联噻唑聚合物及其配合物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机高分子化合物具有许多良好的物理和化学性能,如高弹性、可塑性、耐腐蚀、电绝缘性等,因而其应用非常广泛。其中某些高分子化合物具有磁性能,可作为磁性材料,与传统的磁体相比,具有比重轻、容易加工成精度高和复杂形状的优点。近年来,设计和合成有机高分子磁性材料成为国内外研究的热点方向之一。
     本文阐述了噻唑衍生物的合成研究进展、含噻唑聚合物的金属配合物的合成与磁性能研究现状,研究了三种联噻唑聚合物及其金属配合物的制备与电磁性能,其主要研究内容如下:
     (1)以溴代正丁烷和N-甲基咪唑为原料,通过烷基化反应制备溴化1-丁基-3-甲基咪唑([Bmim]Br)。考察反应温度、时间、物料比对[Bmim]Br产率的影响,结果表明:在70℃反应24h、溴代正丁烷与N-甲基咪唑的摩尔比为1.2:1时,[Bmim]Br产率最大,达88.5%。利用红外、核磁共振及质谱对其结构进行表征,结果表明为目标产物。
     (2)[Bmim]Br和液溴混合制备三溴化1-丁基-3-甲基咪唑([Bmim]Br3),然后利用[Bmim]Br3与2,3-丁二酮通过卤化反应得到1,4-二溴-2,3-丁二酮。再以1,4-二溴-2,3-丁二酮、硫脲为原料发生成环反应制备2,2′-二氨基-4,4′-联噻唑(DABT)。研究反应温度、时间、物料比对1,4-二溴-2,3-丁二酮及DABT产率的影响,结果表明:在50℃、滴加时间为20min、2,3-丁二酮与[Bmim]Br3的摩尔比为2.2:1时,1,4-二溴-2,3-丁二酮产率最大,达79.8%;当反应温度为90℃,反应2h,硫脲与1,4-二溴-2,3-丁二酮的摩尔比为2.2:1,DABT产率最大,达78.3%。利用红外及核磁共振对其结构进行表征,结果显示为目标产物。
     (3)以DABT和对苯二甲酰氯为原料,在二甲基甲酰胺(DMF)中通过酰化反应制备聚联噻唑对苯二甲酰胺(PBTTA)。聚合物分别与稀土离子(Y3+)及过渡金属离子(Cu~(2+)、Ni~(2+))络合制备相应的金属配合物。探索反应温度、时间和物料比对PBTTA产率的影响,结果表明:在50℃温度下反应6h、对苯二甲酰氯与DABT的摩尔比为1.3:1时,PBTTA产率最大,达81.5%。利用红外光谱仪、X射线能谱仪、元素分析仪等对它们进行了表征,结果表明为目标产物。热重分析显示聚合物具有良好的热稳定性;常温下测得聚合物的电导率为8.04×10~(-5)S/cm,与金属配位后电导率小一个数量级,它们都有作为半导体材料的可能;在常温下研究聚合物及其钇的配合物的磁性能,发现PBTTA和PBTTA-Y3+的磁滞回线都呈现反“S”型,表明它们都表现出反铁磁性。
     (4)在酸性条件下,利用DABT、多聚甲醛分别与对硝基苯胺和对硝基苯酚缩聚制备聚合物SAD和SPD。聚合物在二甲基亚砜(DMSO)分别与与过渡金属离子(Cu~(2+)、Ni~(2+)、Mn2+)络合制备相应的金属配合物。探讨反应温度和时间对SAD、SPD产率的影响,结果表明:在100℃温度下反应6h时,SAD产率最大,达69.9%;在100℃温度下反应5h时,SPD产率最大,达79.5%。利用红外光谱仪、X射线能谱仪、元素分析仪等对它们进行了表征,结果可知为目标产物。从热重分析结果可知聚合物及其铜的配合物都具有良好的热稳定性,且与Cu~(2+)配位后热稳定性下降。常温下测得本征态的电导率的分别为2.12×10~(-5)S/cm、4.54×10~(-5)S/cm,与金属配位后电导率小一个数量级,它们都有作为半导体材料的可能;在常温下研究聚合物及其铜离子配合物的磁性能,SAD、SPD的磁滞回线表明它们表现出反铁磁性。SAD-Cu~(2+)是软铁磁体,它的饱和磁场强度为0.051emu/g,矫顽力为170Oe,剩余磁场强度为0.0021emu/g;SPD-Cu~(2+)也是软铁磁体,饱和磁场强度为0.029emu/g,矫顽力为66Oe,剩余磁场强度为0.00105emu/g。
Organic polymers have many excellent physical and chemical properties, such as highelasticity, good plasticity, the resistance of corrosion, electrical insulation, etc., so that thepolymer materials have a very wide range of use. Some possess magnetic properties andcan be used as magnetic materials. Compared with traditional magnets, polymericmagnetic materials have the advantages of a light weight, easily processed into thecharacteristics of high precision and complex shapes gaining more and more attention. Inrecent years, the design and synthesis of polymeric magnetic materials becomes one of thehot subjects at home and abroad.
