沿海防护林体系优化配置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沿海防护林是滨海的林业生态工程,由于所处地理位置的特殊性,在滨海地区的防风、固沙和防治水土流失的保护作用中起着关键的作用。而它同时也是一个脆弱的生态系统和全球气候变化的敏感区域,再加上沿海防护林早期建设时造林集中连片、造林模式单一、树种组成单一的模式,导致沿海防护林体系结构缺失,防护功能不健全,自然灾害发生频繁,自然因素和人为干扰的双重影响正在挑战沿海防护林的内部稳定性和防护功能,因此,如何对沿海防护林进行结构模式、树种组成的优化配置,实现沿海防护林的合理布局,以发挥生态效益、经济效益和社会效益的最大化是当前沿海防护林研究中亟待解决的首要问题。本文以沿海防护林的优化配置为目标,以2003年研究区域的遥感影像图、森林资源的一类、二类调查资料为基础,通过数据分析选择因子分析的方法,以固沙效益为着眼点,构建沿海防护林固沙效益模型,分析以固沙效益为目的的最佳植被盖度;以近自然林业为理论基础,确定最优的植被类型;通过分析沿海防护林主要优势树种的适生性,指导树种的选择和对位配置;并以以上研究的结果为沿海防护林优化配置的标准,对固沙效益效果不理想的区域进行小班调整,使其接近理想模式。主要研究结果如下:
     以植被指数(NDVI、VARI和MSAVI)、坡度、坡向、海拔为自变量,采用逐步回归的方法,利用多个自变量的最优组合建立回归方程,构建植被盖度的线性模型为Y=-0.101+1.064NDVI+0.129h,经验证,植被盖度估测值的平均精度达到83.77%;
     以裸沙占地面积比、气候侵蚀力因子、裸土指数、MSAVI、国内生产总值(GDP)5个因子作为固沙效益的评价因子,2004年沙化监测结果图的沙化等级为因变量,采用因子分析的方法,确定裸沙占地面积比、气候侵蚀力因子、裸土指数、MSAVI、国内生产总值的权重分别为:1.0184、0.3973、1.1823、0.7414、0.3592,构建固沙效益评价模型;
     采用2次多项式对植被盖度和固沙效益指数进行趋势线拟合,拟合的方程为:D=0.1388C~2-0.2441C+0.34,确定以固沙效益为目标的最佳植被盖度为0.8793;
     以近自然林业理论为基础,采用人工神经网络的方法对最优植被类型进行预测,配置后竹林、阔叶林、针叶林、混交林、灌木林的比例为4.15%、22.52%、17.92%、53.94%、1.46%。并用景观格局分析和生态质量评价配置的结果;
     以坡度、坡向、海拔、土层厚度和土壤类型为因子,以改算树高为因变量,采用数量化理论对沿海防护林主要优势树种木麻黄、湿地松、相思树、马尾松、杉木进行适生性分析,并划分适生等级,竹林通过耐寒性分析,划分竹林的适生性等级,为树种选择提供参考。
     通过分析固沙效益的效果,以最佳植被盖度、最优植被类型和优势树种的适生性为理想模型,对固沙效果不理想的区域进行以小班为单位的调整,使调整的结果尽量接近理想模式。
The coastal protection forest is belong to coastal forestry ecologicalengineering, it has being played the key role on windbreak and sandfixation, erosion prevention in coastal areas due to its particularity ofgeographical position. On the other hand, it is also a fragile ecosystem andsensitive areas of global climate change, coupled with the earlyconstruction mode of centralized planting, single afforestation, and fewforest tree species, which lead to the lack of structure, distemperedness inprotection function, and frequency in natural disasters, The double impactfrom nature and human is threatening the internal stability and protectionfunction of coastal protection forest. Thus it becomes the primary problemto maximize ecological, economic and social benefits, needed to be solvedurgently in current coastal protection forest study, which is about to findinga way that is help to realize the Optimization of coastal protection foreststructure model and optimal allocation in tree species. This paper is aimedat optimizing the coastal protection forest distribution. In this paper, thecoastal protection forest sand fixation model,which focus on sand fixationeffectiveness and can be used to evaluate the proportion of VegetationCoverage, which is built by analyzing dates with factor analyse methods,the dates are based on the remote-sensor image in2003in study areas andthe result of forest management inventory; the optimal type of vegetationare determined in the guidance of Close to Nature Forestry Theory; theforest tree species and their locations are determined by the suitability ofdominant species;as a result of the optimization, subcompartments,whichdo not play an effective role in sand fixation, are adjusted to make themclose to the ideal model. The main results are as follows:
     1. Having vegetation index (NDVI of VARI and MSAVI), slope, aspect,altitude as the independent variables, using stepwise regression method,the optimal combination of multiple variable regression equation wasestablished which is used to build the linear model of the vegetationcoverage. the model is Y=-0.101+1.064NDVI+0.129h, which is proved thatthe average accuracy of estimating the value of vegetation coverage canreach to83.77%;
     2. Having the rate of bare sand, climate erosivity factor, the bare soilindex,MSAVI, gross domestic product (GDP) as the evaluation factorsand desertification grade in desertification monitoring results graph in2004as the dependent variable, with factor analysis methods todetermine the weight of each factor, the area ratio of bare sand, ClimaticErosivity Factor, Bare soil index, MSAVI, the gross domestic product,whose weights are:1.0184,0.3973,1.1823,0.7414,0.3592, sandfixation efficiency evaluation model is built;
