离心泵瞬态水力激振流固耦合机理及流动非定常强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作在国家杰出青年科学基金项目“离心泵基础理论和节能关键技术研究”(50825902)、国家科技支撑计划项目“百万千瓦级核电离心泵关键技术研究”(2011BAF14804)和江苏省博士科研创新计划“基于流固耦合的离心泵三维非定常湍流诱导振动特性研究”(CX10B262Z)的资助下展开。
     泵是重要的能量转换装置和流体输送设备,其中离心泵应用最为广泛,其比例约占泵类设备总量的70%。离心泵不仅应用在石油、化工、水利、灌溉等工农业领域,而且是核电、航空、舰船和潜艇等高技术领域的关键设备。随着社会进步和科学技术的发展,离心泵的可靠性越来越受到重视,泵内部的瞬态水力激振现象是影响可靠性的关键因素之一。水力激振伴随着复杂的流固耦合作用,即水力激励作用在结构上会改变结构的动力学特性,并使结构发生变形,这反过来会影响内部流场的分布。文中采用试验研究和数值计算相结合的方法,以两台典型离心泵为研究对象,对叶轮的瞬态水力激振规律、流固耦合机理以及泵内部非定常流动特性进行了研究。本研究的主要工作和创造性成果有:
     (1)系统总结了三维流固耦合求解方法相关理论的研究进展和发展趋势。根据离心泵转子系统的振动特性以及内部非定常流动特性,并考虑目前流固耦合求解方法在不同复杂系统中的适用性,最终确定了求解离心泵瞬态水力激振流固耦合问题的耦合求解方式,即外载荷传递的分块式(Partitioned)求解策略。
     (2)首次提出了离心泵转子系统水力激振测量方案以及数据采集处理方法。发展了适用于离心泵的电涡量非接触式转子振动测量系统,并搭建了离心泵转子水力激振测量试验台,建立了一套可以消除其他因素诱导的转子系统振动的数据处理方法;成功地获得了各个转速及流量工况下离心泵转子系统周期性水力激振位移轨迹,并分析了影响该测量结果准确性的主要因素,可为研究离心泵瞬态水力激振现象提供试验依据。
     (3)提出了动、静坐标系下流固耦合振动计算结果的转换公式。基于离心泵瞬态水力激振测量结果,对可能影响离心泵瞬态流固耦合求解的关键参数进行了分析,结果表明:流固耦合面数据传递方式、阻尼系数、流体网格刚度、数据传递的松弛因子和数据传递过程的收敛目标等参数是影响流固耦合计算结果的主要因素。论文初步建立了高精度离心泵流固耦合计算的参数组合。
     (4)首次实现了对离心泵瞬态流固耦合求解的试验验证。对比结果表明,在所考察的转速和流量下,计算和测量的振动幅值及相位吻合较好,但在小流量工况下也存在一定的差异。定量研究了单叶片离心泵双向流固耦合的水力径向力,对作用在叶轮不同位置的径向力进行了分析。获得了各工况下转子系统的等效应力分布,分析了叶片等效应力随时间的变化规律。
     (5)根据单叶片离心泵内部周期性非定常流动特性,在求解URANS方程的基础上,首次定义了压力脉动强度系数、相对速度非定常强度系数、绝对速度非定常强度系数以及湍流强度系数,初步获得了模型泵内部流动的非定常强度特征。采用高精度瞬态压力传感器对模型泵蜗壳内的非定常压力场进行了测量,获得了1个叶轮旋转周期内相平均压力结果。将不同转速和流量工况下的数值计算结果与试验结果进行对比,两者吻合较好,验证了CFD求解的可靠性。
     (6)采用分块式耦合求解策略,对蜗壳式普通离心泵转子系统进行了流固耦合求解。分析了不同工况下转子系统的周期性振动特性、等效应力分布以及水力径向力随时间的变化情况等,初步揭示了普通离心泵转子的瞬态流固耦合规律。在考虑流动三维效应的基础上,定义了三维速度非定常强度以及三维湍流强度,以全新的视角对普通离心泵内部周期性非定常压力场、非定常速度场以及湍流场特性进行了研究。获得了整个旋转周期内的压力脉动强度、三维速度非定常强度以及三维湍流强度的分布规律。
     通过本文的研究工作,初步掌握了离心泵流固耦合水力激振特性,为离心泵流固耦合分析提供了数值和试验方法;所提出的流动非定常强度分析方法可以确定周期性流动非定常强度的分布,可为优化泵的非定常特性提供基础。
This work is supported by the National Outstanding Young Scientists Funds of China (Grant No.50825902), National Science&Technology Pillar Program (Grant No.2011BAF14B04) and Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No. CX10B_262Z).
