高性能沥青路面裂缝修补材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂缝是沥青路面的主要病害之一,裂缝的存在不仅影响行车的舒适性和安全性,而且路表雨水通过裂缝渗入基层,还将大大削弱路基的强度和稳定性,使沥青路面受到更严重的破坏。目前通常采用聚合物改性沥青灌缝材料对裂缝进行修补,但是现有的裂缝修补材料与旧油面之间的低温粘结力较低、低温柔性和耐久性较差,在路面低温收缩时容易出现修补材料与旧路面剥离脱落,重新产生裂缝,特别是在气候寒冷、紫外线强的地区,沥青路面的裂缝需要年年修补。本文通过对SBS接枝改性显著提高了SBS改性沥青的粘结性、低温柔韧性,并借助于有机化蒙脱土进一步改善了SBS改性沥青的耐老化性能,制备出了性能优良的SBS改性沥青灌缝材料。主要研究成果如下:
     采用溶液聚合法制备了不同接枝率(GD)的马来酸酐接枝SBS(MAH-g-SBS)、丙烯酸接枝SBS(AA-g-SBS)和甲基丙烯酸甲酯接枝SBS(MMA-g-SBS)改性剂,通过傅立叶红外光谱仪(FTIR)对接枝产物结构进行表征。以接枝SBS作为改性剂,制得了不同接枝率的接枝SBS改性沥青灌缝材料,研究了接枝率对接枝SBS改性沥青灌缝材料的物理性能、力学性能、微观结构以及老化性能的影响。研究结果表明,随着接枝率的增大,三种接枝SBS改性沥青灌缝材料的低温柔韧性和弹性恢复都得到显著的提高。同时,MAH-g-SBS提高了改性沥青灌缝材料的软化点、粘度及针入度,MMA-g-SBS和AA-g-SBS改性沥青灌缝材料随接枝率的增大,软化点和粘度稍有下降。
     力学性能测试表明MAH、AA、MMA对SBS接枝后,均能显著提高SBS改性沥青灌缝材料与旧路面之间的粘结强度,拉伸强度和低温柔韧性也得到不同程度的提高。
     长期热氧老化试验、薄膜烘箱老化试验(TFOT)、压力老化试验(PAV)和长期紫外老化试验(UV)对接枝SBS改性沥青灌缝材料抗老化性能的研究结果表明,三种接枝SBS改性沥青的抗老化性能均有一定程度的改善,其中MAH-g-SBS改性沥青灌缝材料抗老化性能最好。这是由于接枝过程中,MAH、AA、MMA与SBS中的双键发生化学反应,减少了SBS中的C=C双键数量,避免了SBS在热氧作用下的断链降解,因而提高了接枝SBS改性沥青灌缝材料的耐老化性;而MAH在SBS分子链上以单分子接枝为主,相同接枝率时MAH-g-SBS中的双键最少,故其耐老化性最好。
     以物理性能和抗老化性优良的MAH-g-SBS改性沥青灌缝材料为基础,分别加入抗氧化剂、紫外吸收剂和有机化蒙脱土来进一步提高灌缝材料的耐热氧和光氧老化性能,结果表明抗氧化剂和紫外线吸收剂对耐老化性有一定的改善作用,而有机化蒙脱土的改善作用最为有效。
     X射线衍射(XRD)测试结果表明,有机化蒙脱土与SBS改性沥青形成了剥离结构的纳米复合材料。剥离的有机化蒙脱土片层均匀地分散在SBS改性沥青中,有效地阻止或减缓了氧气在沥青中的扩散,减少了SBS和沥青分子链受攻击的几率,从而改善了SBS改性沥青灌缝材料的耐热氧和光氧老化性能。
     参照国外试验规范和国内相关的试验方法对制备的高性能SBS改性沥青灌缝材料的性能进行了评价,试验结果和实际工程应用均表明所制备的灌缝材料具有优良的粘结性、低温柔韧性和耐老化性。
Crack is one of major disasters of asphalt pavement. Crack has effect on suitability and safty of driving and water on the surface may infiltrate into roadbase through the cracks, which greatly weakens the strength and stability of the road, and will cause the asphalt pavement suffer more severe damage. At present, polymer modified asphalt and polymer modified asphalt emulsion are widely used as the crack filling materials (CFM). However, most of the CFMs show low adhesive strength, poor low temperature flexibility and durability. The stripping of the CFM from cracks often occurs, when the pavements shrinkage under low temperature conditions, which leads to the formation of new cracks. In order to overcome shortcomings of currently existing CFMs, the SBS modified crack filling materials with good performance were prepared by means of grafting modification of SBS and organo-montmorillonite (OMMT) in this paper. The results of this paper are as follows:
     1. Methyl methacrylate grafted SBS (MMA-g-SBS)> acrylic acid grafted SBS () and maleic anhydride grafted SBS (MAH-g-SBS) with different grafting degree (GD) were prepared by solution graft polymerization. The GD of grafted SBS modifiers were investigated by means of chemical analysis and the structure of the grafted SBS modifiers were characterized by Fourier transform infrared spectroscopy (FTIR). CFMs were prepared by asphalt and MMA-g-SBS, AA-g-SBS and MAH-g-SBS, respectively. The effects of GD on physical properties, microstructure, mechanical properties and ageing resistance properties of CFM with grafted SBS modifiers were studied. The results showed that, with the increase of GD of grafted SBS, the ductility and elastic recovery of all CFM with grafted SBS modifiers obviously enhanced. The softening point, viscosity and penetration of MAH-g-SBS modified asphalt CFM also increased, but the softening point and viscosity of MMA-g-SBS and AA-g-SBS modified asphalt CFMs decreased slightly. Mechanical properties testing showed that the adhesive strength of all CFM with grafted SBS modifiers was greatly enhanced due to the grafting of MMA, AA and MAH to SBS. Meanwhile, the tensile strength, elongation at break and flexibility at low temperatures of the CFM were also improved to some extent.