     3. AS a result of the trend line fitting of vegetation coverage and sandfixation efficiency index, using the two order polynomial, building thefitting equation: D=0.1388C2-0.2441C+0.34, and the best vegetationcoverage is determined to be0.8793;
     4. Based on the theory of Close to Nature Forestry, with the artificialneural network approach to predict the optimal configuration ofvegetation types, the optimal proportion of bamboo, broadleaf forest,coniferous forest, mixed forest, shrub forest is determined respectivelyto be4.15%,22.52%,17.92%,53.94%,1.46%. At the same time, the result ismeasured by landscape pattern and ecological quality;
     5. Having slope, aspect, elevation, soil depth and soil type as the factorsand calculated tree height as the dependent variable, with mathematicalmethods, suitability of the main dominant coastal protection speciesephedra, wetlands, pine, acacia, masson pine,Chinese fir is analyzed and their suitable grade is divided, and through the analysis of cold toleranceof bamboo, bamboo adaptability grade is dvided, which provide areference for the selection of tree species;
     6. According to the ideal suitability model of the optimal vegetationcoverage, the optimal vegetation types and the dominant species, thesubcompartments, which do not play an effective role in sand fixation,are adjusted to make them close to the ideal model, by analyzing thesand fixation effect.
引文
[1] Al-Kayssi. A. W., Spatial variability of soil temperature under greenhouseconditions[J].Renewable Energy.2002,27:453-462.
    [2] Anne P, Jacky H,Christiane N.The Utility of Texture Malysis to ImprovePer-pixelClassification for High to Very High Spatial Resolution Imagery[J}.International Journal ofRemote Sensing,2005,26(4):733-745.
    [3] Bijay T,Michael G A,Donald L R.Microclimate patterns on the leeside of single-row treewindbreaks during different weather conditions in Florida farms:implications for improved cropproduction[J].Agroforest Syst,2010,79(1):111-122.
    [4] Boggs G,Devonport C,Evans K,Puig P.GIS-based rapid assessment of erosion risk in a smallcatckment in the wet/dry tropics of Australia[J].Land Degradation and Development,2001,12(5):417-434.
    [5] Brandle J R,Hodges L,Zhou X H.Windbreaks in North American agricultural systems[J].Agroforestry Systems,2004,61:65-78.
    [6] Cannell MCR.The Central agroforestry hypothesis:the tree must aequire resources that thecrop would not otherwise aequire.Agroforestry Systems,1996,34(I):27-31.
    [7] Chen J,Jonsson P,TamuraM,et al.A simple method for reconstructing a high2quality NDVItime2series data set based on the Savitzky-Golay filter.Remote Sensing of Environment,2004,91:332-344.
    [8] Costanza R, d' Arge R, de Groot R, et al.1997. The va lue of the world' s ecosystemservices and natural capital.Nature,387:253-260.
    [9] Cybenko G.Approximations by Superpositions of a Sigmoidal Function[J].Math Control SignalSystem,1989,2(4):303-314.
    [10] Erie F. Lambin. Modelling and Monitoring Lang-cover Change processes ingeostatistics[J].Physics and Chemistry of the Earth,2003,28(7):239-245.
    [11] FangX Q, YuW H. Progress in the studies on the phenological responding toglobalwarming. Advance in Earth Sciences,2002,17(5):714-719.
    [12] Friedl MA,Brodley CE,Strahler AH.Maximizing land cover classification accuraciesproduced by decision trees at continental to global scales.IEEE Transactions on Geoscience andRemote Sensing,2003,37(2):969-977.
    [13] Gitelson A A,Kaufman Y J,Stark R,et al.2001.Novel algorithms for remote estimation ofvegetation fraction.Remote Sensing of Environment,80(1):76-87.
    [14] HobbsR.Restorationecologyahe challeng of social values and expectations. Frontier Ecologyand the Environment2004,2(1):43-48.
