多年冻土地区路基水热力场耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年冻土地区路基的冻结过程是温度场、水分场及应力场相互作用的极其复杂的传热学、物理化学和力学的综合问题。路基的热状况、水分状况与变化规律及由此引起的应力重分布是引起道路冻害的主要因素。正确认识多年冻土的性质,预报路基热稳定状况,改善冻土中水、热分布,避免不均匀变形、纵向开裂等病害发生,是多年冻土道路建设和发展的需要。本文从分析国内外温度场、水分场、应力场及其耦合效应的研究现状出发,针对传统温度场、水分场及应力场等单一场研究难以深入揭示路基冻胀病害规律,定量解释各种病害发生原因的局限性,进行了系统深入的研究并取得系列的研究成果。
     1.针对多年冻土地区路基与一般路基的不同,在非稳态温度场控制方程的基础上建立了多年冻土地区伴有相变的路基非稳态温度场控制方程,采用Galerkin法求解伴有相变的路基非稳态温度场偏微分方程,在空间域内采用混合单元有限元网格划分,在时间域内用有限差分格式划分的混合解法进行温度场有限元分析。
     2.应用冻土路基温度场室内大型模型试验模拟野外实际路基的状况,并利用多年冻土地区伴有相变的非稳态温度场控制力程进行模拟验算,进一步论证了温度场模型的正确性及采用室内大型模型试验模拟野外现场路基的可行性。
     3.针对多年冻土路基中热流及温度分布将引起土体中水分运动参数及其土水势值发生变化的现象,基于传统土体水分等温模型,引进非等温扩散流方程,考虑温度差值形成的温度梯度也会造成水分流动及相变问题,建立冻土路基中水分迁移的有限元控制方程,应用有限元的数值解析方法研究水分迁移规律。
     4.通过对室内土样试件温度场和水分场的动态观测,得出温度梯度是导致水分迁移产生的重要因素之一,并应用水热耦合模型对试件的温度场、水分场进行数值模拟,论证了在冻土路基水分迁移控制方程中引进温度梯度水分扩散率概念的合理性,验证了水热耦合数值模型的正确性。
     5.根据冻土路基非稳态相变温度场控制方程及水分场迁移控制方程,在考虑第一类边界条件下,对青藏公路K3363+800段冻土路基的温度场、水分场进行了计算,并与实测值进行比较,进一步证明了水热耦合模型的正确性。
     6.基于弹性理论建立了冻土路基变形场及应力场的二维数值计算模型,并应用有限元法求解路基土体冻结时变形场和应力场分布规律。通过对土基范围内冻胀带对路基土体的应力场和变形场的研究,进一步分析了冻土路基破坏的机理。在此基础上,分析了不同范围冻胀带对路基顶面变形场和应力场的影响,提出敏感冻胀带的范围及应力极值点产生的位置。
     7.通过建立不同的融沉计算模型,进行冻土路基变形场及应力场二维数值
    
    计算,分析了路基表面的竖向及横向位移分布的规律、路中沿深度方向的竖向位
    移变化规律及路基表面横向应力分布规律。
     8.应用冻土路基非稳态温度场的控制方程和冻土路基变形场的二维数值计
    算模型,对1月及12月路基温度场、应力场和变形场进行有限元计算,分析了
    温度场的动态变化对变形场分布规律的影响,及路基发生不均匀变形的原因。
     9.借助冻土路基中水分迁移的有限元控制方程和冻土路基变形场及应力场
    的二维数值计算模型,对不同水分迁移造成的土体冻胀路基变形场和应力场进行
    了研究。
     10.基于多年冻土地区路基非稳态温度场控制方程、水分迁移的有限元控制
    方程及路基变形场和应力场的计算模型,提出了水热力三场祸合计算模型及三场
    祸合计算的流程。并结合实体工程,进一步说明水热力三场的藕合过程,分析了
    1月10日.路基温度场、水分场及应力场相互作用影响的规律。
The freezing course of the permafrost sub-grade synthesizes heat exchanging, physical chemistry and mechanics, which is concerned with the complicated interacting process of the temperature field, moisture field and stress field. Both the condition of the heat, the moisture of the subgrade, their changing law and the stress distributing are the key factors to cause the frost damages. Accurately understanding the characteristics of the permafrost, forecasting the heat stabilization status, punishing the frost damage by disposing and improving the moisture, heat condition of the frost, and preventing the damage of the Non-uniform deformation and longitudinal crack guarantee the constructing and developing of the permafrost engineering. First the dissertation generally analyses the developing history of the temperature field, moisture field, stress field and their coupling. Based on the shortcoming that the study on only one of the temperature field, moisture field, stress field is difficult to reveal thoroughl
    y the law of the freezing damage of the subgrade, and to explain rationally the deep reason of all the damages, the research are as follows:
    1. Aiming at the difference between the permafrost subgrade and the common subgrade, this dissertation formulates the control equation of the non-steady temperature field with phase changing of the permafrost based on the traditional equation. Then the dissertation solves the partial differential equation of the control equation by Galerkin method, analyses the equation with the finite element method by adopting the grid segmentation of the mixture cell in space domain and format segmentation in time domain by the mixture solution of the finite difference.