     Pumps, of which70%are centrifugal pumps, are important energy conversion devices and fluid delivery equipment. Centrifugal pump is widely used not only in all industrial and agricultural applications like petroleum, chemistry, water resources and irrigation, but also in high-tech applications as key equipment like nuclear industry, aviation, ships and submarine, et al. As the society develops and technology advances, the reliability of centrifugal pump has been paid more and more attention. Unsteady flow-induced vibration is one of the most important reasons that cause negative effect on pump reliability. The fluid-structure interaction (FSI), which can lead to increased potential for flow-induced vibration, exists between complex inner flow and structures of centrifugal pumps. That means hydraulic excitation will change dynamic characteristics of structures and lead to deformation, meanwhile the distribution of pump inner flow field will be affected by the deformation as well. Based on numerical and experimental methods, two different kinds of centrifugal pumps were systematically studied in the aspects of unsteady flow-induced impeller oscillations, fluid-structure interaction effects and inner flow unsteadiness behaviors. The main work and creative achievements of this dissertation were:
     1. Advances and development trends of research on3D fluid-structure coupling methods have been systematically summarized and analyzed. Based on rotor vibration behaviors and unsteady flow characteristics, considering the applicability of coupling methods for different fluid-structure systems, the final coupling strategy, partitioned coupling method with external load transfer between fluid and structure fields, for unsteady flow-induced impeller oscillation with FSI effect has been selected for centrifugal pumps.
     2. Experiment scheme and data acquisition method of transient flow-induced impeller oscillation measurement of centrifugal pump were established for the first time, and the test rig based on non-contact rotor vibration measurement chain under eddy current principle has been built. Data processing method, which can exclude the vibration induced by non-fluid phenomenon, was put forward. The orbit curve results of impeller deflection induced only by periodically unsteady flow have been successfully obtained considering different rotating speeds and flow rates, and primary factors that can influence the accuracy of the measurement results have been studied.
     3. A conversion formula between the results in stationary and rotating coordinate frames, which lays a foundation for analyzing the vibration results in different expression forms, was derived. The key parameters influencing the accuracy of transient fluid-structure coupling results for centrifugal pump impeller were analyzed based on the measurement results initially. The results showed that the mapping methods on the fluid-structure interfaces, damping coefficients in the FSI solving procedure, fluid mesh stiffness, under relaxation factor for the load transfer procedure and load transfer convergence target were main factors that can influence the FSI solving results, and a parameter combination for FSI solution with high accuracy has been primarily obtained.
     4. The transient FSI calculation results for centrifugal pump was validated by the measured vibration results firstly, and the comparison between numerical and experimental results showed that good agreements in both aspects of vibration magnitude and phase, can be observed for all examined rotating speeds and flow rates. Some deviations, however, can also be found, especially for low flow rate. In addition, hydrodynamic force results based on two-way coupling effect for the single-blade centrifugal pump were quantitively analyzed for every rotating speed and flow rate condition, and the force components acting on different part of the impeller were studied. Equivalent stresses in the pump impeller for multi-condition were analyzed, and the time-variant equivalent stresses were studied.
     5. The periodic flow unsteadiness in single-blade pump has been quantitatively investigated in detail by defining pressure fluctuation intensity, velocity unsteadiness intensity and turbulence intensity based on solving URANS equations. To validate the reliability of the CFD calculation, transient pressure measurement for the model pump has been carried out using transient pressure sensor with high-precision. Periodic pressure results for one impeller revolution were obtained, and good agreements can be observed between numerical and measured pressure results for different rotating speeds and flow rates.
     6. FSI simulation under partitioned coupling strategy for a centrifugal pump with multi-blade impeller was done to analyze impeller periodical oscillation, stress distribution and hydrodynamic force results for different operational conditions, and FSI effects for multi-blade impeller has been initially revealed.3D flow unsteadiness analysis method for centrifugal pump with twisted blades was established. Based on the unsteady flow calculation results within whole flow passage for the centrifugal pump, the3D velocity unsteadiness intensity and3D turbulence intensity were defined to study the unsteady flow from a new point of view. The magnitude and location of the pressure fluctuation intensity,3D velocity unsteadiness intensity and turbulence intensity have been obtained.
     Through this study, the flow-induced vibration behaviors with FSI effect were preliminary obtained, and numerical and experimental methods used can be a reference for FSI analysis in centrifugal pump. The proposed analysis method for flow unsteadiness can determine the periodic flow unsteadiness strength distribution, and can provide basis for optimization of pump on unsteady flow behaviors.
