高效低振动循环泵设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在国家杰出青年科学基金(50825902)资助下开展工作。循环泵是应用最广泛的离心泵之一,主要用于暖通空调和家用热水循环系统。目前循环泵主要存在效率较低、振动噪声水平较高等问题。随着新能效法规的出台和用户对振动噪声指标的更高要求,如何在传统离心泵设计方法的基础上,通过优化几何参数提高循环泵的水力效率和降低循环泵的振动噪声水平,成为一个重要的研究课题。本文采用理论分析、数值计算和试验验证相结合的方法对循环泵水力性能和振动噪声特性进行了研究,旨在于建立一套基于CFD的高效低振动循环泵水力设计方法。本文的主要工作和创造性成果有:
     1.在传统离心泵设计方法的基础上,在保证流量、扬程不变的前提下,通过优化设计转速,使设计比转速位于40~70的高效区,并结合正交试验对循环泵的关键水力部件叶轮和蜗壳进行优化设计,采用理论分析和数值计算的方法对循环泵的水力性能指标和振动特性进行研究。结果表明:优化后B50和C100循环泵的泵效率分别为82.3%和81.1%,满足了设计能效指标要求并且超过了欧洲标准定义的离心泵最高可实现效率指标。同时,较高的转速,降低了叶轮的外径,使循环泵整体结构更为紧凑,进而降低了生产制造成本。
     2.改进了循环泵蜗壳水力损失数学模型,考虑了叶轮与蜗壳间过渡段内的水力损失及螺旋蜗壳内的扩散损失,预测循环泵整体水力性能,指导蜗壳水力优化设计,试验表明:蜗壳水力损失数学模型能较为准确地预测循环泵内的水力损失,计算损失误差控制在5%之内。
     3.结合正交试验和数值计算对循环泵叶轮和蜗壳进行了优化设计,分别以水力性能、叶片表面载荷、压力脉动强度、径向力脉动幅值这四个指标作为水力模型最优方案的判断标准,通过对比不同方案的计算结果,得到最优方案B50S0和C100S0。从水力优化设计过程中得出几点结论:1)叶片流线安放角β是影响叶片载荷的关键参数,合理的流线安放角能有效地降低叶片上的载荷,改善叶轮流道内的流动状态,降低叶轮的振动水平。对于B50和C100叶轮研究对象而言,当流线安放角β为25°时,叶片表面的压力载荷和相对速度载荷均最小。2)压力脉动强度与蜗壳基圆直径和喉部面积的大小成反比;径向力脉动幅值与蜗壳基圆直径的大小成反比;较大的蜗壳基圆直径和适中的喉部面积能有效地降低循环泵的压力脉动强度和径向力脉动幅值,进而降低振动。对于B50和C100循环泵而言,当蜗壳基圆直径D3分别为1.25D2和1.3D2时,具有较好的水力性能、较低的压力脉动强度和较小的径向力脉动幅值。3)首次提出了压力脉动强度与蜗壳基圆直径、喉部面积呈二次多项式的函数关系,随着蜗壳基圆直径、喉部面积的变大,压力脉动幅值逐渐变小,并最终趋近于一个极小值;径向力脉动幅值与蜗壳基圆直径呈二次多项式函数关系,随着蜗壳基圆直径的逐渐变大,径向力脉动幅值逐渐趋近于一个极小值。
     4.对B50SO和C100S0方案进行了结构设计和样机试制,同时,为了降低泄露损失,创新设计了新型双道口环密封结构,以B50S0循环泵为研究对象,水力性能试验表明:与单道口环密封结构相比,双道口环密封结构的泵效率提升了6%。
     5.首次在背景噪声小于16dB的半消音室和固有频率小于10Hz的振动试验平台上,根据ISO9906、ISO20361和ISO10816测试标准,采用麦克风传感器、压力传感器和振动加速度传感器分别对B50S0模型和C100SO模型进行了水力性能及振动噪声试验,试验结果表明:B50S0模型和C100SO模型达到了设计要求。
     6.为了深入研究循环泵振动噪声特性,以B50SO模型为研究对象,测量了不同流量和转速下的振动噪声信号,采用1/3倍频程滤波法对振动噪声信号进行提取,分析了振动噪声与流量、转速及压力脉动之间的关系,发现了由流动分离引起的低频噪声主要存在于非设计工况下;噪声水平、压力脉动水平及结构振动水平与转速呈线性函数关系。研究发现:1)整个声压频域范围内,噪声水平从低频段到高频段呈先升高,后下降的趋势。2)非设计工况下的噪声水平、振动水平及压力脉动水平高于设计工况。3)由电机转子和定子的电磁感应所激励的高频振动主要存在于电机和电机座上。4)结构振动水平从大到小的排序依次为电机、法兰、电机座和泵体:靠近蜗舌区域和蜗壳出口扩散段处的振动水平高于泵体其它区域;法兰轴向上的振动小于径向振动。
     7.优化后的B50SO和C100S0水力模型已用于格兰富相关产品(TPE3),效率分别超过欧洲最高可实现效率目标的5%和1%,振动和噪声水平(B50SO为1.05mm/s和65dB(A),C100SO为0.77mm/s和59dB(A))分别低于产品设计要求规定的1.8mm/s和68dB(A)。