    [15] J.Zhang,G.M.Foody. A fuzzy classification of sub-urban land cover form remotely sensedimagery[J]. International journal of remote sensing.2002,23(11):2193-J2212.
    [16] Javed.I,John A.T.Johnie.N.J.etal.,Spatial Variability Analysis of Soil Physical Propertiesof Alluvial Soils[J].Soil Sci Soc Am J,2005,69:1338-1350.
    [17] Jiménez-Munoz JC, Sobrino JA. AGeneralized Single-Chan-nel Method for RetrievingLandSurfaceTemperature from Remote SensingData [J]. Journal of Geophysical Research,2003,108(D22):4688.
    [18] Jordi C, Jos é M. A review of assessing landslide frequency for hazard zoningpurposes[J].Engineer-ing Geology,2008,102(3):193-213.
    [19] Joshi C, Leeuw J, Skidmore A K,et al.2006.Remotely sensed estimation of forest canopydensity:a comparison of the performance of four methods.International Journal of AppliedEarth Observation and Geoinformation,8(2):84-95.
    [20] Junior.V.V., Carvalho.M.P, Dafonte J,et al., Spatial variability of soil watercontent and mechanical resistance of Brazilian ferralsol[J].Soil and Tillage Research,2006,85:166-177.
    [21] Kai Wang, Chor-Pang Lo. An Assessment of the Accuracy of Tins and Lattice inARC/INFO[J].Transaction in GIS,1999,3(2):161-174.
    [22] Krzysztof Socha, Christian B1um. An ant colonyoptimization algorithm for continuousoptimization:application to feed-forward neural network training. Neural ComputingApplications,2007,16(3):235-247.
    [23] Lee S J,Kim H B.Laboratory measurements of velocity and turbulence field behind porousfences[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,80:311-326.
    [24] LiX B, ChenYH, FanY D,etal. Detecting inter2annualvariationsofvegetation growth basedon satellite2sensed vegetation index data from1983to1999. Proceedings of IGARSS,2003,5:3263-3265.
    [25] Loeffler A E,Gordon A M,Gillespie T J.Optical porosity and wind speed reduction byconiferous windbreaks in southern Ontario [J].Agroforestry Systems,1992,17(2):119-133.
    [26] Mirzadinov R A, Kurochkina L Y.Desert ecotone and their classification[J].Pro Desert Dev,1985,12(2):29-36.
    [27] Montandon L M,Small E E.The impact of soil reflectance on the quantification of the greenvegetation fraction from NDVI[J]. Remote Sensing of Environment,2008,112(4):1835-1845.
    [28] Mot tus M.,Ross J.,Sulev M. Experimental study of ratio of PAR to direct integral solarradiation under cloudless conditions.Agric.For.Meteorol,2001,161-170.
    [29] RESTREPO J D,SYVITSKI J P M.Assessing the effect of natural controls and land-use changeon sediment yield in a major Andean river:The Magdalena drainage basin,Colombia[J]. Ambio,2006,35(2):65-74.
    [30] Rikimaru A,Miyatake S.1997.Development of forest canopy density mapping and monitoringmodel using indices of vegetation,bare soil and shadow.http:∥www.gisdevelopment.net/aars/acrs/1997/ts5/ts5006.shtml.
    [31] Rikimaru A.1996.Landsat TM data processing guide for forest canopy density mapping andmonitoring model, ITTO workshop on utilization of remote sensing in site assessment andplanning for rehabilitation of logged-over forest.Bangkok,Thailand, July30-August1,1-8.
    [32] Robert Hecht-Nielsen.Theory of the Backpropagation Neural Network[C]//International JointConference on Neural Net-works(IJCNN),1989,1:593-605.
    [33] Rosenfeld M, Marom G, Bitan A. Numerical simulation of the airflow across trees in awindbreak [J] Boundary-Layer Meteorol,2010,135:89-107.
    [34] SchwartzM D, Reed B C, WhiteM A. Assessing satellite-derived start of season(SOS)measures in theConterminousUSA. Intermational Journal of Climatology,2002,22(14):1793-1805.
    [35] Sellers P J.Los S O,Tucker C J.et al.1996.A revised land surface parameterization (Sib2)for atmospheric gems, part Ⅱ:the generation of global fields of terrestrial biophysicalparameters from satellite data.Journal of Climate,9(4):706-737.
    [36] Shan Li,Haibing Chen,JunXian Yun etc.Optimization for Cyclosporine BloodConcentration Prediction Based on Genetic Algorithm-BP NeutalNetwork.In:Proceedings of Second International Conference on Genetic and EvolutionaryComputing,2008:161-165.