    2. This dissertation puts forward an innovation, which is to adopt the large-scale inside test of the temperature field of the permafrost subgrade to simulate the field real environment. At the same time the innovation is validated by the control equation of the non-steady temperature field with phase changing of the permafrost, further the accuracy of the model of the temperature field and the feasibility of the innovation are verified.
    3. Thinking about the phenomenon that the heat stream and temperature distribution of the permafrost subgrade arise the change of the moving parameter of the moisture in soil, this dissertation introduces the non-isotherm model of the spread flow equation on the basis of the traditional isotherm model of the moisture in soil. Considering that the temperature grads that are consisted of temperature difference
    
    
    
    conduces the flow and phase change of the moisture, this dissertation gives out the finite element control equation of the moisture transfer in the permafrost subgrade. At the same time, the dissertation does some research on the law of moisture transfer by the finite element numerical resolution.
    4. Through the dynamic observation on both the temperature field and the moisture field of the inside soil specimen, this dissertation concludes that the temperature grads is crucial to induce the moisture transfer. Applying the coupling model of the moisture and heat field, the dissertation numerically simulates the temperature field and moisture field of the soil specimen. The simulation validates the
    rationality of the moisture difrusivity concept DT, which is introduced in the control
    equation of the moisture transfer in permafrost subgrade. Further the dissertation demonstrates the accuracy of the numerical coupling model of the moisture and heat field.
    5. According to both the non-stationary phase change temperature field control equation and the moisture transfer control equation in the permafrost subgrade under
    the first bound limitation, this dissertation calculates the temperature and moisture field of the section of Qinghai-Tibet highway k3363+800. The compare of the real test values and the calculation proves the preciseness of the coupling model of the heat and moisture field.
    6. Based on the elasticity theory, the dissertation
引文
[1] 徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社,2001.
    [2] 王绍令.冻土退化与青藏高原环境问题的探讨.第五届全国冰川冻土学大会论文集(上):11-18.甘肃:文化出版社,1996.
    [3] 令锋,吴紫汪.渗流对多年冻土地区路基温度场影响的数值模拟.冰川冻土,1999,21(2):115-119.
    [4] 廉乐明,史金艳.寒冷地区路面体冻结过程中湿迁移对温度场影响的研究.冰川冻土,1993,15(3):198-505.
    [5] 李洪升,刘增利,李南生.基于冻土水分温度和外荷载相互作用的冻胀模式.大连理工大学学报,1998,38(1):29-33。
    [6] 李东庆,魏春玲,吴紫汪.边坡渗流对冻土地区路基稳定性的影响分析.兰州大学学报(自然科学版),2000,36(3):175-179.
    [7] 韩晓非,柳云龙,吕军等.土壤水热耦合运移数值模型研究进展.土壤通报,2001,32(4):151-154.
