青枯菌接种后花生抗感2个品种中几种防御性酶活性的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青枯菌为青枯病病原菌,为革兰氏阴性菌。其侵染植物达44个科,300多种植物,以茄科最多。其分类系统很多,国际公认的分类系统有两种:一是根据寄主范围划分,分为5型;二是根据菌株对3种二糖(麦芽糖、乳糖和纤维二糖)和3种己醇(甘露醇、山梨醇和卫矛醇)氧化产酸能力划分,划分为5个变种。其分泌系统可以划分为6种类型。青枯菌的主要毒性因子为胞外多糖和胞外蛋白。青枯病之所以难于防治,在于青枯菌基因组的可塑性。青枯菌的基因组具有双组分结构(a bipartite genome structure)、替换密码子使用区域(alternate coden usage region, ACUR)和插入子和转座子(insertion sequences)。此外,青枯菌的基因组还有基因水平转移(horizontal gene transfer, HGT)的发生。
     花生青枯病是茄劳尔氏菌引起的一种细菌性维管束病害,中国、印度尼西亚、越南等是这一病害危害较重的国家,其中我国的受害面积最大。发病高峰期发病率达30%以上,甚至绝收。
     青枯病的防治方法很多,如利用抗病品种、利用转基因植物、合理轮作、化学防治和生物防治等。选育抗病品种被公认为是防治花生青枯病最经济有效的方法。青枯菌侵染植物的过程,涉及到的防御系统复杂,从不同的角度可分为预存抗性与系统抗性,非寄主抗性与寄主抗性,及苗期抗性与成株抗性等。培育筛选抗病品种和利用转基因技术培育抗青枯病品种仍是当前防治青枯病经济有效,简便易行的途径。
     植物的抗病过程,广泛涉及到了植物次生代谢,主要可以分为2类,一类是抗毒素,是组成型表达的物质。一类是植保素,是微生物侵染后,被诱导才表达的物质。植物的抗性机制是植物在与病原菌的长期斗争中存活的根本,并随着病原菌不断进化而协同进化。植物的氧化还原的酶类,正是植物次生代谢反应的参与者,与植物的抗性密切相关。PAL参与了植物色素形成,细胞分化和木质化作用,植物抗病作用和次生代谢产物调控等。其中,次生代谢产物调控包括调控黄酮类化合物合成,调控紫杉醇合成,调控生物碱合成和调控红厚壳素等其他次生代谢产物合成。CAT的主要功能是清除H_2O_2,并转化为无毒的H_20和0_2。自由基的危害很大,可导致生物活性分子被氧化,故CAT对减轻机体损伤的意义很大。PPO参与了植物的光合作用、抗病虫害、生长发育,花色的形成,防御系统及伤口愈合等。POD参与木质素和木栓质的合成,参与活性氧代谢过程,参与生长素的降解,参与植物对外界不良胁迫的应答和植物组织褐变等。
     本研究将青枯菌菌液制备成OD600为0.5和0.1两浓度。土培‘远杂9102’(抗病)和‘中花8号’(感病)两品种花生至三叶期,然后于主茎第一分蘖处下方注射20μl已制取的青枯菌菌液。分别于接种后的第5、7、10、12和14天取样,取样部位为主茎第一分蘖处到第二分蘖处之间的茎。并对各样品测定了PAL、CAT、PPO、POD的酶活性和可溶性蛋白质含量。
     通过对抗病品种和感病品种的4种酶活性的对比,发现前期抗病品种酶活性不是都高于感病品种,后期,抗病品种的酶活性则都高于感病品种。
     结果显示,花生抗病品种和感病品种在感染青枯病后期关键酶的酶活性与花生的抗病能力呈正相关关系。这一结论可作为鉴定花生抗病能力的参照指标之一。
Ralstonia solanacearum is the bacterial wilt pathogen and Gram-negative bacteria. Plants which can be infected by Ralstonia solanacearum cover 44 families, more than 300 species. Solanaceae are the most. Mutiple classification systems of Ralstonia solanacearum exist, two of them are internationally accepted classification systems.: First, Ralstonia solanacearum is divided into 5 types according to host range; Second, 5 variants are divided into based on oxidation capacity using 3 disaccharides(maltose, lactose and cellobiose) and 3 hexanols(mannitol, sorbitol and alcohol Euonymus). Its secretion systems can be divided into 6 types. The major virulence factors of Ralstonia solanacearum are extracellular polysaccharide and extracellular proteins. Because of plasticity of the genome of Ralstonia solanacearum, bacterial wilt is difficult to control. Genome of Ralstonia solanacearum has bipartite genome structure, alternate coden usage region, insertion sequences and transposon. In addition, horizontal gene transfer can happen in he genome of Ralstonia solanacearum.