     This article reviews the progress on the synthesis of thiazole derivatives, the researchon the synthesis and magnetic properties of polymer containing thiazole and explored thepreparation of three kinds of polymers containing bithiazole and their metal complexes andthe electrical and magnetic properties, the main research content includes the following:
     (1)1-butyl-3-methyl imidazolium bromide ([Bmim]Br) was prepared by bromidebutane and N-methyl imidazole. The effects of the temperature, time and charge ratio ofreaction on the yield were considered and discovered on the temperature of70℃, the timeof24hours, molar ratio of bromide butane/N-methyl imidazole is1.2:1, the yield of[Bmim]Br had the maximum output is68.7%. The product were characterized by IR,NMR,MS and proved to be the target product.
     (2)1-butyl-3-methyl imidazolium tribromide ([Bmim]Br3) was obtained by themixture of [Bmim]Br and Br2and then reactioned with2,3-butanedione by halogenationreaction to gain1,4-dibromine-2,3-butanedione.2,2-diamino-4,4-bithiazole(DABT) wassynthesized by annelation of thiocarbamide and1,4-dibromine-2,3-butanedione. Theeffects of the temperature, time and charge ratio of reaction on the yield were investigatedand discovered on the temperature of50℃, the dropping time of20minutes, molar ratioof2,3-butanedione/Bmim]Br3is2.2:1, the yield of1,4-dibromine-2,3-butanedione had the maximum output is68.7%and the temperature of90℃, the time of2h, molar ratio ofaminothiourea/1,4-dibromine-2,3-butanedione is2.2:1, the yield of DABT had themaximum output is78.3%. Their structures were determined by IR and H-NMR, whichindicated they were the target products.
     (3) The polymer of PBTTA was synthesized from paraphthaloyl chloride and DABTby acylation in DMF and the metal complexes prepared from PBTTA coordinated with therare earth ion (Y3+) and transition metal ions (Cu~(2+)and Ni~(2+)). The effects of thetemperature, time and charge ratio of reaction on the yield were discussed and discoveredon the temperature of50℃, the time of6hours, molar ratio of paraphthaloyl chloride/DABT is1.3:1, the yield of PBTTA had the maximum output is81.5%. The products werecharacterized by IR, EDS and elementary analysis and testified to be the target products.The TGA analysis showed that it had good thermal properties. The conductivity ofpolymer measured at room temperature is8.04×10~(-5)S/cm, which is one order of magnitudebigger after coordination. They all can be used as semiconductor materials. The magneticproperties of PBTTA and its complex containing Y3+are examined at room temperature.The result shows that they are antiferromagnetism due to the shapes of their hysteresisloops are anti-S.
