注射用头孢拉定在Beagle犬体内的毒代动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β—内酰胺类抗生素(包括青霉素、头孢菌素类和非典型β—内酰胺类等)目前在世界抗生素市场占主导地位。头孢拉定为第一代头孢菌素类抗生素,可口服、肌注、静注及静滴,抗菌效果好,临床应用广泛,主要用于呼吸道、泌尿道、皮肤、骨等部位的感染。该药毒代动力学研究国内外尚未见报道,研究其毒代动力学,有利于探讨该药毒性作用的发生机制,指导临床合理用药。
     目的研究注射用头孢拉定在Beagle犬体内的毒代动力学,阐述在毒性试验条件下药物所达到的全身暴露与剂量、时间的内在联系,并结合头孢拉定组织分布的浓度,解释毒理试验数据的价值,对药物的临床前安全性进行全面和综合的评价。
     方法
     1.给药方案及标本采集健康、成年Beagle犬18只,雌雄各半,随机分为低(200 mg·kg~(-1))、中(1000 mg·kg~(-1))、高(1800 mg·kg~(-1))三个给药剂量组,每组6只。静脉滴注头孢拉定,每日一次,共35天。给药首日,三个剂量组分别于给药前0h,给药后0.167,0.333,0.667,1,1.167,1.333,1.667,2,2.5,3,4,5,6,7h抽取后肢静脉血0.8 ml;给药第34天,三个剂量组分别于给药前0h,给药后0.333,0.667,1,1.333,2,3,5,7h抽取后肢静脉血0.8 ml。分离血清于-20℃保存待测。最后一天用药结束后立即处死动物,解剖采集脑、心、肺、肝、脾、肾、胰腺、子宫和卵巢组织。制备匀浆,取上清液,-20℃保存待测。
     2.药物浓度测定样品中药物浓度按抗生素微生物琼脂平板扩散法测定,检测菌为藤黄八叠球菌28001。配制0.78、1.56、3.125、6.25、12.5、25mg·L~(-1)的头孢拉定标准曲线溶液,以标准液抑菌圈直径与药物浓度的对数作线性回归,求出回归方程。以未知样品的抑菌圈直径带入回归方程,求得样品的药物浓度。
     3.方法学考察用犬空白混合血清将头孢拉定对照品配成浓度分别为1.56、6.25和25 mg·L~(-1)的待测液,按“标准曲线”方法测定日内、日间变异和回收率。并进行稳定性考察。
     结果
     1.方法学研究标准曲线方程为:1gC=0.0729 D-0.96,相关系数r=0.9968,线性范围为0.78~25 mg·L~(-1)。经精密度及回收率考察显示,RSD均小于10%。经稳定性考察显示,头孢拉定在室温放置10h,-20℃冰冻2周和冻融(-20℃)3次的情况下均稳定。
     2.单次用药毒代动力学Beagle犬静脉滴注(1h)头孢拉定高、中、低三个剂量组后,主要毒代动力学参数为:T_(1/2)分别为1.01±0.13 h,0.93±0.07 h和0.90±0.06h;Ke分别为0.69±0.08(1/h),0.75±0.06(1/h)和0.77±0.06(1/h);AUC_0~1分别为805.78±111.37 mg·L~(-1)·h,3900.38±1165.07 mg·L~(-1)·h和9072.59±2355.43mg·L~(-1)·h;AUC_0~∞分别为823.34±110.85 mg·L~(-1)·h,3960.79±1207.28 mg·L~(-1)·h和9203.31±2395.67 mg·L~(-1)·h;Vd分别为0.39±0.07 L,0.39±0.12 L和0.29±0.06L;CL分别为0.27±0.03 L·h~(-1),0.29±0.09 L·h~(-1)和0.22±0.06 L·h~(-1);C_(max)分别为415.97±99.01 mg·L~(-1),2250.86±510.38 mg·L~(-1)和5162.32±1119.54 mg·L~(-1)。
     结果显示单次静脉滴注给药后,头孢拉定在Beagle犬体内呈线性动力学过程,体内暴露量(AUC)和峰浓度(C_(max))与给药剂量均呈很好的正相关性(r=1.000)。
     3.多次用药毒代动力学Beagle犬静脉滴注(1h)头孢拉定高、中、低三个剂量组后,主要毒代动力学参数为:T_(1/2)分别为0.98±0.11 h,1.03±0.24h和0.94±0.05 h;Ke分别为0.72±0.08(1/h),0.71±0.19(1/h)和0.74±0.04(1/h);AUC_0~1分别为1224.92±112.13 mg·L~(-1)·h,6313.88±2098.97mg·L~(-1)·h和9322.36±2512.75mg·L~(-1)·h;AUC_0~∞分别为1248.05±115.36 mg·L~(-1)·h,6403.88±2080.21 mg·L~(-1)·h和9400.51±2531.69mg·L~(-1)·h;Vd分别为0.31±0.09 L,0.35±0.20 L和0.37±0.18L;CL分别为0.21±0.04 L·h~(-1),0.22±0.09 L·h~(-1)和0.27±0.11 L·h~(-1);C_(max)分别为852.60±56.21 mg·L~(-1),3880.51±1160.66 mg·L~(-1)和6469.96±704.57 mg·L~(-1)。