     Peanut wilt is a bacterial vascular bundle disease caused by Ralstonia solanacearum. Severe disease hazards happened in China, Indonesia, Vietnam, etc. Affected areas of China are the largest. The incidence rate reaches 30% in the peak period, even 100%.
     There are many control methods on bacterial wilt, such as the use of resistant varieties and transgenic plants, proper rotation of crops, chemical control and biological control, etc. Breeding resistant varieties widely considered is the most cost-effective method on peanut wilt.
     Defense systems involved in the process of Ralstonia solanacearum infecting plants are complex. From different angles, these defense systems can be divided into preformed resistance and systemic resistance, non-host resistance and host resistance, seedling resistance and adult plant resistance, etc.
     The process of plant disease resistance widely Involves plant secondary metabolism, which can be mainly divided into 2 categories, one is antitoxin, which is expressed constitutively, The other one is phytoalexin, which is expressed after microbial infection.
     The resistance mechanisms of plants is the root cause that plants can survive in the long struggle with plant pathogens, and can coevolve with the pathogen constantly. Cultivating and screening of resistant cultivars and cultivating Ralstonia solanacearum resistant cultivars by transgenic technology are still the cost-effective, user-friendly way to control bacterial wilt.
     Redox enzymes of plants are participants of plant secondary metabolic reactions, and closely related with plant resistance. PAL is involved in plant chromogenesis, cell differentiation, lignification, disease resistance and regulation of secondary metabolites, etc. Regulation of secondary metabolites includes regulations of compounds of flavonoids compounds, paclitaxel, alkaloid and kalofilum kathing, etc. CAT's main function is to disintegrate H_2O_2, and transform it into H_20 and 0_2 which are non-toxic. Free radical is seriously harmed, and result in bioactive molecule oxidized, so CAT is very meaningful to reduce body injury. PPO is involved in plant photosynthesis, resistance to pests and diseases, growth, color formation, defense system and wound healing, etc. POD is involved in lignin and suberin synthesis, reactive oxygen species metabolic processes, the degradation of auxin, plant responses to external stress and plant tissue brown stain, etc.
     two concentrations OD600 of 0.5 and 0.1 was prepared by Ralstonia solanacearum suspension in this study.’9102’(resistant cultivar) and‘Zhonghua 8’(susceptible cultivar) were cultivated to the stage of three leaves by Soil, then were injected 20μl Ralstonia solanacearum suspension under the first tiller of the main stem. They were sampled on the fifth, seventh, tenth, twelfth and fourteenth day between the first and second tiller of the main stem. PAL, CAT, PPO and POD activities and soluble protein content of every sample were measured.
     4 enzymatic activities were compared. Not all of the 4 enzymatic activities of resistant cultivars were higher than that of susceptible cultivars in earlier stage, but all of enzymatic activities of resistant cultivars were higher than that of susceptible cultivars in later stage.
     The results showed that key enzymes activity of resistant and susceptible cultivars of peanut at later stage of bacterial wilt were positive correlated to peanut disease resistance. This conclusion can be a indicator as reference of identifying peanut disease resistance.
引文
[i] Cardoso J E. Validation of the publication of new names and new combinations previously efectively published outside the IJSB. International Journal of Systematic Bacteriology,1996,46(4):625-626.