     (4) The polymer of SAD and SPD are synthesized by the polycondensation of DABT,paraformaldehyde and p-nitrophenol/paranitroaniline under acidity condition. Their metalcomplexes are prepared from polymers and mental ions (Cu~(2+), Ni~(2+), Mn2+) in DMSO. Theeffects of the temperature and time of reaction on the yield are studied and discovered onthe temperature of100℃, the time of6hours, the yield of SAD had the maximum outputis69.9%and the temperature of100℃, the time of5h, the yield of SPD had themaximum output is79.5%. The products were characterized by IR, EDS and elementaryanalysis and attested to be the target products. The TGA analysis showed that the polymersand their complexes with Cu~(2+)have good thermal properties and the thermal propertydeclined after coordination. The conductivity measured at room temperature of SAD andSPD respectively are2.12×10~(-5)S/cm and4.54×10~(-5)S/cm, which are one order ofmagnitude bigger after coordination. They all can be used as semiconductor materials. Themagnetic properties of two polymers and their complex containing Cu~(2+)are examined atroom temperature. Their hysteresis loop shows that the polymers are anti-ferromagnetisms.SAD-Cu~(2+)is a soft ferro-magnetism, in which the saturation magnetization (Ms) is0.029emu/g, the observed coercive field (HC) is66Oe and the remnant magnetization (Mr)is0.00105emu/g. SPD-Cu~(2+)is also a soft ferromagnetism, in which the Ms is0.029emu/g,the HCis66Oe and the Mr is0.00105emu/g.
引文
[1] Otto B Wilhelm S.[P] US:3993766,1976.
    [2] Russell J. B, Boyd L.[P] US:4788209,1988.
    [3] Hirashima A, Eiraku T, Watanabe Y, et al. Identification of novel inhibitors of calling and in vitro
    [C-14] acetate incorporation by Pheromone glands of Plodia inter Punctella [J]. Pest. Manage. Sci.2001,57(8):713-720.
    [4]韩嘉祥,李健,李树正,等.2-取代苯胺基-5-甲基噻唑啉类化合物的合成和杀菌活性研究[J].浙江化工.2000,31:30-31.
    [5] Fernandez X, Dunach E, FellousR,et al. Thiazolidines and their oxidation products as flavouringcompounds [J]. Flavour. Fragr. J.2002,17(6):432-439.
    [6] Shuster E. D., Withycombe D. A., et al. USP4,040,987.
    [7] Withycombe, D. A., Mookherjee, B.D., et al. USP4,255,583.
    [8]俞志刚,马冀,崔德生等, PMNAP缩2-氨基苯并噻唑席夫碱及其过渡金属配合物的合成与抑菌活性[J].化学试剂,2009,31(4):241-244.
    [9] BolosC. A., Fanourgakis P. V., Christidis P. C., etal. Crystal and molecular structures of [(2-amino-5-methyl-l,3-thiazole)(1,4,7-triazaheptane)copper(Ⅱ)] dinitrate [J]. Polyhedron,1999,18:1661-1668.
    [10] Cox P. J., Psomas G., Bolos C. A. Chara cterization and DNA-interaction studies of l, l-dicyano-2,2-ethylene dithiolate Ni (Ⅱ) mixed-ligand complexes with2-amino-5-methyl thiazole,2-amino-2-thiazoline and imidazole. Crystal structure of [Ni (i-MNT)(2a-5mt)2][J]. Bioorganic&Medicinal Chemistry2009,17:6054-6062.
    [11] Furukawa M. Syntheses and Spectro photometric Studies of2-(2-thiazolylazo) and2-(2-benzo-thiaoly lazo)-5-dimethylamino Benzoic Acids as Analytical Reagents-determination of Nickel [J].Anal Chim Acta,1982,140:281.
    [12]张帆,谢增鸿.杂化偶氮苯甲酸类化合物作为分析试剂的研究Ⅲ.2′-[4′,5′-二甲氨基苯甲酸与镍的反应及其应用[J].分析化学,1988,6(8):730-731.
    [13]樊学忠,吴斌才,刘恒椽.新噻唑偶氮羧酸型试剂6-Me-BTAMB和6-Me-BTACB与镍显色反应的研究(Ⅱ)[J].冶金分析,1997,13(2):14-18.
    [14]樊学忠,吴斌才,刘恒椽.新噻唑偶氮羧酸型试剂6–Me-BTAMB和6-Me-BTACB与镍显色反应的研究(Ⅱ)[J].冶金分析,1993,13(2):14.