     2. The ageing resistance properties of the grafted SBS modified asphalt CFM were evaluated by the long-term heat ageing, thin film oven test (TFOT), the pressure ageing vessel (PAV) and long-term ultraviolet(LTUV) ageing. The results showed that the thermo-oxidative ageing of SBS modified asphalt CFM was delayed remarkably after MMA, AA and MAH grafted to SBS, which means that the ageing resistance properties of grafted SBS modified asphalt CFMs were improved obviously. The improvement of grafted SBS modified asphalt CFM in ageing resistance can be attributed to the grafted structure of SBS. During the grafted process, the MMA, AA and MAH monomers are easily reacted with C=C double bonds functional group in SBS, accompanied by the formation of graft copolymer, that leads to the decrease of C=C double bonds, and finally reducing the heat degradation of SBS molecular chains. However, compared with the MMA-g-SBS and AA-g-SBS CFM, the MAH-g-SBS modified asphalt CFM exhibits better aging resistance properties. This is because MAH was grafted to SBS by single molecule grafted way during the grafted process. Under the conditions of same grafting degree, the numbers of C=C double bonds of MAH-g-SBS are less than that of the MMA-g-SBS and AA-g-SBS. So it exhibits the best aging resistance properties.
     3. The effects of antioxidant, UV absorber and organo-montmorillonite (OMMT) on the thermal-oxidative ageing of MAH-g-SBS modified asphalt CFM were investigated. The results showed that the aging resistance properties of MAH-g-SBS modified asphalt CFM were enhanced to some degree by introduction of a small amount of antioxidant and UV absorber. Compared with the antioxidant and UV absorber, the OMMT displays better improving effectiveness for aging resistance of MAH-g-SBS modified asphalt CFM. It can be attributed to form of exfoliated structures in OMMT/MAH-g-SBS modified asphalt CFM, and the silicate layer of OMMT which uniformly dispersed among asphalt at nanometer-scale can efficiently prevent permeation or pervasion of oxygen in the CFM Therefore, the attacking of the oxygen to SBS and asphalt molecular chains is restricted evidently, and the aging resistance properties of OMMT/MAH-g-SBS modified asphalt CFM are improved significantly.
     4. XRD analysis indicated that the interlayer spacing of OMMT in SBS modified asphalt crack filling materials was widened and an exfoliated structure was formed, which can obstruct oxygen penetrating into material. The improvement of aging resistance of OMMT/SBS modified asphalt crack filling materials can be abscribed to the barrier of peeled OMMT layer to penetration of oxygen.
     5. On the basis of reviewing foreign test regulations and domestic test methods, the performance of OMMT/MAH-g-SBS modified asphalt CFM was tested. All the results suggested that the OMMT/MAH-g-SBS modified asphalt CFM exhibited good low temperature flexibility and aging resistance properties.
引文
[1]杨金伟,徐瑞清.SBS改性道路沥青.北京化工大学学报,1997.4(24):38-41.
    [2]张登良.沥青路面.北京:人民交通出版社,1998.12.