     结果显示多次静脉滴注给药后,头孢拉定在Beagle犬体内呈线性动力学过程,体内暴露量(AUC)和峰浓度(C_(max))与给药剂量呈很好的正相关(r=1.000)。
     4.多次用药组织分布浓度Beagle犬静脉滴注(1h)头孢拉定低、中、高三个剂量组后,其组织浓度分别为肾:0.482±0.164,1.563±0.278,2.538±1.159mg·g~(-1);肝:0.204±0.084,0.865±0.712,1.448±1.173 mg·g~(-1);肺:0.073±0.006,0.45±0.076,0.800±0.176mg·g~(-1);脑:0.012±0.011,0.013±0.007,0.046±0.009 mg·g~(-1);心:0.030±0.008,0.183±0.031,0.252±0.033 mg·g~(-1);脾:0.032±0.005,0.130±0.008,0.249±0.038 mg·g~(-1);胰腺:0.031±0.007,0.159±0.044,0.299±0.040 mg·g~(-1);卵巢:0.087±0.007,0.700±0.478,0.999±0.695 mg·g~(-1);子宫:0.096±0.035,0.721±0.454,1.050±0.837 mg·g~(-1)。
     结果显示,在三个剂量组中,肾的浓度最高,其次是肝和子宫、卵巢,在脑中的浓度最低。且各组织中(除脑组织外)分布浓度与剂量呈较好的正相关(r=1.000)。
     结论
     1.Beagle犬静脉滴注200 mg·kg~(-1),1000 mg·kg~(-1)和1800 mg·kg~(-1)的头孢拉定后体内毒代动力学行为符合静脉滴注一房室模型。
     2.头孢拉定单次和多次静脉滴注给药后,在Beagle犬体内呈线性动力学过程,体内暴露量(AUC)和Cmax与给药剂量呈正相关。而t_(1/2)、Vd、CL与给药剂量及给药时间均无关。
     3.Beagle犬静脉滴注200 mg·kg~(-1),1000 mg·kg~(-1)和1800 mg·kg~(-1)的头孢拉定后在肾中的浓度最高,其次是肝脏和子宫、卵巢,在脑中的浓度最低。且各组织中(除脑组织外)分布浓度与剂量呈较好的正相关(r=1.000)。
Beta-lactam antibiotics(including penicilin,cephalosporins,atypical beta-lactam antibiotics,etc.) play a significant role in world-wide application of antibiotics.As the first generation cephalosporins,cefradine can administered by oral,intramuscular injection,or intravenous injection and intervenous drop infusion with satisfactory effectiveness.Cefradine was extensively used in infection of respiratory system, urinary system,skin and bone,etc.No toxicokinetics study was reported at domestic or abroad about this drug.It is helpful to discuss the toxic action of cefradine to instruct clinical rational administration.
     Objective Expound the relationship between exposure and dose under venenous test conditions by research toxicokinetics of cefradine injection in beagles. Expound the value of venenous test data from cefradine's concentration in tissue, quibus evaluating preclinical safety.