    [15] Fan Xuezhong, Zhu Chunhua.2-[2-(6-Methylbenzothiazolyl) azo]-5-diethyl Aminobenzoic Acid asa New Analytical Reagent for Spectrophotometric Determination of Nickel [J]. Mikrochim Acta,1997,126(1-2):59-62.
    [16] Fan Xuezhong, Zhang Guofang, Zhu Chunhua. Synthesis of2-[2-(5-Methylbenzothiazolyl) azo]-5-diethylaminobenzoic Acid and its Application to the Spectrophotometric Determination of Nickel[J]. Analyst,1998,123(1):109.
    [17]张教强,樊学忠,刘恒椽.新苯并噻唑偶氮苯甲酸型试剂与钴铁镍铜钯的显反应[J].理化检验-化学分册,1999,35(5):195.
    [18]樊学忠,朱春华,刘恒椽.新噻唑偶氮苯羧酸苯胂酸苯膦酸试剂及其在分析化学中的应用[J].化学试剂,1997,19(2):83-88.
    [19]崔建中, Kim Sung-Hoon.有机电致发光化合物及其金属配合物的合成及发光性质[J].科学通报,2004,49(7):623-628.
    [20] Hantzsch, A. R., Weber, J. H. Ber.,1887,20:3118-3120.
    [21] Narender, M., Reddy, M. S., Sridhar, R. et al. Aqueous phase synthesis of thiazoles and amino-thiazoles in the presence of β-cyclodextrin [J]. Tetrahedron Lett.,2005,46:5953–5955.
    [22] Kabalka, G. W., Mereddy, A. R. Microwave promoted synthesis of functionalized2-aminothiazoles[J]. Tetrahedron Lett.,2006,47:5171-5172.
    [23] Das, B. Reddy, V. S., Ramu, R. A rapid and high-yielding synthesis of thiazoles and aminothiazolesusing ammonium-12-molybdophosphate [J]. J. Mol. Catal. A. Chem.,2006,252:235-237.
    [24] Potewar, T. M., Ingale, S. A., Srinivasan, K. V. Efficient synthesis of2,4-disubstituted thiazolesusing ionic liquid under ambient conditions: a practical approach towards the synthesis ofFanetizole [J]. Tetrahedron,2007,63.11066-11069.
    [26] Potewar, T. M., Ingale. S. A., Srinivasan, K. V. Catalyst-free efficient synthesis of2-aminothiazolesin water at ambient temperature [J]. Tetrahedron,2008,64.5019-5022.
    [27] Chimenti, F., Bizzarri, B., Bolasco, A. et al. Synthesis and biological evaluation of novel2,4-disubstituted-1,3-thiazoles as anti-Candida spp. agents [J]. European Journal of MedicinalChemistry,2010,46:378-382.
    [28] Jaishree, V., Ramdas, N., Sachin, J. et al. In vitro antioxidant properties of new thiazole derivatives.Journal of Saudi Chemical Society,2011(In press).
    [29] Wipf, P., Venkatraman, S. A new thiazole synthesis by cyclcondensation of thioamides and alkynyl(aryl) iodonium reagents [J]. J. Org. Chem.,1996,61:8004-8005.
    [30] Ueno, M., Togo, H. Environmentally benign preparation of heteroaromatics from ketones or alcoholswith macroporous polystyrenesulfonic acid and (diacetoxyiodo) benzene followed by thioamide,amidine and2-aminopyridine [J]. Synthesis.2004:2673-2677.
    [31] Miyamoto, K., Nishi, Y., Ochiai, M. Thiazole synthesis by cyclocondensation of1-alkyny (phenyl)-λ3-iodanes with thioureas and thioamides [J]. Angew. Chem. Int. Ed.,2005,44:6896-6899.
    [32] Nedolya, N. A., Brandsma, L., Trofimov, B. A. Directed synthesis of isomeric thiazole and imidazolederivatives from methyl isothiocyanate [J]. Tetrahedron Lett.,1997,38:6279-6280.
    [33] Al-Hourani, B. J., Banert, K., Gomaa, N. et al. Synthesis of functionalized thiazoles via attack ofheterocyclic nucleophiles on allenyl isothiocyanates [J]. Tetrahedron,2008,64:5590-5597.