    [8] 胡和平,杨诗秀,雷志栋.土壤冻结时水热迁移规律的数值模拟.水利学报,1992,7:1-8.
    [9] Guo Li, Miao tiande, Zhang Hui. Thermodynamic model of heat-moisture migration in saturated freezing soil. Chinese Journal of Geotechnical Engineering,1998,20(5): 87-91
    [10] V.N.Razbegin. Mathematical model for predicting the stress-strain behavior and heat-mass. 5th International Symposium on Ground Freezing. Jones & Holden(eds). 1998 Balkema,Rotterdam. ISBN 9061918243, 419-424.
    [11] 吴紫汪,朱林楠,郭兴民等.青藏公路多年冻土地区路堤的临界高度.冰川冻土,1998,20(1):36-40.
    [12] 胡长顺,何子文,窦明健等.青藏公路纵向裂缝成因及处治对策研究.长安大学,2003.
    [13] 胡长顺,李忠凯,何子文等.青藏公路纵向裂缝成因及处治对策研究分报告之四,路基纵向裂缝处治结构研究.长安大学,2003.
    [14] 裴建中,胡长顺.青藏公路纵向裂缝成因及处治对策研究分报告之三,多年冻土地区路基纵向裂缝机理研究.长安大学,2003.
    [15] 中国科学院兰州冰川冻土研究所.冻土的温度水分应力及其相互作用.兰州大学出版社.1989.
    [16] Bonacina,C.et al., 1973,Numerical solution of phase-change problem,Int.J.heat Mass transfor, vol, 16:1825-1832.
    
    
    [17] 丁德文,傅连第等.井壁冻结过程的数值计算,第二届全国冻土学术会议论文选集:187-495.甘肃:人民出版社,1983.
    [18] 郭兰波等.竖井冻结壁温度场的有限元分析.中国矿业学院学报,1981,(3):31-35.
    [19] 胡长顺,王秉纲,何子文.高原多年冻土地区路基路面典型结构研究总报告,长安大学.2000.
    [20] 王铁行,胡长顺等.考虑多种因素的冻土路基温度场有限元方法.中国公路学报.长安大学.2000,13(4):8-11.
    [21] 王铁行.多年冻土地区路基计算原理及临界高度研究.长安大学博士学位论文,2000.
    [22] 王铁行.高原多年冻土地区路基路面典型结构研究分报告五:多年冻土地区路基计算原理及临界高度研究.长安大学.2000.
    [23] Hoekstra.P., Moisture movement in soil under temperature gradients with cold side temperature below freezing. Water Resources Research. 1966,2:241-250.
    [24] Miller, R.D., Freezing and heaving of saturated and un saturated soils. Highway, Research Report. 1972,No.393: 1-11.
    [25] Harlan,R.L., Analysis of coupled heat-fluid transport in partially frozen soil, Water Resources Research. 1973,9(5): 1314-1323.
    [26] Harlan,R.L. and Nixon,J.E, Ground thermal regime, Geotech.Eng. for Cold Regions, 1979:103-150.
    [27] Taylor,G.S and Luthin,J.N., A model for coupled heat and moisture transfer during soil freezing. Can.Geo.,J.,1978,No.15:548-555.
    [28] Cheng Guodong, The mechanism of repeated-segregation for the formation of thick layered ground ice, Cold Region and Technology.,1983,vol.8:57-66.
    [29] 徐学祖.土水势、未冻水含量和温度.冰川冻土.1985,7(1):1-14.
    [30] 徐学祖.国内外对冻土中水分迁移课题的研究.冰川冻土.1982,4(3):97-104.
    [31] 徐学祖 邓友生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991.
    [32] 朱强.论季节冻土冻胀沿冻深的分布.冰川冻土.1988,10(1):1-7.
    [33] 朱强.砂-砂砾换填防治渠道冻胀的研究.冰川冻土.1988,10(4):40-46.