    [ ii ]姬广海,张世光.植物病原细菌的分类进展.云南农业大学学报,1999, 14(1):113-118
    [iii]罗焕亮,王军,张景宁.木麻黄青枯菌的致病性与其对根表吸附及在根内增殖关系的研究.林业科学研究,2002,(l):21-27
    [ iv ]丘醒球,黄玉莲.桑青枯病病原细菌寄生根部的研究.华南农业大学学报,1990,11(1):85-88
    [v]王卉,任欣正.青枯菌(Pseudomonas solanacearum)在番茄抗、感病品种根部的吸附、侵入和定殖.植物病理学报,1993,23(2):143-150
    [vi]部刚,屈冬玉,连勇等.一个与马铃薯青枯病抗性连锁的RAPI)标记.植物病理学报,2002,32(3):267-271
    [vii]李海涛,邹庆道,吕书文.茄子抗青病基因RAH)标记的初步研究.辽宁农业科学,2002(5):1-4
    [viii]匡传富,罗宽.烟草品种对青枯病抗病性及抗性机制的研究.湖南农业大学学报,2002,28(5):395-398
    [ix]陆荣生,韩美丽,唐玉贵等.体细胞离体培养筛选按树抗青桔病新品种研究.广西林业科学,1999,28(4):161-165
    [x]单志慧,谈字俊.花生抗青枯病机制的初步研究.中国油料,1995,17(3):40-42
    [xi]霍超斌,周亮高.番茄青枯菌致病性的测定.广东农业科学,1985(5):34-35
    [xii]向忠明,叶建如,顾钢.南方五省烟草青枯菌系组成与分布.延边大学农学学报,2001,23(3):170-173
    [xiii]陈永芳,何礼远,徐进.我国植物青枯菌菌株的遗传多样性和组群划分.植物病理学报,2003,33(6):503-508
    [xiv] Buddenhagen I W,SequeiraL,Kelman A. Designation of races in Pseudomonassolanacearum. Phytopathology,1962,52:726
    [xv]何礼远,康耀卫.植物青枯菌(Pseudomonas solanacearum)致病机理.自然科学进展:国家重点试验室通讯,1995,5(l):7-16
    [xvi]张竹青,罗宽,高必达.烟草青枯病生防细菌发酵培养条件研究.湖南农业大学学报,1999,25(2):143-146
    [xvii]董春.植物青枯病菌细菌素及其利用.华南农业大学资源环境学院,动植物检疫,1999,2:32-34
    [xviii]卢同.我国作物细菌性青枯菌的研究进展.福建农业学报,1998,13(2):33-40
    [xix]朱圣杰,丁克坚,檀根甲.植物细菌性青枯病的生物防治研究进展.安徽农业科学,2003,31(4):606-607,615
    [xx] Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R., and Clark, W. A. International code of nomenclature of bacteria. American Society for Microbiology,1975,180
    [ xxi ] Cook, D., and Sequeira, L. Genetic and biochemical characterization of a Pseudomonas solanacearum gene cluster required for extracellular polysaccharide production and for virulence. Journal of Bacteriology,1991,173(5):1654-1662
    [xxii] Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J., and Besse, P. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theoretical and Applied Genetics,2006,113(1):110-121
    [xxiii] Carmeille, A., Prior, P., Kodja, H., Chiroleu, F., Luisetti, J., and Besse, P. Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm. Journal of Phytopathology,2006,154(7-8):398-402
    [xxiv] Yao, J., and Allen, C. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions withits tomato host. Journal of Bacteriology,2007,189(17):6415-6424
    [xxv] Daxboeck, F., Stadler, M., Assadian, O., Marko, E., Hirschl, A. M., and Koller, W. Characterization of clinically isolated Ralstonia mannitolilytica strains using random amplification of polymorphic DNA (RAPD) typing and antimicrobialsensitivity, and comparison of the classification efficacy of phenotypic and genotypic assays. Journal of Medical Microbiology,2005,54(1):55-61
    [ xxvi ]徐世典.台湾植物青枯病菌之生态与防治.植物保护学会会刊,1991,33(1):72-79