    [3]郝培文.沥青路面施工与维修技术.北京:人民交通出版社,2001,4.
    [4]张晓冰,程日盛,汪丽娟.我国高速公路沥青路面厚度现状调查分析.河南交通科技,1999,(1):17-19.
    [5]Fawcett A.H.,McNally T.Blends of bitumen with various polyoefins.Polymer,2000,(41):5315-5326.
    [6]Allan H.Fawcett,Tony Mcnally,Gerry mcnally.An attempt at engineering the bulk properties of blends of a bitumen with polymer.Advances in Polymer Technology,2002,(4):275-286.
    [7]肖植华,胡志鹏.国内外高等级公路养护机械发展概况.建筑机械,1998,(11):9-13.
    [8]Lu X.H.Fundamental studies on styrene-butadiene-styrene polymer modified road bitumens.Royal Institute of Technology,Sweden.
    [9]Lu X.H.,Isacsson U.Rheological characterization of styrene-butacliene-styrene comploymer modified Bitumen.Construction and Building Materials,1997,11(1) 23-32.
    [10]Lu X.H.,Isacsson U.Compatibility and storage stability of styrene-butadiene-styrene compolymer modified bitumens.Royal Institute of Technology,Sweden.
    [11]Pokonova Y.V.,Mitrofanova L.M.Modified of asphalt with phosphazenes.Chemistry and Technology of Fuels and Oils,2005,41(4):315-318.
    [12]Goodrich J.L.Polymer modified asphalt compositions and their manufacture.U.S.Pat.5331028,1994-07-19.
    [13]Lu X.H.Fundamental studies on styrene-butadiene-styrene polymer modified road bitumens.Royal Institute of Technology,Sweden.
    [14]Lu X.H.,Isacsson U.Rheological characterization of styrene-butacliene-styrene comploymer modified Bitumen.Construction and Building Materials,1997,11(1)23-32.
    [15]Lu XH,Isacsson.U.Compatibility and storage stability of styrene-butadiene-styrene compolymer modified bitumens.Royal Institute of Technology,Sweden.
    [16]Pokonova Y.V.and Mitrofanova L.M..Modified of asphalt with phosphazenes.Chemistry and Technology of Fuels and Oils,2005,(4):315-318.
    [17]Goodrich J.L.Polymer modified asphalt compositions and their manufacture.U.S.Pat.5331028,1994-07-19.
    [18]袁晴棠.石油沥青.1997,(4):13-18.
    [19]黄颂昌,徐剑,秦永春.我国沥青路面养护技术现状与发展展望.公路交通科技[J],2006,(8):25-27.
    [20]徐胜勇,王立平.沥青路面裂缝的形成及防治,科技信息,2007(11).
    [21]胡美勤.沥青路面早期破坏原因分析[J].科技信息(科学教研),2008,(2):124,161.
    [22]庄殿斌.沥青路面裂缝产生原因及防治措施[J].北方交通,2008,(3):45-46
    [23]张月然,燕聘佩.沥青路面裂缝维护处治技术研究[J].河北交通科技,2007,(1).
    [24]刘桂强,沥青路面的早期破坏及其防止措施.城市道桥与防洪[J],2004,(3):25-28.
    [25]高艳丽,付丽琴,王玉顺,陈君朝.高速公路沥青路面裂缝修补技术探讨.公路[J],2002,(9):136-139.
    [26]杨佐兵.浅析沥青路面早期破坏原因[J].黑龙江科技信息,2008,(8):182
    [27]卢殿卿.沥青混凝土路面裂缝的成因及防治[J]内蒙古科技与经济,2004,(18):45-49.
    [28]张京锋,周新涛.沥青路面易损路段病害分析及防治[J]钦州学院学报,2007,(3):56-64.
    [29]康敬东.沥青路面裂缝和坑槽养护维修技术的研究[D].长安大学博士论文,2002.
    [30]庄殿斌.沥青路面裂缝产生原因及防治措施[J].北方交通,2008,(3):45-46.
    [31]高玉岭.公路沥青路面裂缝的预防和处理[J].科技资讯,2008,(4):38.
    [32]樊仲贤.沥青混凝土路面裂缝成因和养护处理.甘肃科技,2005,(10):167-168.
    [33]侯增水.改性沥青性能效果分析,交通科技与经济,2005,(5):14-15
    [34]薛予生,程超峰,顾涛.改性沥青处治路面裂缝的研究.公路工程与运输[J],2005,(7):38-40.