This research is supported by the national outstanding youth fund (No.50825902). Circulator pump is one of the most widely used centrifugal pumps. It is mainly used for HVAC(Heating, Ventilation and Air Conditioning) systems and domestic hot water circulation systems. Currently, low efficiency and high vibration/noise level are the main issues in circulator pump. By considering the new energy and efficiency regulations are released and more strict requirements on vibration and noise level from customers, which makes people to think how to improve the hydraulic efficiency and reduce the vibration and noise level of circulator pump by optimizing the geometry parameters based on traditional centrifugal pump design methods. In this paper, the theoretical analysis, numerical simulation and experimental verification were used to study the hydraulic performance and vibration/noise characteristics of circulator pump. The purpose is to establish a set of hydraulic design methods, based on CFD, for circulator pump with high efficiency and low vibration. The main research contents and important conclusions of this paper are below:
     1. Based on traditional centrifugal pump design methods, the nominal specific speed of circulator is optimized for the high efficiency range from40to70, which is made by adjusting the nominal speed with the constant flow rate and head.Based on this design method, the Design of Experiments (DOE) is conducted to optimize the critical hydraulic parts-impeller and volute. Afterwards, the hydraulic performance and vibration characteristics of circulator pumps are studied by using theoretical and numerical analysis. The results show that the efficiency of the post-optimized B50and C100circulator pumps are82.3%and81.1%, respectively. It satisfied new energy and efficiency regulation and exceeded the attainable highest pump efficiencies which are defined in European standard. It is generally known that the higher the speed, the smaller the outlet diameter of impeller. Therefore, it is a big production cost saving due to more compact design.
     2. A hydraulic loss mathematical model of the circulator pump volute is improved by taking the hydraulic loss of transition section between impeller and volute and the diffusion loss of volute into consideration, to predict the overall hydraulic performance of the circulator pump, and give a guideline for the hydraulic optimization design process of volute. The performance measurements show that the hydraulic loss mathematical model can accurately predict the hydraulic loss of the circulator pump, and the calculated loss deviation is less than5%.