    [ xxvii ] Sequeira, L. Surface components involved in bacterial pathogen-plant host recognition. Journal of Cell Science,1985,2:301-316
    [xxviii] Liao, C. H., McCallus, D. E., and Fett, W. F. Molecular characterization of two gene loci required for production of the key pathogenicity factor pectate lyase in Pseudomonas viridiflava. Molecular Plant-Microbe Interactions,1994,7(3):391-400
    [xxix] Brian E G, Todd R S. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appliedand Environmental Microbiology,2001,67:3866–3872
    [xxx] Elphinstone, J., Stanford, H., and Stead, D. Detection of Ralstonia solanacearum in potato tubers, Solanum dulcamara, and associated irrigation water. Springer Verlag,1998,133-139
    [xxxi] Grey, B. E., and Steck, T. R. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Applied and Environmental Microbiology,2001,67(9):3866-3872
    [xxxii] Yao, J., and Allen, C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology,2006, 188(10):3697-3708
    [xxxiii]王丽,汪矛,杨世杰.青枯菌侵染番茄幼根的扫描电镜观察.农业生物技术学报,1999,7(2):157-161
    [xxxiv] Vasse J., Frey P. and Trigalet A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant-Microbe Interact,1995,8:241-251
    [xxxv] Araud-Razou I.J., Vasse H., Montrozier C., et al. Detection and visualization of themajor acidic exopolysaccharide of Ralstonia solanacearum and its role in tomato root infection and vascular colonization. Eur J Plant Pathol,1998,104:795-809
    [xxxvi] Kang Y., Liu H., Genin S., et al. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol,2002,46:427-437
    [xxxvii] Tans-Kersten J., Huang H. and Allen C. Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol,2001,183:3597-3065
    [xxxviii] Denny, Makini and Brumbley. Characterization of Pseudomonas solanacearum Tn 5 mutants deficient in extracellular polysaccharide . Molecular plant-microbe interactions,1988,1(5):215-223
    [xxxix] Orgambide, Montrozier, Servin, Roussel, Trigalet-Demery & Trigalet. High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide . Journal of Biological Chemistry,1991,266(13):8312-8321
    [xl] Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S. Arlat, M., et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature,2002,415,497-502
    [ xli ] Schell M A. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network . Annual review of Phytopathology, 2000,38(1):263-292
    [xlii] Mougous J D, Cuff M E, Raunser S, Shen A, Zhou M, Gifford C A, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science,2006,312:26-30