     Methods
     1.Project of administration and specimen collection 18 healthy and ripe beagles,9 male and 9 female,were divided into 3 groups randomly,using dose of 200 mg·kg~(-1)(high),1000 mg·kg~(-1)(middle) and 1800 mg·kg~(-1)(low).Each group has 6 beagles,intervenous drop infusion of cefradine once daily totally 35 days.First day, each group was taken suction for 0.8ml of hind legs venous blood at the point of 0h before administration,0.167h,0.333h,0.667h,1h,1.167h,1.333h,1.667h,2h,2.5h, 3h,4h,5h,6h,7h after administration.34~(th) day each group was taken suction for 0.8ml of hind legs venous blood at the point of 0h before administration,0.333h, 0.667h,1h,1.333h,2h,3h,5h,7h after administration.All blood serum were conserved in -20℃before test.Last day sacrifice all the beagles and collect the brains, the hearts,the lungs,the livers,the spleens,the kidneys,the pancreases,the uteruses and the ovarys.Make homogenate and get supernatant,conserving in -20℃for being tested.
     2.Determine the drug concentration The exemplar drug concentration was determined by antibiotics microbial agar diffusion method in which sarcina lutea was used.Microbiological method was used to determine drug concentration in blood serum.To prepare 0.78,1.56,3.125,6.25,12.5,25 mg·L~(-1) standard curve of cefradine solution,we extract the regression equation by linear regression of inhibition zone's diameter of standard curve and drug concentration's logarithm.The drug concentration was calculated accord to inhibition zone's diameter of unknown exemplar by regression equation.
     3.Technology study To prepare the test solution of 1.56,6.25 and 25 mg·L~(-1) with cefradine reference substance by beagles blank pooled serum.To determine the intra-day and Inter-day deviation and recovery by standard curve and perform stability study.
     Results
     1.Technology research Standard curve equation:1gC=0.0729D-0.96, r=0.9968,linear range:0.78~25mg/L.Investigated by degree of precision and recovery rate,we get RSD<10%.Put cefradine under room temperature for 10h, -20℃freezing for 2 weeks and freeze thawing(-20℃) for three times,results suggest the cefradine are stabilized substance.
     2.Toxicokinetics of administration of single Toxicokinetics indexes of 3 groups(high,middle,low) after given cefradine intervenous drop infusion(1h) were calculated.The T_(1/2) was 1.01±0.13h,0.93±0.07h,0.90±0.06h.The Ke was 0.69±0.08(1/h),0.75±0.06(1/h),0.77±0.06(1/h).The AUC_0~1 was 805.78±111.37 mg·L~(-1)·h,3900.38±1165.07 mg·L~(-1)·h,9072.59±2355.43mg·L~(-1)·h.The AUC_0~∞was 823.34±110.85 mg·L~(-1)·h,3960.79±1207.28mg·L~(-1)·h,9203.31±2395.67 mg·L~(-1)·h.The Vd was 0.39±0.07L,0.39±0.12L,0.29±0.06L.The CL was 0.27±0.03 L·h~(-1), 0.29±0.09 L·h~(-1),0.22±0.06 L·h~(-1).The C_(max) was 415.97±99.01 mg·L~(-1), 2250.86±510.38 mg·L~(-1),5162.32±1119.54 mg·L~(-1).
     From the result of administration once,the cefradine act as linear dynamics process in beagles.The AUC and C_(max) act as positive correlation with dose.
     3.Toxicokinetics of administration of multiple Toxicokinetics indexes of 3 groups(high,middle,low) after given cefradine intervenous drop infusion(1h) were calculated.The T_(1/2) was 0.98±0.11h,1.03±0.24h,0.94±0.05h.The Ke was 0.72±0.08 (1/h),0.71±0.19(1/h),0.74±0.04(1/h).The AUC_0~1 was 1224.92±112.13 mg·L~(-1)·h, 6313.88±2098.97 mg·L~(-1)·h,9322.36±2512.75 mg·L~(-1)·h.The AUC_0~∞was 1248.05±115.36 mg·L~(-1)·h,6403.88±2080.21mg·L~(-1)·h,9400.51±2531.69mg·L~(-1)·h.The Vd was 0.31±0.09L,0.35±0.20L,0.37±0.18L.The CL was 0.21±0.04 L·h~(-1), 0.22±0.09 L·h~(-1),0.27±0.11 L·h~(-1).The C_(max) was 852.60±56.21 mg·L~(-1), 3880.51±1160.66 mg·L~(-1),6469.69±704.57 mg·L~(-1).