    [34] 杨诗秀.土壤物理学.北京:清华大学出版社.1981
    [35] 杨诗秀.土壤冻结状态下水热耦合的数值计算.清华大学学报.1987(3):20-27.
    [36] 雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社.1988.
    
    
    [37] 李述训,程国栋编著.冻融土中的水热输运问题[A].兰州大学出版社,1995.
    [38] 李述训,南卓铜,赵林.冻融作用对系统与环境间能量交换作用.冰川冻土.2002,24(2):109-115.
    [39] 周红,王贵虎.人工冻土冻胀融沉问题研究现状与展望[J].淮南职业技术学院学报,2002,5(2).37-40
    [40] Penner, E. and Ueda, T., The dependence of frost heaving on load application -preliminary results, Proc,Int. Symp. Frost Action in soil, Lulea. 1977, vol. 1:92-101.
    [41] Williams,P.J. and Wood,J.A., Internal stresses in frozen ground, Can. Geotech.J, 1985,Vol.22:413-416.
    [42] Masami Fukuda , Seiiti Kinosita. Field prediction of the uplift force to conduits due to frost heaving. Fourth International Symposium on Ground Freezing/Sapporo, August 1985:5-7.
    [43] 吴紫汪,张家懿,朱元林.冻土强度与破坏特征.第二届全国冻土学术会议论文选集:275-280.甘肃:人民出版社.1983.
    [44] 吴紫汪.基础与冻土间冻结强度实验研究.中国科学院兰州冰川冻土研究所集刊.1981(2):129-139.
    [45] 吴紫汪,马巍著.冻土强度与蠕变.甘肃:兰州大学出版社.1993.
    [46] 安维东,陈肖柏,吴紫汪.渠道冻结时热热质迁移的数值模拟.冰川冻土.1985,9(1):35-46.
    [47] 朱强.甘肃省混凝土衬砌渠道地基冻胀土壤的分级及防冻措施.第二届全国冻土学术会议论文选集:455-462.甘肃:人民出版社.1983.
    [48] 胡永桢.渠道基土冻胀与衬砌结构变形及破坏规律的探讨.防渗技术.1996,5(1):41-44.
    [49] 戴惠民,王兴隆.季节冻土区公路桥涵地基土冻胀性的研究.中国公路学报.1989,2(4):18-25.
    [50] 赖远明,吴紫汪,朱元林等.寒区隧道冻胀力的粘弹性解析解.铁道学报,1999,21(6):70-74.
    [51] 赖远明,吴紫汪,朱元林,朱林楠.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析.岩土工程学报.1999,21(5):529-533.
    [52] 赖远明,喻文兵,吴紫汪等.寒区圆形截面隧道温度场的解析解.冰川冻土.2001,23(2):126-129.
    [53] 赵建军,董金梅等.正冻土中的水热耦合模型[J].天津城市建设学院学报.2001,7(1).47-52
    
    
    [54] Arakawa,K., Theoretical studies of ice segregation in soil. J. of Claciology. 1966,6(44):225-260.
    [55] Takashi,T., Yamamoto,H.,Effect of penetration rate of freezing and confining stress on frost heave ratio. 3th Int. Permafrost Conf.,1978: 1479-1483.
    [56] Zhang, S., Zhu, Q., A study of the calculation of frost heaving. Proceeding, fourth Int. Conf. on Permafrost. 1983:1479-1483.
    [57] Sheppard,M.T.,Kay, B.D., Development and testing of a computer model for heat and mass flow in freezing soils. Proc. 3rd Int.Conf. on Permafrost. 1978:76-81.
    [58] Konrad,J.M. and Morgenstem, N.R.,A mechanistic theory of ice lens formation in fine-grained soils. Canadian Geotechnical Journal. 1980(17):476-486.
    [59] Gilpin, R.R., A model for the prediction of ice lensing and frost heave in soils. Water Resource Research. 1985(21):281-296.
    [60] Sheng Daichao. Thermodynamics of freezing soils. Theory and application. Ph.D. Thesis, Lulae University of Technology, Sweden. 1994.