引文
[1]赵家荣.《“十一五”十大重点节能工程实施意见》读本[M].北京:中国发展出版社,2007
    [2]Bloch H P, Geitner F K. An Introduction to Machinery Reliability Assessment [M]. Gulf Publishing Co.,1994
    [3]蒋爱华.流体激励诱发离心泵基座振动的研究[D].[博士学位论文],上海交通大学,2011
    [4]Yuan S Q, Yuan J P, Liu H L, et al. Advances in design methods and characteristics of internal flow for centrifugal pumps [C]. ASME 3rd Joint US-European Fluids Engineering Summer Meeting, August 2-4,2010, Montreal, Canada:547-561
    [5]Billah K, Scanlan R. Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks [J]. American Journal of Physics,59(2):118-124,1991
    [6]Zienkiewicz O C, Taylor L R, Zhu J Z. The Finite Element Method:Its Basis and Fundamentals (Sixth ed.) [M]. Butterworth-Heinemann,2005
    [7]Hubner B, Seidel U. Partitioned solution to strongly coupled hydroelastic systems arising in hydro turbine design [C].2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Timisoara, Romania,2007
    [8]Fotia G. Computational fluid-structure interaction:a state-of-the-art review [R]. CRS4, Center for Advanced Studies, Research and Development in Sardinia Cagliari, Italy num. 00/77 techreport,2000
    [9]Peskin C S. Flow patterns around heart valves:a digital computer method for solving the equations of motion [D]. [PhD Thesis], Yeshiva University,1972
    [10]Peskin C S. The immersed boundary method [J]. Acta Numerica,11:1-39,2002
    [11]McQueen D M, Peskin C S. Computer-assisted design of pivoting disc prosthetic mitral valves [J]. J Thorac Cardiovasc Surg,86(1):126-35,1983
    [12]Fogelson A L. Mathematical and computational aspects of blood clotting [C]. Proceedings of the 11th IMACS World Congress, Oslo, Norway,1985
    [13]Fogelson A L, Peskin C S. Numerical solution of the 3D stokes equations in the presence of suspended particles [C]. Proceedings of the SI AM Multiphase Flow Workshop, Leesburg, 1986
    [14]Bayer R P. A computational model of the cochlea using the immersed boundary method [J]. Journal of Computational Physics,98(1):145-162,1992
    [15]Lai M C. Introduction to immersed boundary method [R]. Workshop on Fluid Motion Driven by Immersed Structure Fields Institute, August 9-13,2010
    [16]Hughes T, Liu W, Zimmermann T. Lagrangian-Eulerian finite element formulation for incompressible viscous flows [J]. Computer Methods in Applied Mechanics and Engineering, 29:329-349,1981
    [17]Donea J, Giuliani S, Halleux J P. An Arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions [J]. Computer Methods in Applied Mechanics and Engineering,33:689-723,1982
    [18]Ramaswamy B, Kawahara M. Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow [J]. International Journal for Numerical Methods in Fluids,7:1053-1075,1987
    [19]Huerta A, Liu W K. Viscous flow with large free surface motion [J]. Computer Methods in Applied Mechanics and Engineering,69:277-324,1988.
    [20]Grandmont C. Analyse mathematique et numerique de quelques problemes d'interaction fluide-structure [D]. [PhD thesis], Universite Paris,1998
    [21]Bernardi C, Maday Y, Patera A T. A new non conforming approach to domain decomposition: the mortar element method [R]. College de France Seminar,1994
    [22]Cebral J, Lohner R. Fluid-structure coupling:extensions and improvements [R]. Report AIAA-97-064, AIAA,1997
    [23]Quarteroni A, Valli A. Domain Decomposition Methods for Partial Differential Equations [M]. Oxford University Press,1999
    [24]Blom F. Investigations on computational fluid-structure interaction [D]. [PhD thesis], Ecole Polytechique Federale de Lausanne,1998
    [25]Zhang H, Bathe K J. Direct and iterative computing of fluid flows fully coupled with structures [C]. First MIT Conference on Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology Cambridge, USA:1440-1443,2001
    [26]Thomson L L. Design and analysis of space-time and galerkin/least squares finite element methods for fluid-structure interaction on exterior domains [D]. [PhD thesis], Stanford University,1994
    [27]Harari 1, Grosh K, Hughes T J R, et al. Recent development in finite element methods for structural acoustics [J]. Archives of Computational Methods in Engineering,3:131-311, 1996
    [28]Komatitsch D, Barnes C, Tromp J. Wave propagation near a fluid-solid interface:a spectral element approach [J]. Geophysics,65(2):623-631,1999