     From the result of administration for multiple,the cefradine act as linear dynamics process in beagles.The AUC and C_(max) act as positive correlation with dose.
     4.Drug distribution in tissue Drug concentration was measured in tissue from 3 groups of beagles(high,middle,low) which were given intervenous drop infusion of cefradine(1h).The concentration in kidney was 0.482±0.164 mg·g~(-1), 1.563±0.278 mg·g~(-1),2.5384±1.159 mg·g~(-1).The concentration in liver was 0.204±0.084 mg·g~(-1),0.865±0.712 mg·g~(-1),1.448±1.173 mg·g~(-1).The concentrationin lungs was 0.073±0.006 mg·g~(-1),0.45±0.076 mg·g~(-1),0.800±0.176 mg·g~(-1).The concentration in brain was 0.012±0.011 mg·g~(-1),0.012±0.007 mg·g~(-1),0.046±0.009 mg·g~(-1).The concentration in heart was 0.030±0.008 mg·g~(-1),0.183±0.031 mg·g~(-1),0.252±0.033 mg·g~(-1).The concentration in spleen was 0.032±0.005 mg·g~(-1),0.130±0.008 mg·g~(-1), 0.249±0.038 mg·g~(-1).The concentration in pancreas was 0.031±0.007 mg·g~(-1), 0.159±0.044 mg·g~(-1),0.2994±0.040 mg·g~(-1).The concentration in ovary was 0.087±0.007 mg·g~(-1),0.700±0.478 mg·g~(-1),0.999±0.695 mg·g~(-1).The concentration in uterus was 0.096±0.035 mg·g~(-1),0.721±0.454 mg·g~(-1),1.050±0.837 mg·g~(-1).
     The result shows that the concentration in tissue ranks from high to low is kidney, liver,uterus,ovary,brain.
     Conclusion
     1.According to result of cefradine intervenous drop infusion to beagles with dose of 200 mg·kg~(-1),1000 mg·kg~(-1) and 1800 mg·kg~(-1),the behavior of toxicokinetics acts as one compartment model.
     2.No matter intervenous drop infusion of cefradin for once or for multiple,the cefradine act as linear dynamics process in beagles.The AUC and C_(max) act as positive correlation with dose.But t_(1/2),Vd,CL have no relevance with dose and administration time.
     3.After intervenous drop infusion of cefradine to beagles with dose of 200 mg·kg~(-1), 1000 mg·kg~(-1) and 1800 mg·kg~(-1),the maximal concentration appears in kidney, secondly in liver,uterus and ovary.The minimum concentration is in the brain.
引文
1.王怀良,陈凤荣.临床药理学.第一版.北京:人民卫生出版社,2007,177-198
    2.裴泓波.临床医生抗生素用药行为及耐药性的研究.兰州医学院硕士学位论文
    3.江明性.药理学.第四版.北京:人民卫生出版社,1995,267-288
    4.于文洲,段大成.对我国β—内酰胺类抗生素发展的建议及十大城市用药情况分析.国外医学抗生素分册,2001,22(4):145-157
    5.吴军.β—内酰胺类抗生素的现状和发展趋势.中国药事,2002,16(4):252-254
    6.Miriam B,Barry GH.Origin and evolution of the Amp C β-lactamases of citrobacter freundii.Antimicrob Agents Chemother,2002,46(2):1190-1198
    7.郭志彩.β—内酰胺类抗生素及其复合制剂的研究进展.现代中西医结合杂志,2007,16(9):1289-1292
    8.徐红.临床常用药物.第二版.济南:山东科学技术出版社,2004,12
    9.中华人民共和国药典2000版二部附录70
    10.冒国光,裘福荣,孙华.国产头孢拉定临床药代动力学及其胶囊剂的生物等效性.中国抗感染化疗杂志,2002,2(3):133-135
    11.许俐,张文敏,李惠芬,等.新生儿静脉滴注头孢拉定的药代动力学.中国药学杂志,1994,29(1):31-34
    12.李家泰.临床药理学.第三版.北京:人民卫生出版社,2007,936
    13.张瑞,王英禹,程建峰,等.头孢拉定不良反应文献分析.第四军医大学学报,2006,27(10):935
    14.陈洪滔,刘全英.头孢拉定不良反应25例临床分析.实用全科医学,2007,5(7):592-594