     3. The impeller and volute of circulator pumps are optimized according to DOE and numerical calculation method. The hydraulic performance, blade loads, pressure pulsation amplitude and radial force amplitude, those four targets are taken as success criteria. The final optimized scenarios B50S0and C100S0are obtained by comparing the calculation results from different design scenarios. Results getting from hydraulic optimizing design progress are:1) the blade flow angle β is a critical parameter affecting the blade loads. The blade loads can be reduced and unsteadiness of flow can be improved with a proper blade flow angle, which indeed helps on reducing the vibration level of the impeller. For the impeller of B50and C100, when the blade flow angle β is25°, both the pressure load and the relative velocity load on the blade are at the minimum.2) Pressure pulsation amplitude is inversely proportional to the size of base circle diameter and throat area. The radial force pulsation amplitude is also inversely proportional to the size of base circle diameter. Both the amplitudes of pressure pulsation and radial force pulsation are effectively reduced by taking bigger base circle diameter and modest throat area into pump design. For B50and C100circulator pumps, they have better hydraulic performance, lower pressure pulsation amplitude and smaller radial force pulsation amplitude when the base circle diameter(D3), are1.25D2and1.3D2, respectively.3) The functional relationship of quadratic polynomial for pressure pulsation with base circle diameter and throat area is first proposed. The base circle diameter and throat area are larger, the pressure pulsation amplitude is lower and eventually tends to a minimum. The radial force pulsation amplitude has the functional relationship of quadratic polynomial with base circle diameter, and it tends to a minimum with increasing of the base circle diameter.
     4. The mechanical design and prototyping are applied to both B50S0and C100S0scenarios. Meanwhile, the new double seal ring structure is taken into the design to reduce the leakage loss. For the B50circulator pump, the performance test results indicate that the pump efficiency is increased by6%by using the double seal ring structure, on comparison with the single seal ring structure.
     5. Pump performance, air-borne noise level, fluid-borne noise level and structural vibration level are measured by utilizing the microphones, pressure sensors and vibration acceleration sensors according to the ISO9906, ISO20361and ISO10816, in the condition of hemi-anechoic room with background noise level lower than16dB and vibration test bed with natural frequency lower than10Hz.Experimental results show that the B50S0and C100S0scenarios fulfills the design requirements.
     6. To get a deep understanding of noise and vibration characteristics of circulator pump, the vibration and noise signals is measured in different flow rates and speeds for B50S0prototype. The findings are vibration caused by low frequencies mainly does exist at off-design condition and the overall noise level, pressure pulsation level and structural vibration level are linear functions with speed. The experimental results show that:1) In the whole sound pressure frequencies range, the noise level is increasing from low frequency bands to middle frequency bands first, and then it is dropping to the end of high frequency bands.2) The noise level, vibration level and pressure pulsation level at off-design conditions are higher than best efficiency point's.3) The high-frequency vibration of the motor and motor stool is induced by electromagnetic induction force between rotor and stator of motor.4) The sort of amplitude of structural vibration is motor>flanges>motor stool>pump casing and the vibration level of tongue and diffuser areas is higher than other areas of pump casing. Moreover, the radial vibration level is higher than axial.
     7. The final optimized hydraulic models B50S0and C100S0had been applied for Gundfos new generation circulator pumps(TPE3). Efficiency of B50S0and C100S0is higher than European Maximum Attainable Efficiency by5%and1%, separately. The vibration and noise levels(B50S0is1.05mm/s and65dB(A), C100S0is0.77mm/s and59dB(A)) are lower than1.8mm/s and68dB(A) that is defined by product specification.
引文
[1]Claus Barthel, Stefan Thomas. Market and feasibility study, refined technology procurement methodology adapted to the market for energy-efficient circulator pumps [R]. Doppersberg, Wuppertal Institute for Climate, Environment and Energy, 2006.
    [2]European Telecommunications Standards Institute. Commission Regulation (EC) No 641/2009 [S]. Sophia Antipolis:ETSI, 2009.
    [3]European Telecommunications Standards Institute. Commission Regulation Directive 2009/125/EC [S]. Sophia Antipolis:ETSI, 2009.
    [4]Willi Bohl. Pumpen Und Pumpenanlagen[M].3rd ed. Grafenau/Wiirtt: Lexika-Verlag Press., 1979.
    [5]Igor J Karassik, Joeph P Messina, Paul Cooper, et al. Pump Handbook[M].4th ed. New York: McGraw-Hill Companies. Inc, 2008.