    [29]Liu W K, Ma D C. Coupling effects between liquid sloshing and fexible fluid filled systems [J]. Nuclear Engineering and Design,72:345-357,1982
    [30]Ortiz J L, Barhors A A. Closed form modeling of fluid-structure interaction with nonlinear sloshing:Potential flow [J]. AIAA Journal,35:1510-1517,1997
    [31]Peseux B, Martin V. Numerical procedure for fluid-structure interaction:interface elements [R]. No.36 in Pitman Research Notes in Mathematics, Longman Scientific & Technical: 78-103,1994
    [32]肖若富,韦彩新.混流式水轮机转轮的动力学研究[J].大电机技术,7:41-42,2001
    [33]Rodriguez C G, Equsquiza E, Escaler X, et al. Experimental investigation of added mass effects on a Francis turbine runner in still water[J]. J. Fluids and Structures,22(5):699-712, 2006
    [34]曹良,张立翔.混流式水轮机固定部件动力特性分析的附加质量法[J].中国农村水利水电,2:107-109,2008
    [35]张立翔,徐天茂.巨型混流式水轮机叶片水弹性失稳特性分析[J].动力学与控制学报,2:90-96,2004
    [36]Zhang L X, Guo Y K, Wang W Q. FEM simulation of turbulent flow in a turbine blade passage with dynamical fluid-structure interaction [J]. Int. J. Numer. Meth. Fluids,12: 1299-1330,2009
    [37]Zhang L X, Guo Y K, Wang W Q. Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid-structure interaction [J]. Int. J. Numer. Meth. Fluids,54(5):517-541,2007
    [38]谷朝红,姚雄亮.水轮机流固耦合振动的特性研究[J].大电机技术,6:47-51,2001
    [39]罗永要,王正伟,梁权伟.混流式水轮机转轮动载荷作用下的应力特性[J].清华大学学报(自然科学版),45(2):235-237,2005
    [40]Park K C, Felippa C. Computational methods for transient analysis [R] Partitioned Analysis of Coupled Systems:157-219,1983
    [41]Farhat C, Lesoinne M. Mesh partitioning algorithms for the parallel solution of partial differential equations [J]. Applied Numerical Mathematics,12(5):443-457,1993
    [42]Farhat C, Lanteri S. Simulation of compressible viscous flows on a variety of MPPs: computational algorithms for unstructured dynamic meshes and performance results [J]. Computer Methods in Applied Mechanics and Engineering,119:35-60,1994
    [43]Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems:three-field formulation, geometric conservation and distributed solution [J]. International Journal for Numerical Methods in Fluids,21:807-835,1995
    [44]Piperno S. Simulation numerique de phenomenes d'interaction fluide-structure [D]. [PhD thesis], Ecole Nationale des Ponts et Chaussees,1995.
    [45]Lesoinne M, Farhat C. Geometric conservation laws for aeroelastic computations using unstructured dynamic meshes [C].12th AIAA CFD Conference, A.1. of Aeronautics and Astronautics,1995
    [46]Brennen C E. Hydrodynamics and Cavitation of Pumps [M]. Vienna:Springer,2008
    [47]Benra F K, Dohmen H J. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation [C]. ASME PVP2007, San Antonio, Texas,2007
    [48]Kato C, Yamade Y, Wang Hong, et al. Prediction of the noise from a multi-stage centrifugal pump [C]. ASME FEDSM2005, PART B:1273-1280
    [49]Langthjem M A. A numerical study of flow-induced noise in a two-dimensional centrifugal pump, Part I:hydrodynamics [J]. J. Fluid and Structures,2004,19(3):349-368
    [50]Campbell R L, Paterson E G. Fluid-structure interaction analysis of flexible turbomachinery [J]. Journal of Fluids and Structures,27,1376-1391,2011
    [51]Muench C, Ausoni P, Braun O, et al. Fluid-structure coupling for an oscillating hydrofoil [J]. Journal of Fluids and Structures,26,1018-1033,2010
    [52]Jiang Y Y, Yoshimura S, Imai R, et al. Quantitative evaluation of flow-induced structural vibration and noise in turbomachinery by full-scale weakly coupled simulation [J]. Journal of Fluids and Structures,23:531-544,2007
    [53]Zhu B S, Kamemoto K. Numerical simulation of unsteady interaction of centrifugal impeller with its diffuser using Lagrangian discrete vortex method [J]. Acta Mech Sinica,21:40-46, 2005
    [54]Zhu B, Kamemoto K. Simulation of the unsteady interaction of a centrifugal impeller with its diffuser by an advanced vortex method [J]. JSME Int. J. B,43(3):371-379,2000
    [55]Guo S, Maruta Y. Experimental investigations on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers [J]. JSME International Journal, 48(1):136-143,2005
    [56]Srivastav O P, Pandu K R, Gupta K. Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump [C]. Journal of the Institution of Engineers (India): Mechanical Engineering Division,2003