    [xliii] Nester E.W.,Verma D P S. Advance in Molecular Geneties of Plant-Mierobe Interaction. Kluwer Aeademie Publishers,1993
    [xliv]康耀卫,毛国璋.植物青枯菌致病因子研究.世界农业,1994(6):28-30
    [xlv] Coenye, T. and Vandamme, P.. Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome. BMC Genomics,20034,10
    [xlvi] Mahillon, J. and Chandler, M.. Insertion sequences. Microbiology and MolecularBiology Reviews,1998,62,725-774
    [xlvii] Jeong, E. L. and Timmis, J. N.. Novel insertion sequence elements associated with genetic heterogeneity and phenotype conversion in Ralstonia solanacearum. Jounal of Bacteriology,2000,182,4673-4676
    [xlviii]江昌俊,余有本.苯丙氨酸解氨酶的研究进展.安徽农业大学学报,2001,4 (28):425-430
    [xlix] Aldwin M.Anterola,Jae-Heung Jeon,Laurence B.Davin,et al. Transcriptional control of monolignol biosynthesis in Pinus taeda factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. Journal of Biology and Chemistry,2002,277(21):18272-18280
    [l] Vincent J.H.Sewalt, Weiting Ni, Jack W. Blount,et al. Reduced lignin content and altered lignin composition in transgenic tobacco downregulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol,1997,115:41-50
    [li] Jane Koukol,P.Miljanich,Eric E. Conn. The metabolism of aromatic compounds in higher plants.IV.purification and properties of the-phenylalanine deaminase of Herdeum vulagare. Journal of Biology and Chemistry,1962,237(10):3223-3228
    [lii]薛应龙,欧阳光察,澳绍根等.植物苯丙氨酸解氨酶的研究.IV.水稻幼苗中PAL活性的动态变化.植物生理学报,1983,3(9):301-305
    [ liii ] Rajagopal Subramaniam,Susanne Reinold,Elizabeth K.Molitor,et al. Structure, inheritance,and expression of hybrid poplar(Populus trichocarpa×Popu-lusdeltoids) phenylalanine ammonia-lyase genes. Plant Physio1ogy,1993,102:71-83
    [liv]胡美娇,刘秀娟,黄圣明.热处理后芒果、香蕉果皮PAL活性变化与炭疽病发生的关系.热带作物学报,2000,4(21):63-68
    [lv]马俊颜,杨汝德,敖利刚.植物苯丙氨酸解氨酶生物学研究进展.现代食品科技,2007,23(7):71-75
    [lvi]程水源,陈昆松,刘卫红等.苯丙氨酸解氨酶基因的表达调控与研究展望.果树学报,2003,5(20):351-357
    [lvii]欧阳光察,应初衍,沃绍根等.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性.植物生理学报,1985,l1(2):204-214
    [ lviii ] Lim H W,Park SS,Lim CJ. Purification and properties of phenylalanine ammonia-lyase from leaf mustard. Molecules and Cells,1997,7(6):715-720
    [ lix ]刘鸿年,刘发敏.茶鲜叶苯酸氨酸解氨酶的提取及其活性测定.中国茶叶,1989(1):4-5
    [lx]荣瑞芬,郭堃,厉重先等.紫外照射诱导采后番茄苯丙氨酸解氨酶的分离纯化. 北方园艺,2007,(12):1-4
    [lxi]姜红林,梁颖.甘蓝型油菜苯丙氨酸解氨酶的分离纯化与性质研究.中国农学通报,2006,22(7):282-286
    [lxii] Hanson K R,Havir E A. Phenylalanine ammonia-lyase. The Biochemistry of Plants,1981,7:578-621
    [lxiii] Laura Jane M S,Ricardo L,Dulce D O. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb, and their induction by copper sulphate. Annals of Botany,2000,86(5):1023