    [6]Paul Cooper. Pumping Machinery[M]. New York: American Society of Mechanical Engineers, 1989.
    [7]Christopher Earls Brennen. Hydrodynamics of Pumps[M]. London:Concepts NREC & Oxford University Press,1994.
    [8]Gulich J F. Centrifugal Pumps[M].Springer-Verlag Berlin Heidelberg, 2008.
    [9]Neumann B. The Interaction Between Geometry and Performance of a Centrifugal Pump[M]. London:Mechanical Engineering Publications Limited, 1991.
    [10]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [11]特罗斯科兰斯基.叶片泵计算与结构[M].北京:机械工业出版社,1981.
    [12]何希杰,劳伟.离心泵最佳叶片数和出口安放角的选取[J].水泵技术,1993,(4):18-21.
    [13]曲延鹏,陈颂英,张洪法.离心泵出口角的改变对稳态水力性能影响的实验研究[J].流体机械,2005,33(10):1-3.
    [14]刘亮.叶轮出口参数对离心泵性能的影响[J].长沙电力学院学报(自然科学版),1995,10(4):425-429.
    [15]吴仁荣,陈文毅.降低离心泵运行振动的水力设计[J].机电设备,2004,(4):18-22.
    [16]谈明高,王勇,刘厚林,等.叶片数对离心泵内流诱导振动噪声的影响[J].排灌机械工程学报,2012,30(2):131-135.
    [17]严敬.叶轮几何参数对不同比转速离心泵性能的影响[J].水泵技术,1994,(4):17-19.
    [18]刘厚林,王勇,袁寿其,等.叶片出口宽度对离心泵流动诱导振动噪声的影响[J].华中科技大学学报(自然科学版),2012,40(1):123-127.
    [19]马雄飞.提高离心泵效率的探讨[J].机械工程师,2012,(6):148-149.
    [20]谈明高,刘厚林,王勇,等.叶轮外径对离心泵内流影响的CFD分析[J].排灌机械,2009,27(5):314-318.
    [21]王钊.蜗壳进口宽度对离心泵性能影响的数值研究[D].兰州:兰州理工大学,2012.
    [22]罗崇来.离心泵蜗壳的喉部面积探讨[J].水泵技术,1986,(4):7-10.
    [23]郭自杰.离心泵蜗壳结构参数对泵性能的影响[J].水泵技术,1993,(1):19-22.
    [24]李海权.离心泵蜗壳喉部面积对泵性能的影响[J].通用机械,2003,(11):41-43.
    [25]何希杰.泵隔舌间隙对性能影响的试验研究[J].流体机械,1995,(6):9-12.
    [26]祝磊,袁寿其,袁建平,等.不同径向间隙对离心泵动静干涉作用影响的数值模拟[J].农业机械学报,2011,42(5):49-55.
    [27]Bowerman R D, Acosta A J. Effect of volute on performance of a centrifugal pump impeller[J]. ASME transactions,1957,79(1):1057-1069.
    [28]Stepanoff A J. Centrifugal and Axial Flow Pump[M]. Michigan, John Wiley Press,1957.
    [29]Worster R C. The flow in volutes and its effects on centrifugal pump performance[J]. Proc I Mech. E,1963,(177): 31.
    [30]Hira D S. Vasandani V P. Influence of the volute tongue length and angle on the pump performance[J]. Journal of the Institute of Engineers India. Part M.E.1975, (56):145-152.
    [31]Lobanoff V S. Centrifugal pumps Design & Applications[M].2nd Edition. Houston: Gulf Publishing Company, 1992.
    [32]Junichi Kurokawa, Kajunari Matsumoto. Volute pump of very low specific speed[C]. In:The Sixth Asian International Conference on Fluid Machinery, Beijing,2000:250-255.
    [33]Dong R, Chu S, Katz J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctions, and noise in a centrifugal Pump[J]. Journal of Turbomachinery,1997, 119(3):506-515.