    15.郝琨,柳晓泉,王广基.临床前毒代动力学研究进展.中国药科大学学报,2004,35(3):195-199
    16.吴民淑,王广基.国外相伴毒代动力学研究进展.药学进展,1999,23(9):321-325
    17.Welling PG.Differences between pharmacokinetics and toxicokinetics.Toxicol Pathal,1995,23(2):143-147
    1.Jacobs MR,Appelbaum PC,Felmingham D.The Alexander project group.Penicillin resistance in S pneamoniae.Clin Microbinl Inf,2000,6(supple Ⅰ):28
    2.刘洁,耿海波.口服头孢菌素的研究现状及发展趋势.河北化工,2007,30(7):32-33
    3.付明耀.头孢菌素进展.中国冶金工业医学杂志,2003,20(3):172-173
    4.王建刚.药理学.第一版.郑州:郑州大学出版社,2004,311-312
    5.夏成才,程冬萍等.第四代头孢研究进展及合成综述.应用化工,2005,34(3):137-140
    6.李书莉.四代头孢菌素的发展概述.大众科技,2005,7:150-151
    7.Gary A Koppel.Antibiotic composition and method.US:2004072815,2004-04-15
    8.傅德才,狄蕊.头孢菌素类抗生素的研究进展.河北师范大学学报(自然科学版),2006,30(6):693-697
    9.Kazuk K,Eljirou U,Kunio A,et al.Cephem devivatives.US 6242437,2001-06-05
    10.Tomasz W,Glinka G.Cephalosporin antibiotics and prodrugs thereof.US 6599893 B2,2003-07-29
    11.Hayashy K,Sakuram,Shimazu A.Usefulness of cefluprenam for orthopedic infection.Jpn Pharmacol Ther,1997,25(6):233
    12.Kee W,Jae K,Dong S,et al.Cephalosporin derivatives and processes for the preparation thereof.US 6063778,2000-05-16
    13.Gerd A,Johannes L.Antibacterial cephalosporins.US 2003/0191105A1,2003-10-09
    14.Ascher G,Heilmyer W,Schranzm,et al.Cephalosporins.WO 2004/007505A1,2004-01-22
    15.Tomoyasu I,Shohei H,Yuji I.Phosphonocephem derivatives,process for the preparation of the same,and use thereof.US 6417175 B1,2002-07-09
    16.Tomoyasu I,Shohei H,Yuji I.Phosphonocephem compound.US 2004/0023943 A1,2004-02-05
    17.Iizawa Y,Hashigachi S,Ishikawa T.Cephem cpds:Having phosphor group.JP 2002-07-05
    18.Matsumoto F,Salurai Z,Morita M,et al.Effects of the quantity of water and milk ingested concomitantly with AS-924,a novel ester type cephem antibiotic on its pharmacokinetics.Int J Antimicrob Agents,2001,18(5):471-476
    19.Scott JH,Aesop C,Tomasz WG,et al.Prodrugs of 7-acylamino-3-heteroarylthio-3-cephem carboxylic acid antibiotic.WO 02/24708A1,2002-03-28
    20.Scott JH,Aesop C,Tomasz WG,et al.Prodrugs of 7-acylamino-3-heteroarylthio-3-cephem carboxylic acid antibiotics and prodrugs thereof.US 6723716 B1,2004-04-20
    21.王进,刘新民.口服头孢菌素的研究及临床应用进展.国外医药抗生素分册,2004,25(1):1-5
    22.程志刚,王荣先.口服头孢菌素研究进展.天津药学,2003,15(6):52-56
    23.Buijk SL,Gyssens IC,MoutonJW,Van VlietA.Pharmacokinetics of ceftazidime in plasma and peritomeal exudates during comtinous versus intermittent administration to patient with severe intra-abdominal infections.J Antimicrob Chemother,2002,49(1):121-128
    24.李家泰,李耕,王进.我国医院和社区获得性感染革兰阴性杆菌耐药性监测研究.中华医学杂志,2003,83(12):1035-1045
    25.李家泰,李耕,王进.中国医院和社区获得性感染革兰阳性球菌耐药性监测研究.中华医学杂志,2003,83(5):365-374
    26.Bronzwaer SL,Buchholz OCT.A European study on the relationship between antimicrobial use and antimicrobial resistance.Emerg Infect Dis,2002,8(3):278-282