    [57]Al-Qutub A, Khalifa A, Khulief Y. Experimental investigation of the effect of radial gap and impeller blade exit on flow-induced vibration at the blade-passing frequency in a centrifugal pump [J]. International Journal of Rotating Machinery,2009:704845,2009
    [58]Wu S F, Riven E I, Li L. Fuel pump vibration and noise measurement and analysis [J]. Noise Control Eng. J.,49(6):248-257,2001
    [59]Zhang Z. Rotating stall mechanism and stability control in the pump flows [C].25th IAHR Symposium on Hydraulic Machinery and Systems, Timisoara, Romania,2010
    [60]Ullum U, Wright J, Dayi O, et al. Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data [J]. Journal of Physics:Conference Series,52:36-45,2006
    [61]Berten S, Dupont P, Fabre L, et al. Rotor-stator interaction induced pressure fluctuations: CFD and hydroacoustic simulations in the stationary components of a multistage centrifugal pump [C]. Proceedings of the ASME 2007 Fluids Engineering Division Summer Meeting, San Antonio, Texas,2007
    [62]Berten S, Dupont P, Fabre L, et al. Experimental investigation of flow instabilities and rotating stall in a high-energy centrifugal pump stage [C]. Proceedings of the ASME Fluids Engineering Division Summer Conference, Vail, USA,2009
    [63]何希杰,于禧民.离心泵水力设计对振动的影响[J].水泵技术,1:17-22,1995
    [64]吴仁荣.降低离心泵运行振动的水力设计[J].机电设备,4:18-22,2004
    [65]黄国富,常煜,张海民等.低振动噪声船用离心泵的水力设计[J].船舶力学,4:313-318,2009
    [66]黄国富,常煜,张海民.基于CFD的船用离心泵流体动力振动噪声源分析[J].水泵技术,3:20-33,2008
    [67]倪永燕.离心泵非定常湍流场计算及流体诱导振动研究[D].[博士学位论文],江苏大学,2008
    [68]叶建平.离心泵振动噪声分析及声优化设计研究[D].[硕士学位论文],武汉理工大学,2006
    [69]Xu H, Tan M G, Liu H L, et al. Fluid-strucrue interaction study on diffuser pump with a two-way couling method [C],5th International Symposium on Fluid Machinery and Fluids Engineering, Jeju, Korea,2012
    [70]王洋,王洪玉,张翔等.基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J].农业工程学报,3:131-137,2011
    [71]Ni Y Y, Yuan S Q, Pan Z Y, et al. Detection of cavitation in centrifugal pump by vibration methods [J]. Chinese Journal of Mechanical Engineering.5:46-49,2008
    [72]王勇.离心泵空化及其诱导振动噪声研究[D].[博士学位论文],江苏大学,2011
    [73]Yedidiah S. Centrifugal pump problems:Causes and cures [M]. Petroleum Publishing Company,1980
    [74]Yedidiah S. Oscillations at low NPSH caused by flow-conditions in the suctions in pipe [C]. ASME Cavitation and Polyphase Flow Forum,5:27-28,1974
    [75]梁超.压力脉动法在离心泵汽蚀故障诊断中的研究[D].[硕士学位论文],东北电力大学,2010
    [76]黄忠富.小波分析在离心泵汽蚀故障诊断中的应用研究[D].[硕士学位论文],江苏大学,2004
    [77]Chini S F, Rahimzadeh H, Bahrami M. Cavitation detection of a centrifugal pump using noise spectrum [C]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California,2005
    [78]Okamura T, Ohki H, Matsunaga Y. Intensity of cavitaion erosion in centrifugal pumps operating at low flow rate [C]. ASME Cavitation in Hydraulic Structures and Turbomachinery conference, Albuquerque, New Mexico,1985
    [79]苏永生,王永生,段向阳.离心泵空化监测阈值确定方法研究[J].农业机械学报,5:68-71,2010
    [80]苏永生,王永生,段向阳.离心泵空化试验研究[J].农业机械学报,3:77-80,2010
    [81]Feng J J. Numerical and experimental investigations on rotor-stator interaction in radial diffuser pumps [D]. [PhD thesis], University of Duisburg-Essen,2008
    [82]Japikse D, Marscher W D, Raymond B F. Centrifugal Pump Design and Performance [M]. Concepts TTI Inc.,1997
    [83]Dring R P, Joslyn H D, Hardwin L W, et al. Turbine rotor-stator interaction [J]. ASME Journal of Engineering Power,104:729-742,1982
    [84]Ubaldi M, Zunino P, Barigozi G, et al. An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow [J]. ASME Journal of Turbomachinery,118: 41-54,1996
    [85]Shi F, Tsukamoto H. Numerical study of pressure fluctuations caused by impeller-diffuser interaction in a diffuser pump stage [J]. ASME Journal of Fluids Engineering,123:466-474, 2001
    [86]Arndt N, Acosta A J, Brennen C E, et al. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers [J]. ASME Journal of Turbomachinery,112:98-108,1990
    [87]Brennen C E. Hydrodynamics of Pumps [M]. Concept ETI Inc. and Oxford Unversity Press, 1994
    [88]Fleeter S, Jay R L, Bennett W A. Wake induced time-variant fluids aerodynamics including rotor-stator axial spacing effects [J]. ASME Journal of Fluids Engineering,103:59-66,2006