    [35]罗锋.混凝土裂缝产生的材性分析和修补材料研究.国外建材科技,2005,26(3):15-16.
    [36]金晓晴.LB(冷拌冷铺)沥青及其路面修补技术研究[D],长安大学,2005.
    [37]张泉,鞠蔚,李春雷.沥青路面裂缝修补技术的综合研究.交通标准化,2007,(11):72-76.
    [38]王起.沥青路面常温修补材料应用研究.公路交通科技,2004(1):60-65.
    [39]薛文,魏连雨,马士宾,汪东升.沥青路面基层快速修补材料研究.公路交通科技,2007,(9):40-46.
    [40]刘桦,尹如军,王国安.公路裂缝处理技术及设备.筑路机械与施工机械化,2004,(3):25-30.
    [41]方长青,李铁虎,郑长征,冀勇斌.聚合物改性沥青工艺的研究,2007,(1):226-229.
    [42]张泉,鞠蔚,李春雷.沥青路面裂缝修补技术的综合研究.交通标准化2007,(11):38-40.
    [43]王锡通.聚合物改性沥青评价方法综述.石油沥青,2007,(6):8-12
    [44]方长青;李铁虎;郑长征;经德齐.聚合物改性沥青的研究进展[J]材料导报2008,(6):55-57.
    [45]郭淑华,曾赘.聚合物对改性沥青性能影响的综合评价.公路交通科技2003,(6):5-9.
    [46]吕小虎.聚合物改性路用沥青.公路交通科技,2004,(6):100-101.
    [47]付晓敏.浅谈SBS改性沥青.吉林交通科技,2007(3):18-20.
    [48]何柞云.国内外SBS产需状况分析及国内发展建议[J].合成橡胶工业,1999,22(3):131-135.
    [49]敖宁建,王琪,张爱民.SBS改性研究及应用[J].石油化工,2001,(11):874-877.
    [50]黄卫东,孙立军.SBS改性沥青的混合原理与过程[J],同济大学学报,2002,(2):189-192.
    [51]吉永海,郭淑华,李锐.SBS改性沥青的相容性和稳定性机理[J].石油学报,2002,(3):23-29.
    [52]Hesp S.,Woodhams R.T.Asphalt polyolefin emulsion breakdown.Colloid Polym.Sci.,1991,(269):825-834.
    [53]Kluttz R.Q.,Erickson J.R.Asphalt composition containing epoxidized polymers.1996,US 5451619.
    [54]张宏亮,邵润梅,宁绍宇,刘淑环.SBS接枝MMA共聚物合成的研究[J]当代化工,2007,(5):45-48.
    [55]张宝昌,于祥.SBS/MMT共混物改性沥青性能的研究[J].化工科技,2007,(5):15-19
    [56]周研,齐国才,张国强,董允,宋长柏.接枝SBS对改性沥青稳定性的影响及机理研究[J].中外公路,2007,(5):50-55.
    [57]郑艳菊,王素娟,王继英,巴信武.丙烯酸酯/SBS共聚物的合成及性能研究[J].化学与粘合,2007,(2):325-330
    [58]钱春香,解建光,王鸿博.接枝SBS改性沥青的制备及性能[J].东南大学学报(自然科学版),2005,(3):404-408.
    [59]Fu H.Y.,Xie L.D.,Dou D.Y.,et al.Storage stability and compatibility of asphalt binder modified by SBS graft copolymer.Construction and Building Materials,2007,21(7):1528-1533.
    [60]Lu X.H.,Isacsson U.Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens.Fuel,1998,77(9/10):961-972.
    [61]Johansson U.and Linde S.Polymer modified asphalt binder Part 1.Swedish National Testing and Research Insititute,SP Report 1991,2.
    [62]Linde S,Johansson U.Thermo-oxidative degradation of polymer modified bitumen.Polymer modified asphalt binders,1992:244-253.
    [63]Airey G.D.,S.F.Brown,Rheological performance of aged polymer modified bitumens,Asphalt Paving Technology,APT,1998,(67):66-93.
    [64]Mouilet V.Development of a new methodology for characterization of polymer modified bitumens aging by infrared microspectrometry managing.2003,Virginie Moulet,6th RILEM Symposium PTEBM.
    [65]王仕峰,张玉军,王迪珍等.SBS改性沥青的老化行为[J].合成橡胶工业,2003,(5):301-304.
    [66]郭淑华,吉永海,王子军.SBS的结构对改性沥青性能的影响[J].石油沥青,2001,(9):65-69.