    [ lxiv ]贺立红,张进标,宾金华.苯丙氨酸解氨酶的研究进展.现代食品科技,2006,23(7):71-75
    [lxv]刘吕玲,王国庆.细菌过氧化氢酶的分离、结品及性质.生物化学与生物物理进展,1990,17(5):380-38
    [ lxvi ]黄永洪,花慧.猪肝过氧化氢酶提取条件的研究.生物技术通讯,2005,16(l):40-42
    [lxvii]高秀蕊,崔艳丽,徐富华,李荣芳.过氧化氢酶对超氧化物歧化酶清除O作用的影响.河北师范大学学报,1995,19:59-62
    [lxviii]贺立红,宾金华.高等植物中的多酚氧化酶.植物生理学通讯,2001,37:340-346
    [lxix] Ding C K,et al. Inhibition of loquat enzymatic browning by sulfhydryl compounds. Food Chemistry,2002,76:213
    [lxx] Sanchez-Amat A,et al. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochimica et Biophysica Acta,2001,1547:104
    [lxxi]雷东锋等.烟草中多酚氧化酶的生理、生化特征及其活性控制的研究.西安交通大学学报.2003,37(12):1316
    [lxxii]雷东锋等.烟叶中多酚氧化酶特性.西北大学学报,2000,30(4):74
    [lxxiii] Pesis E, et al. Ethylene involement in chilling injury symptoms of avocado during cold storage. Postharvest Biology and Technology,2002,24:171
    [lxxiv]雷东锋等.烟叶中PPO的抑制效应.西北农林科技大学学报,2002,30(增刊):130
    [ lxxv ]雷东锋等.几种抑制剂对烟叶PPO活性的影响.农业生物技术学报,2002,10(3):67
    [lxxvi] Demir Y, et al. Effects of NaCl and praline on polyphenol oxidase activity in bean seedings. Bioligia Plantarun (Prague),2001,44(4):607
    [lxxvii] Akhov L S, et al. The influene of saponins on polyphenol oxidase activity. Ukrayins’kyi Botanchnyi Zhurnal,2001,58(2):206
    [lxxviii] Perez-Gilabert M, et al. Partial purification, characterization, and histochemical localization of fully latent desert truffle (Terfezia Claveryi Chatin) polyphenol oxidase. J Agric Food Chem,2001,49:1922
    [lxxix] Mdluli K M,et al. Enzymatic browning in marula fruit of endogenous antioxidants on marula fruit polyphenol oxidase. Journal of Food Biochemistry,2003,27(1):67
    [lxxx] Gacche R N, et al. Kinetics of inhibition of polyphenol oxidae mediated browning in apple juice by beta-cyclodextrin and L-ascorbale-2-triphosphate. Journal of Enzyme Inhibition and Mdical Chemsitry,2003,18(1):1
    [lxxxi] Ozoglu H, et al. Inhibition if enzymic browning in cloudy apple juice with selected antibrowning agents. Food Control,2002,23:213
    [lxxxii] Jang MS, et al. Inhibitory effects of‘enkoitake’mushroom extracts on polyphenol oxidase and prevention of apple browning. Lebensmittel-Wis-senschaft Und-Technologie-food Science and Technology,2002,35(8):697
    [lxxxiii] Coetzer, et al. Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase, Polyphenol oxides(PPO). Journal of Agricultural and Food Chemistry,2001,49(2):652
    [lxxxiv] Bachem C W B, et al. Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Bio/Technology,1994,12:1101
    [lxxxv] Thomas-Berberan F A, et al. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric,2001,81:853