    [89]Giles M B. Calculation of unsteady wake/rotor interaction [J]. J. Propul. Power,4(4): 356-362,1988
    [90]Lewis J P, Delaney R A, Hall E J. Numerical prediction of turbine vaneblade aerodynamic interaction [J]. ASME Journal of Turbomachinery,111:387-393,1989
    [91]Sharma O P, Pickett G F, Ni R H. Assessment of unsteady flows in turbines [J]. ASME Journal of Turbomachinery,114:79-90,1992
    [92]Ho Y H, Lakshiminarayana B. Computation of unsteady viscous flow through turbomachinery blade row due to upstream rotor wakes [J]. ASME Journal of Turbomachinery,117:541-552,1995
    [93]Valkov T, Tan C S. Control of the unsteady flow in a stator blade row interacting with upstream moving wakes [J]. ASME Journal of Turbomachinery,117:97-105,1995
    [94]Arnone A, Pacciani R. Rotor-stator interaction analysis using the navier-stokes equations and a multigrid method [J]. ASME Journal of Turbomachinery,118:679-689,1996
    [95]He L, Chen T, Wells R G, et al. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines [J]. ASME Journal of Turbomachinery,124(4):564-571,2002
    [96]Bert P F, Combes J F, Kueny J F. Unsteady flow calculation in a centrifugal pump using a finite element method [C]. Proceeding of ⅩⅧ IAHR Symposium on Hydraulic Machinery and Cavitation, Valencia, Spain,1996
    [97]Muggli F A, Wiss D, Eisele K, et al. Unsteady flow in the vaned diffuser of a medium specific speed pump [C]. Proceeding of International Gas Turbine and Aeroengine Congress and Exhibition, ASME Paper:96-GT-157,1996
    [98]Qin W, Tsukamoto H. Theoretical study of pressure fluctuations downstream of a diffuser pump impeller-part 1:fundamental analysis on rotor-stator interaction [J]. ASME Journal of Fluids Engineering,119:647-652,1997
    [99]Qin W, Tsukamoto H. Theoretical study of pressure fluctuations downstream of a diffuser pump impeller-part 2:Effects of volute, flow rate and radial gap [J]. ASME Journal of Fluids Engineering,119:653-658,1997
    [100]Wang H, Tsukamoto H. Fundamental analysis on rotor-stator interaction in a diffuser pump by vortex method [J]. ASME Journal of Fluids Engineering,123:737-747,2001
    [101]Wang H, Tsukamoto H. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions [J]. ASME Journal of Fluids Engineering,125:767-777,2003
    [102]Furukawa A, Takahara H, Nakagawa T, et al. Pressure fluctuation in a vaned diffuser downstream from a centrifugal pump impeller [J]. International Journal of Rotating Machinery,9:285-292,2003
    [103]Dawes W N. A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser:flow analysis [J]. ASME Journal of Turbomachinery,117:213-222,1995
    [104]Ardizzon G, Pavesi G. Analysis of unsteady flow in a vaned diffuser radial flow pump [C]. Proceeding of the 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii,2004
    [105]Ardizzon G, Pavesi G. Analysis of unsteady impeller diffuser interaction in a centrifugal pump [C]. Proceeding of 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden,2004
    [106]Feng J, Benra F-K, Dohmen H J. Investigation of periodically unsteady flow in a radial pump by CFD simulations and LDV measurements [J]. J Turbomach-Trans ASME,133:011004, 2011
    [107]Zhang M, Tsukamoto H. Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser [J]. ASME Journal of Fluids Engineering,127:743-751,2005
    [108]Meakhail T, Park S O. A study of impeller-diffuser-volute interaction in a centrifugal fan. ASME Journal of Turbomachinery,127:84-90,2005
    [109]Khelladi S, Kouidri S, Bakir F, et al. Flow study in the impeller-diffuser interface of a vaned centrifugal fan [J]. ASME Journal of Fluids Engineering,127:495-501,2005
    [110]Arndt N, Acosta A J, Brennen C E, et al. Rotor-stator interaction in a diffuser pump [J]. ASME Journal of Turbomachinery,111:213-221,1989
    [111]Justen F, Ziegler K U, Gallus H E. Experimental investigation of unsteady flow phenomena in a centrifugal compressor vaned diffuser of variable geometry [C]. Proceeding of 43rd International Gas Turbine and Aeroengine Congress and Exhibition, Stockholm, Sweden, 1998
    [112]Feng J, Benra F-K, Dohmen H J. Unsteady flow visualization at part-load conditions of a radial diffuser pump:by PIV and CFD [J]. Jounral of Visualization,12(1):65-72,2009