    [61] 苗天德,郭力,牛永红等.正冻土中水热迁移问题的混合物理论模型.中国科学,D辑.1999,29(1):8-14.
    [62] 郭力,苗天德.Thermodynamic model of heat-moisture migration in saturated freezing soil.岩土工程学报.1998,20(5):87-91.
    [63] Li Ning, Chen Bo, Chen Feixong. The coupled heat-moisture-mechanic model of the frozen soil. Cold Region Science and Technology. 2000,31(3): 199-205.
    [64] 陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架.岩土工程学报.
    [65] 李宁,陈飞熊.饱和土体固液两相介质动力耦合问题有限元解析.西安公路交通大学学报.1997,19(4):6-10.
    [66] Ning Li, Feixiong Chen, Bo Su. Theoretical frame of the saturated freezing soil. Cold Region Science and Technology. 2002,35:73-80.
    [67] 王铁行,胡长顺,李宁.冻土路基应力应变数值模型.岩土工程学报.2002。24(2):193-197.
    [68] 胡长顺,何子文,窦明健等.青藏公路纵向裂缝成因及处治对策研究总报告.长安大学.2003.
    [69] 毛雪松,胡长顺.青藏公路纵向裂缝成因及处治对策研究分报告之二:多年冻土地区路基水热力三场耦合效应研究.长安大学.2003.
    [70] 王铁行,胡长顺.冻土路基水分迁移数值模型.中国公路学报.2001,14(4):5-8.
    
    
    [71] 侯仲杰,李留丰,杨旭东.高原多年冻土地区路基路面典型结构研究分报告之十一:试验路研究.2000.
    [72] 毛雪松,胡长顺,侯仲杰.冻土路基温度场室内足尺模型试验,长安大学学报(自然科学版),2004.
    [73] 毛雪松,胡长顺,窦明建,侯仲杰.正冻土中水分场和温度场耦合过程的动态观测与分析,冰川冻土,2003,25(1):55-59.
    [74] 王海丽.冻土水热运动的数值模拟.内蒙古农牧学院学报,1998.3,
    [75] 高永,胡春元,董智等.土壤冻结过程中水分迁移动向的研究.林业科学.2000,36(4):127-128.
    [76] 朱林楠,吴紫汪,臧恩穆.冻土退化与道路工程,第五届全国冻土学术会议论文选集.甘肃文化出版社.1996,487-493.
    [77] 王补宣著.工程热传质学(上册).科学出版社,1982.
    [78] 王洪纲著.热弹性力学概论.清华大学出版社,1989.
    [79] 陶文铨编著.数值传热学.西安交通大学出版社,1988.
    [80] 孔祥谦.有限单元法在传热学中的应用.利学出版社.1998,199-205.
    [81] Kay, B.D.,Perfect,B., State of the art: Heat and mass transfer in freezing soils, 5th Int. Symp. on Ground Freezing,1988:3-15.
    [82] Kay, B.D. and Groenevelt,P.H., On the interaction of water and heat transport in frozen and unfrozen soil, Soil sci, Amer.Proc. 1974(38):395-400
    [83] 何平 程国栋 朱元林.土体冻结过程中的热质迁移研究进展[J].冰川冻土.2001,23(1).92-96.
    [84] Kay, B.D., Sheppard,M.I. and Loch,J.P.G., A preliminary comparison of simulated and observed water redistribution in soils freezing under laboratory and field condition, Proc. Int. Symp. Frost Action in Soil,1977.Vol(1):42-53.
    [85] 陈仲颐等译.非饱和土力学.中国建筑工业出版社,1997.
    [86] 钱家欢,殷宗泽主编.土工原理与计算.中国水利水电出版社,1996.
    [87] 童长江,管枫年编著.土的冻胀与建筑物冻害防治.中国水利电力出版社,1985.
    [88] 藏恩穆,吴紫汪.多年冻土退化与道路工程.兰州大学出版社,1999.
    [91] 杨晓明.岛状多年冻土地区路基路面稳定性生研究.长安大学硕士学位论文,2001.