    [34]Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuation, and noise in a centrifugal pump Part A: Use of PDV data to compute the pressure field[J], ASME Journal of Fluid Engineering, 1995,117(1):24-29.
    [35]Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuation, and noise in a centrifugal pump Part A: Effect of blade-tongue interactions[J]. ASME Journal of Fluid Engineering, 1995,117(1):30-35.
    [36]Yang S S, Kong F Y, Chen B. Research on pump volute design method using CFD[J]. International Journal of Rotating Machinery, 2011, (1):1-7.
    [37]Shi Weidong, Wang Hongliang, Zhou Ling, et al. Optimization design of new-type deep well pump based on latin square test and numerical simulation[C]. Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting/FEDSM2010-30189, August 1-5, 2010, Quebec, Canada.
    [38]王洪亮,施卫东,陆伟刚,等.基于正交试验的深井泵优化设计[J].农业机械学报,2010,41(5):56-63.
    [39]施卫东,孙新庆,陆伟刚,等.矿用潜水电泵性能正交试验[J].排灌机械工程学报,2011,29(1):6-10.
    [40]施卫东,周岭,陆伟刚,等.高扬程深井离心泵的正交试验与优化设计[J].江苏大学学报(自然科学版),2011,32(4):400-404.
    [41]周岭,施卫东,陆伟刚,等.井用潜水泵导叶的正交试验与优化设计[J].排灌机械工程学报,2011,29(4):312-315,342.
    [42]何希杰.离心泵叶轮入口参数最优化设计的研究[J].排灌机械,1987,5(4):18-25.
    [43]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997.
    [44]张文涛,袁寿其,陈次昌.试验设计技术与泵的试验设计[J].排灌机械,1992,10(3):57-60.
    [45]袁寿其,曹武陵.用正交试验法设计无过载离心泵[J].水泵技术,1991(3):11-16.
    [46]Yuan Shouqi, Zhang Jinfeng, Tang Yue, et al. Research on the design method of the centrifugal pump with splitter blades[C]. Proceedings of FEDSM2009,6th Joint Fluids Engineering Conference/FEDSM2009-78101, August 2-6,2009, Colorado, USA.
    [47]袁寿其,张玉臻.离心泵分流叶片偏置设计的试验研究[J].农业机械学报,1995,26(4):79-83.
    [48]陈松山,周正富,葛强.长短叶片离心泵正交试验研究[J].扬州大学学报(自然科学版),2005,8(4):45-48.
    [49]张金凤.带分流叶片离心泵全流场数值预报和设计方法研究[D].镇江:江苏大学,2007.
    [50]袁寿其,张金凤,袁建平,等.用正交试验研究分流叶片主要参数对性能影响[J].排灌机械,2008,26(2):1-5.
    [51]袁建平,李淑娟,付跃登.用正交试验研究分流叶片对离心泵性能的影响[J].排灌机械,2009,27(5):306-309.
    [52]齐学义,胡家昕,田亚斌.超低比转速高速离心泵复合式叶轮的正交设计[J].排灌机械,2009,27(6):341-346.
    [53]齐学义.超低比转速高速离心泵复合式叶轮内部流动及其性能研究[D].兰州:兰州理工大学,2010.
    [54]丛小青,袁寿其,袁丹青.无过载排污泵正交试验研究[J].农业机械学报,2005,36(10):66-69.
    [55]王春林,刘红光,司艳雷,等.旋流自吸泵泵体结构参数的优化设计[J].农业工程学报,2009,25(11):146-151.
    [56]徐朝晖.高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D].北京:清华大学,2004.
    [57]郑小波.水轮机过流部件的优化设计和振动特性分析[D].西安:西安理工工大学,2006.
    [58]陈党民,李新宏,黄淑娟.部分流泵整机非定常流动数值模拟[J].工程热物理学报,2005,26(SuPPI):89-92.
    [59]杨敏,闵思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力数值模拟[J].农业机械学报,2009,40(11):83-88.