    [113]Akhras A, Hajem M E, Morel R, et al. Internal flow investigation of a centrifugal pump at the design point [C]. Proceeding of 20th IAHR Symposium on Hydraulic Machinery and Systems, Charlotte, USA,2000
    [114]Akhras A, Hajem M E, Champagne J Y, et al. The effect of a vaned diffuser on the flow of a radial impeller [C]. Proceeding of the XXIst IAHR Symposium on Hydraulic Machinery and Systems, Lausanne,2002
    [115]Akhras A, Hajem M E, Champagne J Y, et al. The flow rate influence on the interaction of a radial pump impeller and the diffuser [C]. Proceeding of ISROMAC-9, Honolulu, Hawaii, Paper No FD-ABS-078,2002
    [116]Akhras A, Hajem M E, Champagne J Y, et al. The flow rate influence on the interaction of a radial pump impeller and the diffuser [J]. International Journal of Rotating Machinery,10(4): 309-317,2004
    [117]Hajem M E, Akhras A, Morel R, et al. Rotor stator interactions in a centrifugal pump equipped with a vaned diffuser [C]. Proceeding of 4th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics,2001
    [118]Pintrand G, Caignaert G, Bois G, et al. Analysis of unsteady flows in a vaned diffuser radial flow pump [C]. Proceeding of the XX1st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne,2002
    [119]Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry [J]. ASME Journal of Fluids Engineering,116: 538-554,1994
    [120]Wernet M P. Development of digital particle imaging velocimetry for use in turbomachinery [J]. Experiments in Fluids,28:91-115,2000
    [121]Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes, part 1:on flow structures and turbulence [J]. ASME Journal of Fluids Engineering, 122:97-107,2000
    [122]Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes. part Ⅱ:addressing passage averaged and LES modeling issues in turbomachinery flow [J]. ASME Journal of Fluids Engineering,122:108-116,2000
    [123]Sinha M, Pinarbashi A, Katz J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump [J]. ASME Journal of Fluids Engineering,123:490-499,2001
    [124]Wuibaut G, Bois G, Dupont P, et al. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions [J]. ASME Journal of Fluids Engineering,124:791-797,2002
    [125]Wuibaut G, Bois G, Dupont P, et al. Rotor stator interactions in a vaned diffuser of a radial flow pump for different flow rates using PIV measurement technique [C]. Proceeding of 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, Paper:FD-ABS-018,2002
    [126]Wuibaut G, Dupont P, Caignaert G, et al. Rotor stator interactions in a vaned diffuser radial flow pump [C]. Proceeding of 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden,2004
    [127]Dupont P, Caignaert G, Bois G, et al. Rotor-stator interactions in a vaned diffuser radial flow pump [C]. Proceeding of 2005 ASME Fluids Engineering Division Summer Meeting and Exhibition, Houston, Texas, FEDSM2005-77038,2005
    [128]徐朝晖,吴玉林,陈乃祥等.高速泵内三维非定常动静干扰流动计算[J].机械工程学报,40(3):1-4,2004
    [129]徐朝晖,吴玉林,陈乃祥等.高速泵内三维非定常湍流激振计算[J].清华大学学报(自然科学版),43(10):1428-1431,2003
    [130]徐朝晖,吴玉林,陈乃祥等.基于滑移网格与RNG湍流模型计算泵内的动静干扰[J].工程热物理学报,26(1):66-68,2005
    [131]徐朝晖.高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D].[博士学位论文],清华大学,2004
    [132]李新宏.部分流泵整机非定常流动数值计算及研究[D].[博士学位论文],西安交通大学,2003
    [133]陈党民,李新宏,黄淑娟.部分流泵整机非定常流动数值模拟[J].工程热物理学报, 26(4):89-92,2005
    [134]耿少娟,聂超群,黄伟光等.不同叶轮形式下离心泵整机非定常流场的数值研究[J].机械工程学报,42(5):27-31,2006
    [135]Yuan S Q, Ni Y Y, Pan Z Y, et al. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps [J]. Chinese Journal of Mechanical Engineering,22(1):64-69, 2009
    [136]潘中永,倪永燕,袁寿其.基于动静干涉的离心泵转速测量机理与实验[J].农业机械学报,41(3):82-85,2010
    [137]杨敏,闵思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力数值模拟[J].农业机械学报,40(11):83-88,2009
    [138]郭鹏程.水力机械内部复杂流动的数值研究与性能预测[D].[博士学位论文],西安理工大学,2009
    [139]唐学林,陈稚聪,吴玉林.离心泵叶轮内部清水湍流的动态大涡模拟[J].清华大学学报(自然科学版),44(9):1231-1234,2004
    [140]袁建平.离心泵多设计方案下内流PIV测试及其非定常全流场数值模拟[D].[博士学位论文],江苏大学,2008
    [141]Wu Y L, Liu S H, Yuan H J, et al. PIV measurement on internal instantaneous flows of a centrifugal pump [J]. Sci China Tech Sci,54(2):270-276,2011
    [142]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics [M]. British:Longman Group Ltd,1995
    [143]罗兴琦.水轮机转轮现代设计理论及应用[M].西安交通大学出版社,1997.
