率定中的应用.东北水利水电.2003年第8期:25-28.
    [138] 郑文瑞,王新代,纪昆.非确定数学方法在水污染状况风险评价中的应用[J].吉林大学学报(地球科学版).2003,33(1):59-62.
    [139] 李荣华,冯国忱编.微分方程数值解法[M].高等教育出版社.1996年12月.
    [140] 李荣华,陈仲英著.微分方程广义差分法[M].吉林大学出版社.1994年10月.
    [141] 杨天行,朱政嘉.水系统污染数学模型及应用[M].吉林大学出版社,1990年12月.
    [142] 叶守泽,夏军,郭生练等.水库水环境模拟预测与评价[M].中国水利水电出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700