    [67]徐洁元,谢华昌.我国沥青路面结构现状特点分析[J].湖南交通科技,2007,(6):27-29.
    [68]黄颂昌,徐剑,秦永春.我国沥青路面养护技术现状与发展展望[J].公路交通科技,2006,(8):43-45.
    [69]何柞云.国内外SBS产需状况分析及国内发展建议[J].合成橡胶工业,1999,(3):131-135
    [70]敖宁建,王琪,张爱民.SBS改性研究及应用[J].石油化工,2001,(11):874-877.
    [71]Holsti L.L,Seppala V,Ikkala T,et al.Functionalixed elastomeric compatibilizer in PA 6/PP blends and binary interactions between compatibilizer and polymer.Polymer Engineering and Science,1994,34(5):395-404.
    [72]Jojiro O.,Koichi Y.Effect of molecular weight and number of graft chains on the properties of styrene-butadiene block copolymers grafted with methylmethacrylate.J.Appl.Polym.Sci.,1990,47(4):261-268.
    [73]Zhang A.M.,Li C.Chemical initiation mechanism of maleic anhydride grafted onto styrene-butadiene-styrene block copolymer.European Polymer Journal,2003,39(6):1291-1295.
    [74]张东亮,支小敏,吕云江.聚烯烃塑料用胶粘剂SBS/MMA/BA/MAA的合成与性能研究[J].塑料工业,2001,29(6):12-14.
    [75]Yao G..X.,Xue Z.Grafting of liquid crystalline polymers on a styrene-butadiene-styrene tri-block copolymer and orientation induction.Polymer,1997,38(1):119-125.
    [76]Yang J.M.,He K.Y.Oxygen permeation in SBS-g-DMAEMA copolymer membrane prepared by UV photo grafting without degassing.Membr.Sci.,1999,153(2):175-182.
    [77]Yang J.M.,Hu G.H.Radiation-induced graft copolymer SBS-g-VP for biomaterialusage.Biomed Mater Res.,1996,31(2):281-286.
    [78]杨启彪,杨自善.氯化聚乙烯双亲性接枝聚合物的合成与表征[J].高分子材料科学与工程,1994,(3):134-137.
    [79]蒋必彪,陶国良,金立维等.活性自由基接枝聚合反应合成氯化聚乙烯接枝聚苯乙烯的研究[J].塑料工业,1997,(2):80-82.
    [80]杜官本,何森泉,宋玉铁.天然橡胶接枝共聚研究回顾[J].高分子材料科学与工程,1996,(2):8-13.
    [81]潘祖仁.高分子化学.化学工业出版社.2002.
    [82]李建宗,陈中华,徐祖顺等.SBS和反应性单体本体接枝共聚合机理[J].合成橡胶工业,1994,(3):170-171.
    [83]张权,施用稀,王洪澎等.热塑性弹性体SBS接枝改性研究[J].化工学报,1997,(4):506-509.
    [84]李豁,马健萍,李明国,牛晓霞.高聚物化学网构改性沥青性能的时间特征.石油沥青,2004,18(5):25-26
    [85]赵季若,冯莺,黄英海等.CPE-g-MMA共聚物(MC)的合成[J].应用化学,1998,(4):86-88.
    [86]连青,翁志学,黄志明等.MCS接枝共聚物的结构与形态[J].高分子材料科学与工程,1994,(3):56-61.
    [87]李超,成煦,何其佳.不同引发剂引发SBS接枝马来酸酐的机理研究[J].高分子学报.2006,(12):813-817.
    [88]沈余安,改性沥青与SMA路面.人民交通出版社,1999.
    [89]熊善新,葛岭梅,周安宁.HDPE固相接枝MAH接枝率的研究[J].西安科技学院学报,2000,(3):228-231.
    [90]黄雪红,许固强.MMA,AA与SBS接枝共聚的研究[J].石油化工,1998,(9):648-652.
    [91]孔宪明.改性沥青的显微观测.新型建筑材料,1998,(4):43-44.
    [92]黄卫东,孙立军.聚合物改性沥青显微结构及量化研究.公路交通技术,2005,(2):57-59.
    [93]周研,齐国才,张国强等.接枝SBS对改性沥青稳定性的影响及机理研究.中外公路,2007,27(4):239-242.
    [94]张东亮,支小敏,吕云江.SBS/MMA/BA/MAA四元接枝共聚及其产物粘性能.粘合,2001,(6):15-18.
    [95]叶小薇,王炼石.SBS/丙烯酸接枝共聚物及其鞋用涂料[J].合成橡胶工业,1995,(1):8-11.