    [144]Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles [J]. International Journal of Heat and Fluid Flow,20(3):241-254,1999
    [145]Boussinesq M J. Essai sur la theorie des eaux courantes [J]. Presentes par divers savantsal' Academie des Sciences,1877
    [146]Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Comp Meth Appl Mech Eng,3:269-289,1974
    [147]Yakhot V, Orszag S A, Tangham S, et al. Development of turbulence models for shear flows by a double expansion technique [J]. Phys. Fluids,7:1510-1520,1992
    [148]Gee K, Cummings R M, Schiff L B. Turbulence model effects on separated flow about a prolate spheroid [J]. AIAA Journal,30(3):655-664,1992
    [149]Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows [J]. International Journal of Engineering Science,30(10):1379-1388,1992
    [150]姜宗林,陈耀松.关于RNG代数湍流模式的研究[J].力学学报,27(1):99-103,1995
    [151]Lien F S, Leschziner A. Assessment of turbulent transport models including non linear RNG eddy viscosity formulation and second moment closure for flow over backward facing step [J]. Computers and Fluids,23(8):983-1004,1994
    [152]Choudhury D, Kim S E, Flannery W S. Calculation of turbulent separated flows using a renormalization group k-ε based turbulence model [J]. American Society of Mechanical Engineers, Fluids Engineering Division,49(6):177,1993
    [153]Mompean G. Numerical simulation of a turbulent flow near a right-angled corner using the special non-linear model with RNG k-ε equations [J]. Computers & Fluids,27(7): 847-859,1998
    [154]Xia J L, Yadigaroglu G, Liu Y S,et al. Numerical and experimental study of swirling flow in a model combustor[J]. International Journal of Heat and Mass Transfer,41(11):1485-1497, 1998
    [155]Widmann J F, Rao C S, Presser C. Aerodynamic study of a vane-cascade swirl generator [J]. Chemical Engineering Science,55(22):5311-5320,2000
    [156]Bassam A K A-H. Modifying a reattaching shear layer using a rotating cylinder [J]. Computers & Fluids,29(3):261-273,2000
    [157]Meroney R N, Leitl B M, Rafailidis S. Wind-tunnel and numerical modeling of flow and dispersion about several building shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics,81(1-3):333-345,1999
    [158]Wilcox D C. Re-assessment of the scale-determining equation for advanced turbulence models [J].AIAA Journal,26(11):1299-1310,1988
    [159]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal,32(8):1598-1605,1994
    [160]ANSYS User Manual 12.1. ANSYS Inc,2009
    [161]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [162]王学.基于ALE方法求解流固耦合问题[D].[硕士学位论文],国防科学技术大学,2006
    [163]王少波.混流式水轮机转轮动力特性分析及综合优化设计[J].[博士学位论文],郑州机械研究所,2003
    [164]Agostinelli A, Nobles D, Mockridge C R. An experimental investigation of radial thrust in centrifugal pumps [J]. ASME Journal of Engineering for Power,82:120-126,1960
    [165]Aoki M. Instantaneous interblade pressure distributions and fluctuating radial thrust in a single-blade centrifugal pump [J]. Bulletin of JSME,27:2413-2420,1984
    [166]Belytschko T, Kennedy J. Computer models for subassembly simulation [J]. Journal of Nuclear Engineering and Design,49:17-38,1978
    [167]Belytschko T, Kennedy J, Schoeberle D. Quasi-Eulerian finite element formulation for fluid structure interaction [J]. ASME Journal of Pressure Vessel Technology,102:62-69,1980
    [168]Benra F-K. Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller [J]. ASME Journal of Fluids Engineering,128:783-793,2006
    [169]Non-Contacting Displacement Sensors SD-051. Bruel & Kjaer Vibro GmbH,2009
    [170]Oscillators for Non-contacting Displacement-Sensors OD-051. Briiel & Kjaer Vibro GmbH, 2009
    [171]WIKA Operating Instructions. WIKAAlexander Wiegand SE & Co. K.G,2009
    [172]Electromagnetic Flow Converter Technical Sheet. KROHNE,2003
    [173]Magnetisch Induktiver Durchflussmesser. Wikipedia, die freie Enzyklopaedie. http://de.wikipedia.org/wiki/Magnetisch_Induktiver_Durchflussmesser
    [174]LabVIEW User Manual. Natonal Instruments Corporation,2010
    [175]泵的噪声测量与评价方法.中华人民共和国机械行业标准,国家机械工业局,2000
    [176]Pei J, Dohmen H J, Yuan S Q, et al. Investigation of unsteady flow-induced impeller oscillations of a single-blade pump under off-design conditions [J]. J. Fluids Struct,35: 89-104,2012
    [177]Pei J, Benra F-K, Dohmen H J. Application of different strategies of partitioned fluid-structure interaction simulation for a single-blade pump impeller [J]. P. I. Mech. Eng. E-J. Pro.226:297-308,2012
    [178]Hiller M, Franitza D. Systems Simulation [M]. University Duisburg-Essen, Germany,2003
    [179]Clough R W, Penzien J J. Dynamics of Structures [M], Me Graw-Hill,1993
    [180]Steindorf J. Partitionierte Verfahren fur Probleme der Fluid-Struktur Wechselwirkung [D]. [PhD Thesis], Technischen Universitat Braunschweig,2002
    [181]Pressure Transducer Handbook. Kulite Semiconductor Products, Inc.,2004
    [182]Scout55 Measuring Amplifier Data Sheet. Hottinger Baldwin Messtechnik GmbH,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700