    27.Walther SM,Erlandsson M,Burman LG,et al.Antibiotic prescription practices,consumption and bacterial resistance in across section of Swedish intensive care units.Acta Anaesthesiol Scand,2002,46(9):1075-1081
    28.Walther-Rasmussen J,Hoiby N.Plasmid-bome AmpC beta-lactamases.Can J Microbiol,2002,48:479-493
    29.Hanson ND.AmpC beta-lactamases:what do we need to know for the future?.J Antimicrob Chemother,2003,52(1):2-4
    30.Alvarez M,Tran JH,Chow N,et al.Epidemiology of conjugative plasmid-mediatde AmpC beta-lactamases in the United States.Aneimicrob Agents Chemother,2004,48(2):533-537
    31.Philip ED,Nancy DH,Michael WC.Occurrence of extended-spectrum and AmpC β-lactamases in bloodstream isolates of Klebsiella pneumonia:isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC β-lactamases.J Clin Micro,2003,41(3):772-777
    32.Pfaller MA,Segreti J.Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases.Clin Infect Dis,2006,42 Suppl 4:s153-163
    33.张健东.金属β—内酰胺酶的研究进展.医学综述,2005,11(5):415-417
    34.Jacoby GA.Extended-spectrum β-lactamases and other enzymes providing resistance to oxyimino-lactams.Infect.Dis Clin Noth Am 1997,11(4):875-887
    35.Bonet R,Sampaio JL,Labia R,et al.A novel CTX-M beta-lactamase(CTX-8)in cefotaxime resistant exterobactriaceae isolated in Brazil.Antimicrob Agents Chemother,2000,44(7):1936-1942
    36.Pitout JD,Thomson KS,Hanson ND,et al.β-lactamases responsible for resestance toexpanded-spectrum cephalosporins in Klebsiella pneumoniae,Escherichia,coli,and Proteus mirabilis isolates recovered in South Africa.Antimicrob Agents Chemother,1998,42(6):1350-1354
    37.Queenan AM,Foleno B,Gownley C,et al.Effects of inoculum and β-lactamase activity in AmpC and extended-spectrum β-lactamase(ESBL) -producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL Methodlogy.J Clin Microbiol,2004,42(1):269-275
    38.Andes D.Craig WA.Treatment of infections with ESBL-producing organisms:pharmacokinetic and pharmacodynamic considerations.Clin Microbiol Infect,2005,11(6):10-17
    39.王苒,孙耕耘.超广谱β-内酰胺酶研究进展.国际呼吸杂志,2007,27(6):430-432
    40.Paterson DL,Ko WC,VonGottberg A,et al.International prospective study of klebsiella pheumoniae bacteremia:implications of extended-spectrum beta-lactamase production in nosocomial Infections.Ann Intern Med,2004,140(1):26-32
    41.Philippon A,Arlet G,Jacoby GA.Plasmid-Determined AmpC-Type β-Lactamases.Antimicrob Agents Chemother,2002,46(1):1-11
    42.陈岩勤,黄瑞.AmpC β-内酰胺酶的研究进展.基层医学论坛,2007,11(3):271-272
    43.Donald HM,Scaife W,Amyes SG,et al.Sequence analysis of ARI-1,anovel OXA β-lactamase,responsible for imipenem resistance in acinetobacter baumanii 6B92.Antimicrob Agents Chemother,2000,44(1):196-199
    44.Bou G,Oliver A,Martinez-beltran J.OXA-24,a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain.Antimicrob Agents Chemother,2000,44(6):1556-1561