    [34] Kearney, P. C., Fernandez, M., Flygare, J. A. Solid-phase synthesis of2-aminothiazoles [J]. J. Org.Chem.,1998,63:196-200.
    [35] Goff, D., Fernandez, J. The preparation of2,4-disubstituted thiazoles on solid support [J].Tetrahedron Lett.,1999,40:423-426.
    [36] El Kazzouli, S., Berteina-Raboin, S., Mouaddib, A. et al. Solid support synthesis2,4-disubstitutedthiazoles and aminothiazoles [J]. Tetrahedron Lett.,2002,43:3193-3196.
    [37] Buchanan, J. L., Mani, U. N., Plake, H. R. et al. Practical synthesis of fully-substituted peptidethiazoles [J]. Tetrahedron Lett.,1999,40:3985-3988.
    [38] Tsuji, K., Ogino, T., Nobuo, S. Synthesis and effects of novel thiazole derivatives against throm-bocytopenia [J]. Bioorg. Medichem. Chem. Lett.,1998.8:2473-2478.
    [39] Fernandez, X., Fellous, R., Lizzani-Cuvelier, L. et al. Chemo-and regioselective synthesis of alkyl-3-thiazoline carboxylates [J]. Tetrahedron Lett.,2001,42:1519-1521.
    [40] Credico, B. D., Reginato, G., Gonsalvi, L. et al. Selective synthesis of2-substituted4-carboxyoxazoles, thiazoles and thiazolidines from serine or cysteine amino acids [J]. Tetrahedron,2010,67:267-274.
    [41] Kodomari, M., Aoyama. T., Suzuki, Y. One-pot synthesis of2-aminothiazoles using supportedreagents [J]. Tetrahedron Lett.,2002,43:1717-1720.
    [42] Aoyama, T., Murata, S., Arai, I. et al. One pot synthesis using supported reagents systemKSCN/SiO2-RNH3Oac/Al2O3: synthesis of2-aminothiazoles and N-allylthioureas [J]. Tetrahedron,2006,62:3201-3213.
    [43] Aoyama. T., Murata, S., Takido, T. et al. Novel one-pot three-step reaction using supported reagentssystem: synthesis of2-aminothiazoles [J]. Tetrahedron,2007,63:11933-11937.
    [44] Nishio. T., Ori, M., Thionation of ω-acylamino ketones with Lawesson’s reagent: convenientsynthesis of1,3-thiazoles and4H-1,3-thiazines [J]. Helv. Chim. Acta,2001,84:2347-2354.
    [45] Sasmal, P. K., Sridhar, S., Iqbal, J. Facile synthesis of thiazoles via an intramolecular thia-Michaelstrategy [J]. Tetrahedron Lett.,2006,47:8661-8665.
    [46] Qiao, Q., Dominique, R., Goodnow Jr. R.2,4-Disubstituted-5-acetoxythiazoles: useful inter-mediates for the synthesis of thiazolones and2,4,5-trisubstituted thiazoles [J]. Tetrahedron Lett.,2008,49:3682-3686.
    [47] Weng J, Sun W L, Jiang L M, Shen Z Q. Synthesis and magnetic properties of novel poly(Schiff-base)-Fe2+complexes [J].MaromolRapid, Commun,2000,21:1099.
    [48] Sun W L, Weng J, Jiang L M, Shen Z Q..Study on synthesis and magnetic properties of novelbitlliazole containing polymeric complexes [J]. Synth, Met.2003,137:1341.
    [49] Weng J, Jinag L M, Sun W L, Shen Z Q. Synthesis and magnetic properties of novel complexes ofpolymer containing bithiazole ring and salicylic acid[J]. Poylmer,2001,42:5491.
    [50] SunW L, Jiang L M., Weng J, Shen Z Q. A novel bithiazole-tetrathiapentalene polymer and itsmetal complexes [J]. React. Funct. Polym,2003,55:249.
    [51] Tang J B, Jiang L M, Sun W L, Shen Z Q.Synthesis of poly(thiazole-2,4diyl)-rare-earth complexesand their magnetic properties [J]. React. Funct.Polym,2004,61:405.