    [96]李宁利,李铁虎,裴建中,王大为.沥青抗老化研究现状[J].材料导报,2007,(10):84-86.
    [97]王芳,袁万杰,陈忠达.沥青老化性能评价指标研究[J].公路交通技术,2005,(2):57-59.
    [98]齐琳,张争奇.老化对沥青混合料低温抗裂性能的研究[J].郑州大学学报,2007,(12):101-104.
    [99]Lu X.H.,lsacsson U.Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens.Fuel,1997,77(9):961-972.
    [100]吕伟民,严家汲.沥青路面再生技术.北京:人民交通出版社,1989.
    [101]应荣华,郑健龙.沥青老化效应试验研究[J].公路交通科技,2007,(6)21-28.
    [102]桂希衡,徐孝蓉,黄秀.废旧沥青的再生利用[J].公路,2003,(4):54-56.
    [103]刘朝辉,郑云鹏,贾亮.浅谈我国沥青老化评价和指标[J].公路工程与运输,2008,(5):25-27.
    [104]Ruan Y.H.,Davison R.R.,Charles J.G.The effect of long-term oxidation on the rheological properties of polymer modified asphalt.Fuel,2003,(82):1763-1773.
    [105]Yvonne B.M.,Alejandro M.J.,Yajaira R.Use of rheological compatibility criteria to study SBS modified asphalts.Journal of Applied Polymer Science,2003,(90):1772-1782.
    [106]李宁利,李铁虎.考虑老化的沥青混合料的低温性能[J].河北工业大学学报,2008,(2):109-113.
    [107]王芳,袁万杰,陈忠达.沥青老化性能评价指标研究[J].公路交通技术,2005,(2):57-59.
    [108]Siddiqui M.N.,Ali M.F.Study on the Aging Behavior of the Arabian Asphalts;.Fuel,1999,(78):1005-1015.
    [109]储继业,杨建波.沥青老化性能及指标分析[J].交通科技,2006,(5):86-88.
    [110]余剑英.连续玻璃纤维增强聚丙烯的熔体挤压浸渍技术界面与性能的研究.武汉工业大学博士学位论文,1999.
    [111]黄卫东,孙立军.SBS改性沥青软化点的衰变[J].中国公路学报,2002,(4):1-3.
    [112]张争奇,崔文社.SBS改性沥青软化点试验特性[J].长安大学学报,2007,(11):6-10.
    [113]李宁利,李铁虎,裴建中,王大为.沥青抗老化研究现状[J].材料导报,2007,(10):84-86.
    [114]谭忆秋,王佳妮,冯中良,周兴业,徐慧宁.沥青结合料紫外老化机理[J].中国公路学报,2008,(1):76-79.
    [115]马晓燕,梁国正,鹿海军,朱光明.累托石粘土/热塑性聚氨酯弹性体纳米复合材料的热性能研究[J].高分子学报,2003,(1):656-660.
    [116]李毕忠.粘土/塑料纳米复合技术及其应用的新发展[J].中国粉体工业,2007,(2):56-64.
    [117]梁云,贾德民.蒙脱土的改性研究进展[J].化工矿物与加工,2004,(2):1-5.
    [118]刘德勤.纳米技术在高分子复合材料中的应用[J].建材工业信息,2002,(6):6-7.
    [119]邹志明,章永化.改性蒙脱土对聚丙烯的抗紫外老化作用[J].中国塑料,2000,(1):65-69.
    [120]Yu Jianying,Wang Lin,Zeng Xuan.Effect of Montmorillonite on Properties of Styrene-Butadiene- Styrene Polymer Modified Bitumen.Polymer Engieering and Science,2007,47(9):1289-1295
    [121]杨瑞成,马建忠.聚丙烯/蒙脱土复合材料的热氧老化性能.兰州理工大学学报,2007,33(6):8-11.
    [122]冯鹏程,余剑英.热氧老化对蒙脱土改性沥青流变性能的影响.流变学进展(九),2008年9月.
    [123]向贤伟,薛琼.有机蒙脱土的制备与表征.湖南工业大学学报,2008,(1):13-16.
    [124]ASTM D 5329 Standard Test Methods for Sealants and Fillers,Hot-Applied,For Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements.
    [125]GB/T 16777-1997《建筑防水涂料试验方法》.
    [126]GB/T 13477-2002《建筑密封材料试验方法》.
    [127]马进福.高速公路沥青路面灌缝技术.山西建筑,2007,(11):65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700