    45.Lopez-otsoa F,Gallego L,Towner KJ,et al.Endemic carbapenem resistance associated with OXA-40 carbapenmase among Acinetobacter baumannii isolates from a hospital in northern.Spain.J Clin Microb,2002,40(12):4741-4743
    46.Heritier L,Poirel L,Aubert D,et al.Genetic and Functional analysis of the chromosome encoded carbapemem-hdrolyzing oxacillinase OXA-40 of Acinetobacter baumannii.Antimicrob Agents Chemother,2003,47(1):268-273
    47.Finan JE,Archer GL,Pucci MI,et al.Role of penicillin binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus.Antimicrob Agents Chemother,2001,45(11):3070-3075
    48.Hanaki H,Kuwahara AraiK,Boyle Vavra S,et al.Activated cell-wall syuthemis associated with vancomycin resistance in metbicillin-resistant Staphylocoocus clinical strains Mu3 and Mu50.J Antimicrob Chemother,1998,42 (2):199-209
    49.蔡朝阳.青霉素结合蛋白与金黄色葡萄球菌耐药性关系研究.国际检验医学杂志,2006,27(4):361-363
    50.Komatsuzewa H,Choi GH,Ohta K,et al.Cloning and characterization of a gene,pbpF,encoding a new penicillin-binding protein,PBP2B,in Staphylococcus aureus.Antimicrob Agents Chemother,1999,43(7):1578-1583
    51.Katayama Y,Zhang HZ,Camber HF.PBP2a mutations producing very-high-levelresistance to beta-lactams.Antimicrob Agents Chemother.2004,48(2)453-459
    52.王怀良,陈凤荣.临床药理学.第一版.北京:人民卫生出版社,2007,177-198
    53.郭志彩.β—内酰胺类抗生素及其复合制剂的研究进展.现代中西医结合杂志,2007,16(9):1289-1292
    54.乔海灵.临床药理学.第一版.郑州:郑州大学出版社,2004,318
    55.Pena C,Pujol M,Ardanuy C,et al.Epidenmiology and successful control of a large outbreak due to Klebsiella pneumniae producing extended-spectrum beta-lactamases.Antimicrob Agents Chemother,1998,42(1):53-55
    56.余娴,凌保东,雷军.某院产超广谱β-内酰胺酶临床分离革兰阴性杆菌的耐药性及基因型分析.中国药房,2007,18(1):25-27
    57.Lee N,Yuen KY,Kumana CR.Clinical role of beta-lactaml/beta-lactamase inhibitor combinations.Drugs,2003,63(14):1511
    58.殷俊玲,文玉辉.头孢类药物的发展及临床应用.山西医药杂志,2007,36(8):631-632
    59.于钦凤,王爱华.头孢地尼体外抗菌活性和作为头孢哌酮序贯治疗药物的研究.山东大学学报(医学版),2005,43(5):411-417
    60.徐红.临床常用药物.第二版.济南:山东科学技术出版社,2004,12
    61.Pichichero ME.Use of selected cephalosporins in penicillin-allergic patients:a paradigm shift.Diagn Microbiol Infect Dis.2007 Mar,57(3suppl):13S-18S
    62.邹文淑,李泽平.头孢菌素类抗生素过敏性休克7例.西部医学,2007,19(2):178-180
    63.严国鸿,邱水生.头孢菌素类药物使用前进行皮肤过敏试验必要性的探讨.海峡药学,2005,17(5):179-180
    64.师勇珍.头孢菌素药物与戒酒硫样反应.实用医技杂志,2005,12(1A):132-133
    65.王东生,肖永春.静脉点滴头孢菌素同时饮酒诱发不良反应2例.中外健康文摘,2006,3(9):86
    66.Billici A,Karaduman M,Cakirz.A rare case of hepatistis associated with cefroziltheray.Scand J Infect Dis,2007,39(2):190-2
    67.Omri A,Suntres ZE,Shek PN.Enhanced activity of liposomal polymyxin Bagainst Pseudomonas aeruginosa in a rat model of lung infection.Biochem Pharmacol,2002,64(9):1407
    68.李家泰.临床药理学.第三版.北京:人民卫生出版社,2007,932
    69.Colodner R.Extended-spectrum beta-lactamases:a challenge for clinical microbiologists and infection control specialists.Am J Infect Control,2005,33(2):104-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700