    [lxxxvi] Yemenicioglu A, et al. Consistency of polyphenol oxidase (PPO) thermostability in ripening apricots (Prunus armeniaca L.): Evidence for the presence of thermostable PPO forming and destabilizing mechanisms in apricits. J Agric Food Chem,2003,51:2371
    [ lxxxvii ]田国忠,李怀方.植物过氧化物酶研究进展.武汉植物学研究,2001,19 (4):332-344
    [lxxxviii]江均平.大豆皮过氧化物酶研究进展.中国食品报,2006,4:1-2
    [lxxxix] Chibbar R.N.,Cella R.,van Huystee R.B. The heme moiety in peanut peroxidase. Critical Reviews in Food Science and Nutrition,1984,62:1046-1050
    [xc] Chibbar R.N.,Cella R.,van Huystee R.B. Site of haem synthesis in cultured peanut cells. Phytochemistry,1986,25:585-587
    [xci] Rajasekaran K,Cary J W,Jacks T J,et al. Inhibition of fungal growth in planta and in vitro transgenic tobac-co expressing a bacterial nonheme chloroperoxidase gene. Plant Cell Reports,2000,19:333-338
    [xcii] Buffard D,Breda C,Van Huystee,et al. Molecular cloning of complementary DNAs encoding two cationic Peroxidases from cultivated peanut cells. Proc Natl A cad SciUSA,1990,87:88748-878
    [ xciii ] Hiraga S.,Yamamoto K,Ito H.,et al. Diverse expression profiles of 21 rice peroxidase genes. FEBS Letters,2000,471:245-250
    [xciv] Passardi F.,Cosio C.,Penel C.,et al. Peroxidase have more functions than a Swiss army knife. Plant Cell Report,2005,24:255-265
    [xcv]王金生.分子植物病理学.北京:中国农业出版社,1998
    [xcvi] Gershenzon,J.:Dudarev, N. The funetion of terpenen atural Produets in the natural World. Nature Chemieal Bioloy,2007,3,408-414
    [xcvii]郭坚华,孙平华,吴云波等.植物细菌性青枯病的生物防治机制和途径.中国生物防治,1997,13(1):42-46
    [xcviii]方树民,顾钢,纪成灿等.烟草青枯菌致病型及分布的研究.中国烟草学报,2002,8(3):40-43
    [xcix]覃新导,罗养.青枯灵防治茄子青枯病初步试验.热带农业科学,2000,(4):20-22
    [c]卢洪兴,曾军,邱志丹等.烟草青枯病发生与防治研究.烟草科技病虫害防治,1995,(5):4245
    [ci]刘雅婷,李永忠,张世跳.烟草青枯病的防治措施.云南农业,2002,(4):15
    [cii]任欣正,谢贻格.番茄青枯病的生物防治.南京农业大学学报,1993,16(1):45-49
    [ciii]郑继法,张建华,许永玉等.利用无毒产细菌素菌株防治烟草细菌性青枯病.中国烟草,1993,(3):21-24
    [civ]康耀卫,何礼远.青枯病无毒自发突变体株接种花生引起的生化变化.中国油料,1994,16(l):38-40
    [cv]康耀卫,毛国璋,吕常胜等.利用青枯菌胞外蛋白输出缺失突变体防治番茄青枯病的研究.植物保护学报,1995,22(3):227-228
    [cvi]龙良鲤,肖崇刚,窦彦霞.防治番茄青枯病内生细菌的分离与筛选.中国蔬菜,2003,(2):19-21
    [cvii]何礼远,康耀卫.植物青枯菌无毒菌株和荧光假单胞菌诱导花生产生抗病性.植物保护学报,1990,17(2):113-116
    [cviii]任小平,谢关林,王笑.铜绿假单胞菌ZJ1999对水稻纹枯病的防治及其在水稻上的定殖.中国生物防治,2006,22(1):54-57
    [cix]廖伯寿,李栋,单志慧,雷永,谈宇俊,段乃雄,唐桂英.青枯菌潜伏浸染对花生的影响.中国油料,1997,19(4):55-58
    [cx]袁宗胜,胡方平,洪永聪,蔡学清.花生品种(系)对青枯菌的抗性鉴定.福建农林大学学报(自然科学版),2002,31(2):174-176
    [cxi]谈宇俊,廖伯寿.国内外花生青枯病的研究评述.中国油料,1990,(4):87-90
    [cxii]孙大容.花生育种学.北京:中国农业出版社,1998:235-242
    [cxiii]段乃雄,姜慧芳,周蓉,廖伯寿.中国的龙花生-Ⅳ中国龙花生的研究现状.中国油料,1996,18(3):73-75
    [ cxiv ]唐荣华,周汉群.花生属栽野杂种后代抗青枯病研究.中国油料作物学报,2000,22(3):61-65