    [52] Weng J, Sun W L, Jiang L M, Shen Z Q, Synthesis and magnetic properties of novel poly(Schiffbase)-Fe2+complexes [J], Maeromol. Rapid Commun.2000,21:1099-1102
    [53] Weng J, Jiang L M, Sun W L, Shen Z Q, Liang S Q. Synthesis and magnetic properties of novelcomplexes of polymer containing bithiazole ring and salicylic acid [J]. Polymer,2001,42:5491-5494.
    [54] Tang J B, Jiang L M, Sun W L, Shen Z Q. Synthesis of Poly(thiazole-2,4-diyl)-rare-earthcomplexes and their magnetic properties [J]. React&Funct. Polym,2004,61:405-410.
    [55] Zhou Z X, Sun W L, Yang J, Tang J B, Shen Z Q. Synthesis and properties of novel fullyconjugated polymers containing bithiazole rings [J]. Polymer,2005,46:9495.
    [56] Ding N W, Lin W H, Sun W L, Shen Z Q. A novel hyperbranched aromatic polyamide containingbithiazole: Synthesis, metal complexation and magnetic properties [J]. Science China Chemistry.2011.54:320-325.
    [57] Zheng P, Sun W L, Shen Z Q, Synthesis and magnetic properties of novel complexes of poly(N-2-thiazolymethacrylamide) with Nd, Pr, and Sm [J]. J. Appl. Polym. Sci,2006,100:1289-1293.
    [58] Yang J, Sun W L, Lin W H,Shen Z Q. Comb-like Copolymeric complexes based on thiazole ringand ionic Liquid [J]. J. Polym. Sci, Part A: Polym. Chem.2008,46:5123-5132.
    [59] He B J, Sun W L, Wang M, Shen Z Q, New magnetic phenomena of rare earth ions-modifiedcarbon nanotubes, mater [J]. Chem. Phys.,2006,95:202-205.
    [60] He B J, Wang M, Sun W L, Shen Z Q, Preparation and magnetic property of the MWNT-Fecomposite, mater [J]. Chem. Phys.,2006,95:289-293.
    [61]徐磊杰,林维红,孙维林,沈之荃.含双噻唑自组装膜的制备及磁性能研究[J].高分子学报.2008,1(1):62-68.
    [62] Drzej R, Jirawat W, Rajaa S. Science,2001,294:1503-1505.
    [63] Andrzej R. Chem Eur J,2002,8(21):4834-4841.
    [64] Wassercheid, P., Welton, T. Ionic Liquids in Synthesis, VCH Wiley, Weinheim, Germany,2003, pp.1-312.
    [65] Hakkou, H.; Eynde, J. J. V.; Hamelin, J.; Bazureau, J. P. Tetrahedron2004,60,3745.
    [66] Tanaka, K.; Toda, F. Chem. Rev.2000,100,1025.
    [67] Burke, S. D.; Danheiser, R. L. Handbook of Reagents for Organic Synthesis Oxidizing andReducing Agents, John Wiley and Sons, Chichester,1999.
    [68] Carroll L., Kenneth G., Selective bromonation with Copper (I) bromide [J]. J. Org. Chem.,1964(29):459-3561.
    [69] Brad, A., Muraphy, D., Olson, R. Hydrochloric acid catalysis of N–bromo–succinimide (NBS)mediate nucleararomatic bromination in acetone [J]. Synth. Commun.,2000,30(12):2091-2096.
    [70]胡艾希,曹声春,董先明.1,3-二溴-5,5-甲基海因选择性溴化反应研究[J].中国医药工业杂志,2001,11(2):102-103.
    [71] Kajigaeshi S., Kakinami T., Okamoto T. Synthesis of bromoacetyl derivatives by use of tetrabutylammonium tribromide [J]. Bull. Chem.Soc. Jpn.,1987(60):1159-1160.
    [72]张胜建,乐长高.[Bmim]Br3对酮的选择性单溴化反应[J].有机化学,2006,26(2):236-238.
    [73] P. Ruggli, M. Herzog, J. Wegmann, H. Dahn. uber die Addition von Benzol an symm. Dibrom–diacetyl (Carbonylgruppen und arom Kohlenwassersoffe,1. Mitt.)[J]. Helvetica Chimica Acta1946,29:95-101.