    [89] 俞祁浩,刘永智等.青藏公路路基变形分析[J].冰川冻土.2002,24(5).623-627.
    [90] 吴紫汪,朱林楠等.青康公路多年冻土区路堤的临界高度[J].冰川冻
    
    土.1998,20(1).36~40.
    [91] 吴青柏,童长江.冻土变化与青藏公路的稳定性问题[J].冰川冻土.1995,17(4).350~355.
    [92] Qingbai Wu,Bin Shi etc.Engineering geological characteristics and processes of .permafrost along the Qinghai-Xizang (Tibet) Highway. Engineering Geology 2127 (2002) 1 -10.
    [93] 李洪升 刘增利 梁承姬.冻土水热力耦合作用的数学模型及数值模拟[J].力学学报.2001,33(5).621-628
    [94] 任瑞波,冯德成,马松林.潮湿路基温度场、湿度场耦合作用的计算模型.东北公路.2001,24(3):31-34.
    [95] 何建,马景骏.潮湿路基温度场、湿度场耦合作用计算模型.哈尔滨工业大学学报.2001,22(3):59-63.
    [96] 侯芸,田波,邴文山.季节性冰冻地区路基内温度场、湿度场耦合计算.同济大学学报.2002,30(3):296-301.
    [97] Zhu Qiang, Wu Fuxue, An experimental study on the relationship between the. frost heave and the water content of frozen soil. Fourth International Symposium on Ground Freezing/Sapporo/5-7.1985:147-151
    [98] 朱伯芳著.大体积混凝土温度应力与温度控制.中国电力出版社,1999.
    [99] D.Piper, J.T.Holden. A mathematical model of frost heave in granular materials, 5th International Symposium on Ground Freezing. 1989:569-575.
    [100] 张长庆,朱元林译.冻土力学.科学出版社,1985.
    [101] Norikazu Matsuoka, Miwa Abe.Differential frost heave and sorted patterned ground field measurements and a laboratory experiment. Geomorphology. 1262(2002):1-13.
    [102] 张钊,吴紫汪.渠道基土冻结时温度场和应力场的数值模拟.冰川冻土.1993,15(2):331-338.
    [103] 张学富,赖远明,杨风才.寒区隧道围岩冻融影响数值分析.铁道学报.2002,24(2):92-96.
    [104] Gary L.guymon and James N.lutjin, Coupled Heat and Moisture Transport Model for Arctic Soil, Water Rsources Research, October 1996: 995-1001.
    [105] V.N.Razbegin, Mathematical model for prediction the stress-strain behaviour and heat-mass transfer of freezing soils, 5th International Symposium on Ground Freezing, Jones&Holden(eds), 1989:419-424.
    [106] J.B.Gorelik & V.S.Kolunin,Generalized model of heat and mass transfer for
    
    freezing and thawing soil under load, Ground Freezing 2000: 37-42.
    [107] 徐学祖等著.土体冻胀和盐胀机理.科学出版社,1995.
    [108] J.P.Zarling, A.Braley.Embankment Stabilization Techniques Embankment Design and Construction in Cold Regions. New York: American Society of Civil Engineers. 1988:13-35.
    [109] 何平,程国栋,杨成松等.冻土融沉系数的评价方法.冰川冻土.2003,25(6):608-613.
    [110] E.G.Johnson and T.C.Kinney. Embankment Settlement and Stability Analyses. Embankment Design and Construction in Cold Regions. New York: American Society of Civil Engineers. 1988: 93-114.
    [111] 李述训,吴紫汪.青藏高原多年冻土区沥青路面下融化盘形成变化特征.冰川冻土.1997,19(2):133-140.
    [112] 吴青柏,朱元林,刘永智.工程活动下多年冻土热稳定评价模型.冰川冻土.2002,24(2):128-133.
    [113] 盛煜,刘永智,张建民.青藏公路下伏多年冻土的融化分析.冰川冻土.2003,25(1):43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700