    [60]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,39(6):60-63.
    [61]崔宝玲,许文静,朱祖超,等.低比转速复合叫‘轮离心泵内的非定常流动特性[J].化工学报.2011,62(11):3093-3100.
    [62]姚志峰,王福军,肖若富,等.离心泵压力脉动测试关键问题分析[J].排灌机械工程学报.2010,28(3):219-223.
    [63]姚志峰,王福军,肖若富,等.双吸离心泵吸水室和压水室压力脉动特性试验研究[J].水 力学报.2012,43(4):474-479.
    [64]姚志峰,王福军,杨敏,等.叶轮形式对双吸离心泵压力脉动特性影响试验研究[J].机械工程学报.2011,47(12):133-137.
    [65]袁寿其,周建佳,袁建平,等.分流叶片对螺旋离心泵径向力的影响[J].农业机械学报.2012,43(9):37-42.
    [66]袁寿其,周建佳,袁建平,等.带小叶片螺旋离心泵压力脉动特性分析[J].农业机械学报.2012,43(3):83-87.
    [67]倪永燕.离心泵大量定常湍流场计算机流体诱导振动研究[D].镇江:江苏大学,2008.
    [68]祝磊,袁寿其,袁建平,等.不同型式隔舌离心泵动静干涉作用的数值模拟[J].农业工科学报.2011,27(10):50-55.
    [69]祝磊,袁寿其,袁建平,等.不同径向间隙对离心泵动静干涉作用影响的数值模拟[J].农业机械学报.2011,42(5):50-54.
    [70]张德胜,施卫东,李通通,等.轴流泵叶轮出口尾迹区非定常压力和速度场特性[J].农业工程学报.2012,28(17):32-36.
    [71]施卫东,冷洪飞,张德胜,等.轴流泵内部流场压力脉动性能预测与试验[J].农业机械学报.2011,42(5):44-47.
    [72]Dring R P, Joslyn H D, Hardwin L W, et al. Turbine Rotor-Stator Interaction[J]. ASME J. Eng. Power,1982,104(4):729-742.
    [73]Jose Gonzalez, Jorge Parrondo, Carlos Santolaria. et al. Steady and unsteady radial forces for a centrifugal pump with impeller to tongue gap variation[J].Journal of Fluids Engineering, Transactions of the ASME.2006,128(3),454-462.
    [74]Spence R, Amaral-Teixeira J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & Fluids,2009,38(6):1243-1257.
    [75]Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests [J]. Computers & Fluids,2008,3 (6): 690-704.
    [76]Gonzalez J, Fernandez J, Blanco E, et al. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump[J]. ASME Journal of Fluids Engineering, 2002,124(2): 348-355.
    [77]Guido Ardizzon, Giorgio Pavesi. Analysis of unsteady impeller diffuser interaction in a centrifugal pump[C]. Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, 2004.
    [78]Eduardo Blanco, Raul Barrio, Joaquin Frenandez, et al. Fluid dynamic pulsations and radial forces in a centrifugal pump with different impeller diameters[C]. Proceedings of the ASME, Houston,2005.
    [79]Croba D, Kueny J L. Numerical calculation of 2D, unsteady flow in centrifugal pumps: impeller and volute interaction[J]. International Journal for Numerical Methods in Fluids.1996, 22(6):467-481.
    [80]Miner S M. Evaluation of blade passage analysis using coarse grids[J]. ASME J. Fluids Eng., 2000,122(2): 345-348.
    [81]Raul Barrio, Jorge Parrondo, Eduardo Blanco. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers and Fluids, 2010, 39(5): 859-870.
    [82]Shi F, Tsukamoto H.Numerical study of pressure fluctuations caused by impeller-diffuser interaction in a diffuser pump stage[J]. Journal of Fluids Engineering,2001,9(123),466-474.
    [83]Tsukamoto H, Uno M, Nagal Y, et al. Pressure fluctuation downstream of a diffuser pump impeller[J]. Transactions of the Japan Society of Mechanical Engineers,Part B,1995,61(586): 2149-2156.