    [74] Pourjavadi A, Zamanlu M R, Zohuriaan-mehr M J. Partially Aromatic Polyamides Based onTetraphenylthiophene Diamine: Synthesis and Characterization [J]. Journal of Applied PolymerScience,2000,77:1144-1153.
    [75]张红荣,魏运方.高性能半芳香族尼龙工程塑料的性能及应用进展[J].精细化工中间体,2002,32(6):1-4.
    [76]金国珍.工程塑料[M].北京:化工出版社,2001,23-35.
    [77]裴晓辉,赵清香,刘民英,等.双苯环长碳链半芳香尼龙的合成与表征[J].塑料工业,2005,33(1):7210.
    [78]乔永生,沈腊珍.有机导电高分子材料的导电机制[J].山西广播电视大学学报,2005,2:104-105.
    [79]唐洁渊,章文贡,高锋.电化学聚合漆酚稀土配合物的合成与表征[J].物理化学学报,2000,16(12):1086-1092.
    [80] Lehr H., Erlenmeyer H. Structural chemical investigations. X. Reactive behavior of dithioamides ofaliphatie dicarboxylic acids [J]. Helvetica Chimica Acta,1944,27:489.
    [81] Bischoff G, Erlenmeyer H. Structural chemical investigations. X. Reactive behaviol of dithio-diamides toward tris (bromoaceytl) benzene [J].Helvetica Chimica Acta,1944,27:947.
    [82] Erlenmeyer H., Buehler W., Lehr H., Srtuctual chemical investigations.Xll. Thiazole derivativesfom dithio-l,4-benzenedicarboxamide [J].Helvetica Chimica Acta,1944,27:969.
    [83] Erlenmeyer H., Erne M., Polythiazole compounds [J]. Helvetica Chimica Acta,1946,29:275.
    [84] Erlenmeyer H., Deger K., A macrocyclic thiazole compound [J]. Helvetica Chimica Acta,1946,29:1080.
    [85] Erlenmeyer H., Buchler W. Linear-polymeric thiazole derivatives [J]. Helvetica Chimica Acta,1946,29:1924.
    [86] Lehr H., Gues W., Erlenmeyer H., Structural chemical investigations [J]. Xlll. Dithiomalonmaide.Helvetica Chimica Acta,1944,27:970.
    [87] Lehr H, Gues W., Erlenmeyer H. Dithioamides of succinic and glutaric acids [J]. HelvetciaChimica Acat1945,28:1281.
    [88] Mulvaney J. E., Marvel C.S., Synthesis of Polymers containing recurring thiazole rings [J]. J Ogr.Chem,1961,26:95.
    [89] Sheehan W.C., Cole T. B., Investigation of thiazole polylners for heat-resistant fibers and films [J].J Poylm. Sci. PartA,1965,3:1443-1462.
    [90] Longone D. T., Un H.H. Heteroaromatic Polymers, the polythiazoles [J]. J Polym Sci. Part A,1965,3:3117-3130.
    [91] SheehnaW. C. Investigation of thiazole polymers for thermally stable plastics [J]. PoylmerEngineering and Science,1965,5(4):263-269.
    [92] Kazuto Inoue. Synthesis and characterization of aromatic polythiazole-amides form new aromaticdiamines containing phenyl-pendant thiazole units [J]. J Poylm, Sci: PartA,1995,33:2291.
    [93] Wong W Y, Chan S M, etal. Synthesis, optical and photocondueting properties of platinum polyynepolymers functionalized with electron-donating and electron-withdrawing bithiazole units[J].Macromol. Rapid Commun,2000,21:453-457.
    [94]林彩萍,孙维林,江黎明等.芳杂环聚席夫碱Fe2+配合物的合成及磁性能.[J].高分子学报,2003(6):826-830.
    [95]刘志超,孙维林,刘爽等.2,4-二氨基-6-苯基-1,3,5-三嗪聚席夫碱Fe2+配合物的合成及性能研究.[J].高分子学报,2004,(5):667-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700