    [cxv]廖伯寿,单志慧,雷永,谈宇俊,李栋,段乃雄.栽培种花生对青枯菌潜伏侵染的反应.中国油料作物学报,1998,(4):62-66
    [cxvi]晏立英,黄家权,雷永,王圣玉,廖伯寿.花生青枯菌红安分离物的鉴定.中国油料作物学报,2010,32(1):144-146
    [cxvii]李文溶,段迺雄.花生青枯菌致病性的研究.花生科技,1987,4:1-4
    [cxviii]袁宗胜,胡方平,刘芳等.花生青枯菌粗毒素最适产生条件及其对热、紫外线的敏感性.花生学报,2002,31(3):24-28
    [cxix]张丽,常金华,罗耀武.不同高梁基因型感蚜虫前后POD、PPO、PAL酶活性变化分析.中国农学通报,2005,21(7):40-42,198
    [cxx]胡增辉,沈应柏,王宁宁,王金凤,周艳超,张志毅.不同挥发物诱导的合作杨叶片中POD,PPO及PAL活性变化.林业科学,2009,45(10):44-48
    [cxxi]张松焕,李春奇,郭惠明,裴熙祥,程红梅.过量表达紫茎泽兰类黄酮3-羟化酶基因对转基因烟草POD、PAL活性的影响.中国农业科技导报,2009,11 (3):98-101
    [cxxii]叶漪,范静华,孟艳妮,果志华,陈建斌.稻瘟菌粗毒素诱导水稻过程中CAT、PPO活性和MDA含量的变化.云南农业大学学报,2008,23(6):775-780
    [cxxiii]袁海娜.冬瓜贮藏过程中PPO、POD和CAT活性及同功酶研究.食品研究与开发,2005,26(1):61-63
    [cxxiv]郑燕文.豇豆CAT活性的研究.安徽农业科学,2010,38(5):2306—2307,2366
    [cxxv]郑莲姬,钟耕,张盛林.白魔芋中多酚氧化酶活性测定及其护色研究.西南大学学报(自然科学版),2007,29(2):118-121
    [cxxvi]姜绍通,罗志刚,潘丽军.甘薯中多酚氧化酶活性的测定及褐变控制.食品科学,2001,01(3):19-22
    [cxxvii]马文锦,刘树兴,凌建刚,潘巨忠.茭白中多酚氧化酶活性的测定及护色效果研究.食品与发酵工业,2008,34(12):187-190
    [cxxviii]龚慧明.磁场处理对蚕豆种子活力及幼苗过氧化氢酶,过氧化物酶活性的影响.安徽农业科学,2007,35(22):6723-6724
    [cxxix]华宏,沈永宝,吴文.磁场对马尾松种子质量和POD、SOD酶活性的影响.南京林业大学学报(自然科学版),2008,32(3):39-42
    [cxxx]李小安,周青平.低温胁迫对扁蓿豆的脯氨酸含量和POD、SOD酶活性的影响. 青海大学学报(自然科学版),2009,27(1):60-63
    [cxxxi]罗党.灰色决策问题分析方法.郑州:黄河水利出版社,2005,11-49
    [cxxxii]杨光道,段琳,束庆龙,黄长春.油茶果皮花青素、糖含量和PAL活性与炭疽病的关系.林业科学,2007,43(6):100-104
    [cxxxiii]周兴本,郭修武.套袋对红地球葡萄果实色素形成及PPO和PAL活性的影响. 中外葡萄与葡萄酒,2006,6:8-12
    [cxxxiv]刘太国,李永镐,陈万权.水杨酸对感染TMV烟草叶片PAL活性的影响.西北农林科技大学学报(自然科学版)(增刊),2005,33:111-114
    [cxxxv]王保通,梁耀琦,袁文焕.雪霉叶枯病菌毒素对小麦叶片PAL活性的影响.西北农业大学学报,1996,24(1):37-40
    [cxxxvi]郭新梅,陈耀锋,李春莲,任慧莉.禾谷镰刀菌粗毒素对不同小麦品种幼苗MDA含量和SOD、PAL活性的影响.西北植物学报,2007,27(1):68-73
    [cxxxvii]田小磊,吴晓岚,李云,张蜀秋.盐胁迫条件下γ-氨基丁酸对玉米幼苗SOD、POD及CAT活性的影响.实验生物学报,2005,38(1):75-79
    [cxxxviii]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响.西北植物学报,2002,22(3):561—565
    [cxxxix]梁新华,史大刚.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响.干旱地区农业研究,2006,24(3):108-110
    [cxl]尹德明,丁得亮,郑志广,李晴,孙守钧,辛惠普.水稻感染小球菌核病后多酚氧化酶活性的研究初报.天津农学院学报,2003,10(1):14-17
    [cxli]吴元华,钟丽娟,赵秀香.烟草感染PVYN后叶脉坏死与总酚、类黄酮及PPO关系研究.植物病理学报,2007,37(4):398-402
    [cxlii]吴俊江.大豆接种细菌性斑点病菌后叶片中SOD、POD活性和可溶性糖含量的变化.黑龙江农业科学,2006,(2):32-34
    [cxliii]胡青平,徐建国,薄芳芳,陈五岭.辣椒感染青枯菌后POD活性及同工酶的变化. 西北大学学报(自然科学版),2007,37(3):425-428
    [cxliv]崔瑞峰,杜娟.甘蓝幼苗感染黑腐病后SOD、POD活性的变化.吉林农业科学,2009,34(5):35-37,40
    [cxlv]方树民,王正荣,柯玉琴,陈玉森,黄春梅,于建兴.花生品种对疮痂病抗性及其机制的研究.中国农业科学,2007,40(2):291-297
    [cxlvi]梁炫强.花生抗黄曲霉(Aspergillus flavus link)侵染和产毒机制以及抗性遗传规律的研究.华南师范大学,2002
    [cxlvii]徐文联,曾艳.植物诱导抗病基因工程.生物学通报,1996,31(l):18-20
    [cxlviii]董汉松,徐文联,赵立平.植物抗病防卫基因及其顺式元件的利用.高技术通讯,1997,(6):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700