    [84]Qin W, Tsukamoto H. Theoretical study of pressure fluctuations downstream of a diffuser pump impeller-part 1:fundamental analysis on rotor-stator interaction[J]. ASME J. Fluids Eng., 1997,119(3):647-652.
    [85]Kitano Majidi. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachinery, Transactions of the ASME,2005,127(2): 363-371.
    [86]Yedidiah S. Adaptation of CFD to the design of centrifugal pumps[C]. Proceedings of FEDSM2007,5th Joint Fluids Engineering Conference/FEDSM2007-37349, July 30-August 2, 2007, California, USA.
    [87]Yedidiah S. The potential of using CFD in order to design better centrifugal pumps[C]. Proceedings of the 2008 ASME International Mechanical Engineering Congress and Exposition/IMECE2008-66141, October 31-November 6,2008, Boston, USA.
    [88]李文广.离心泵蜗壳断面的紊流时均流动测量[J].水泵技术,1995,(3):3-10.
    [89]张武高.流量对离心泵蜗壳内压力及速度分布的影响[J].石油机械,2000,(2):10-12.
    [90]马群南,吴仁荣,徐琼琰,等.吸入压力对泵振动和噪声的影响[J].水泵技术,2005,(2):34-38.
    [91]陈长盛,马俊,柳瑞锋,等.运行工况对离心泵振动影响的试验研究[J].噪声和振动控制,2012,(6):199-202.
    [92]黄建德,丁力,周建华,等.离心泵空泡脉动主动控制的研究[J].上海交通大学学报,1998,32(7):10-13.
    [93]倪永燕,袁寿其,潘中永,等.利用振动特性诊断流程泵的运行工况[J].排灌机械,2007,25(2):49-52.
    [94]裴吉,袁寿其,袁建平,等.基于虚拟仪器的离心泵振动测试系统设计[J].中国农村水利水电,2010,(3):132-135.
    [95]高波,杨敏官,李忠,等.空化流动诱导离心泵低频振动的试验研究[J].工程热物理学报,2012,33(6):965-968.
    [96]潘中永,倪永燕,袁寿其,等.基于动静干涉的离心泵转速测量机理与实验[J].农业机械学报,2010,41(3):81-85.
    [97]下勇,刘厚林,袁寿其,等.离心泵非设计工况空化振动噪声的试验测试[J].农业工程学报,2012,28(2),35-38.
    [98]谈明高,王勇,刘厚林,等.叶片数对离心泵内流诱导振动噪声的影响[J],排灌机械工程学报,2012,30(2):131-135.
    [99]Tourret J, Badie-Cassagnet A, Bernard G, et al. Experiment Studies of Noise Emmission and Noise Generation from a Centrifugal Pump[M]. New York: ASME Paper No.95-WA/FE-8, 1985.
    [100]Dong R, Chu S, Katz J. Quantitative visualization of the flow within the volute of a centrifugal pump. Part A:Technique[J]. ASME Journal of Fluids Engineering, 1992, 114(3), 390-395.
    [101]Dong R, Chu S, Katz J. Quantitative visualization of the Flow within the volute of a centrifugal pump. Part B: Results and analysis[J]. ASME Journal of Fluids Engineering,1992, 114(3),396-403.
    [102]lino T, Kasai K. An Analysis of unsteady flow in-duced by interaction between a centrifugal impelle and a vaned diffuser[J]. Trans. Jpn. Soc. Mech. Eng.1985,51(471):154-159.
    [103]Wang H, Tsukamoto H. Fundamental analysis on rotor-stator interaction in a diffuser pump by vortex method[J]. ASME J. Fluids Eng.,2001,123(4):737-747.
    [104]Wang H, Tsukamoto H. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions[J]. ASME J. Fluids Eng., 2003, 125(5):767-778.
    [105]Kaupert K A, Staubli T. The unsteady pressure field in a high specific speed centrifugal pump impeller-Part I:Influence of the volute[J]. ASME Journal of Fluids Engineering, 1999, 121(3): 621-626.
    [106]Kaupert K A, Staubli T. The unsteady pressure field in a high specific speed centrifugal pump impeller-Part 2:Transient hysteresis in the characteristic[J]. ASME Journal of Fluids Engineering,1999,121(3):627-632.
    [107]Ubaldi M, Zunino P, Barigozzi G, et al. An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow[J]. ASME J. Turbomach.,1996,118(1):41-51.
    [108]Daniel Kearney, Ronan Grimes, Jeff Punch. An experimental investigation of the flow fields within geometrically similar miniature-scale centrifugal pumps[J]. ASME Journal of Fluids Engineering,2009,131(10),1-10.
    [109]Rudolf Bachert, Bernd Stoffel, Matevz Dular. Unsteady cavitation at the tongue of the volute of a centrifugal pump[J]. ASME Journal of Fluids Engineering,2010,132(6),1-6.
    [110]Arndt N, Acosta A J, Brennen C E. Experimental investigation of rotor-stator interaction in a centrifugal pump with vaned diffusers[J]. Trans. ASME, J. of Turbomachinery,1990,1(12): 98-108.
    [111]Stoffel B, Ludwig G, Weiss K. Experimental investigations on the structure of part-load recirculations in centrifugal pump impellers and the role of different influence[C]. Proc. of 16th IAHR Symp. San Paulo,1992.445-454.
    [112]Benra F K. Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller[J]. ASME Journal of Fluids Engineering,2006,128(4): 783-793.
    [113]Benra F K, Dohmen H J, Schneider O. Investigation on the unsteady flow in radial waste water pumps to determine the hydrodynamic forces[C]. Proceedings of the Fifth European Conference on Turbomachinery, Prague, 2003, 551-560.
    [114]GUlich J F. Disk friction losses of closed turbomachine impellers[J]. Forschung im Ingenieurwesen, 2003,68(2): 87-95.
    [115]Nece R E, Daily J W. Roughness effects on frictional resistance of enclosed rotating disks[J]. ASME J. Basic Engineering,1960, 82(3), 553-562.
    [116]李世煌,刘树洪.低比速离心泵圆盘摩擦损失的试验研究[J].水泵技术,1988,(3):21-25.
    [117]王凯.离心泵多工况水力设计和优化及其应用[D].镇江:江苏大学,2011.
    [118]谈明高.离心泵能量性能预测的研究[D].镇江:江苏大学,2008.
    [119]Christopher E. B.泵流体力学[M].潘中永译.镇江:江苏大学出版社,2012.
    [120]Barrio R, Fernandez J, Blanco E, et al. Estimation of radial load in centrifugal pumps using computational fluid dynamics [J]. European Journal of Mechanics-B/Fluid,2011,30(3): 316-324.
    [121]王勇.离心泵空化及其诱导振动噪声研究[D].镇江:江苏大学,2011.
    [122]ISO 10816-1:Mechanical Vibration:Evaluation of Machine Vibration by Measurements on Non-rotating Parts:General Guidelines[S], Geneva, International Organization for Standardization,1995.
    [123]沈海龙.肥大型船伴流场数值模拟的网格划分方法研究[J].哈尔滨工程大学学报,2008,19(11):1190-1198.
    [124]ISO 9906:Rotodynamic Pumps -- Hydraulic Performance Acceptance Tests -- Grades 1,2 and 3[S], Geneva, International Organization for Standardization.2012.
    [125]ISO 3745:Mechanical Vibration:Acoustics -- Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure-Precision Methods for Anechoic Rooms and Hemi-anechoic Rooms[S], Geneva, International Organization for Standardization,2012.
    [126]ISO 20361:Liquid Pumps and Pump Units--Noise Test Code--Grades 2 and 3 of Accuracy[S], Geneva, International Organization for Standardization,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700