    [37] Sobrino JA, Jiménez-Munoz J C, Paolini L. Land Surface Tem-perature Retrieval fromLandsatTM5[J].Remote Sensing ofEnvi-ronment,2004,90(4):434-440.
    [38] Solomon D1Lehmann J.Mamo Tetal Phosphorus forms and dynamics use changes in thesub-humid Ethiopian high lands}J}Geoderma2002,as influenced by land105:21-481
    [39] SYVITSKI J P M.Supply and flux of sediment along hydrological pathways:Research for the21st century[J].Global and Planetary Change,2003,39:1-11.
    [40] Van leeuwen WJ D, Orr B J, Marsh S E, et al. Multi-sensor NDVI datacontinuity:Uncertain-ises and implications for vegetation monitoring applications[J]. RemoteSensing of Environment,2006,100(1):67-81.
    [41] WengQH, Lu D S. Estimation ofLand Surface-vegetation A-bundance RelationshipforUrbanHeat Island Studies[J].Remote Sensing ofEnvironment,2004,89(4):467-483.
    [42] XU Qing. LIN Hui. ZHENG Quanan. Evaluation of ENVISAT ASAR data for sea surfacerind retrieval in HongKong coastal waters of China[J], ActaOceanologica Sinica2008.27(4):57-62
    [43] Yu-min Chiang, Huei-min Chiang, Shang-yi Lin. The Application of Ant ColonyOptimization for Gene Selection in Microarray-based Cancer Classification. In:Proceedings ofSeventh International Conference on Machine Leaning and Cybernetics Kunming,2008:4001-4006.
    [44] Zhang J, Wang Y, Wang Z. Change Analysis ofLand Surface Temperature Based on RobustStatistics in the Estuarine Area of PearlRiver (China) from1990to2000by Landsat TM/ETM+Data[J]. International Journal of Remote Sensing,2007,28(10):2383-2390.
    [45] Zhang Q, Wang J, Gong P, et al. Study of Urban Spatial Patterns SPOT Pan chromaticImagery Using Texture Analysis. International Journal of Remote Sensing,2003,24(21):413?-4160.
    [46] ZhaoHM, Chen X L. Use ofNormalized Difference Bareness In-dex in QuicklyMappingBareAreas from TM/ETM+[A].Geosci-ence and Remote Sensing Symposium[C].IGARSN,2005.
    [47] Zhou Xin-nian,Wu Zhi-long,Zheng Li-feng.Comprehensive benefits evaluation of naturalsecondary forest with cutting10years later based on multi-object decision model(基于多目标决策的天然次生林伐后10a综合效益评价).Proceedings of the International Conference onLogging and Industrial Ecology.Northeast Forestry University Press.2009.118-122.
    [48] ZhaY,Gao J,Ni S.Use ofNormalized Difference Built-up In-dex in Automatically MappingUrban Areas from TM Imagery[J].International Journal ofRemote Sensing,2003,24(3),583-594.
    [49]蔡体久,琚存勇,姚月峰.2005.基于RS和GIS的毛乌素沙地植被盖度定量估测[J].应用生态学报,16(12):2301-2305.
    [50]曹伟超,陶和平,孔博等.基于DEM数据分割的西南地区地貌形态自动识别研究[J].中国水土保持,2011,(3):38-41.
    [51]陈国荣,刘健,施聪智,等.基于GIS和遥感技术的植被覆盖度反演模型[J].北华大学学报(自然科学版),2010,11(3):251-254.
    [52]陈国荣,刘健,施聪智,等.基于GIS和遥感技术的植被覆盖度反演模型[J].北华大学学报(自然科学版),2010,11(3):251-254.
    [53]陈国荣,刘健,余坤勇,等.沿海防护林防风固沙效益动态监测技术研究[J].福建林学院学报,2010,30(3):231-236.
    [54]陈俊华,慕长龙,陈秀明,等.基于物元分析的小流域土地利用结构调整及景观格局变化[J].生态学报,,2006,26(7):2093-2100.
    [55]陈涛,牛瑞卿,李平湘,等.密云水库流域植被覆盖度变化对输沙量的影响[J].生态环境学报,2010,19(1):152-159.
    [56]陈小兵,杨劲松,杨朝晖,等.2007.基于水盐平衡的绿洲灌区次生盐碱化防治研究[J].水土保持学报,21(3):32-37.
    [57]陈艳梅,高吉喜,刁兆岩,等.呼伦贝尔草原植被覆盖度估算的光谱模型[J].中国环境科学,2010,30(9):1287-1292.
    [58]陈燕.基于高光谱数据的棉花生长信息定量模型研究[D].石河子大学.2007.
    [59]程皓,李霞,侯平,等.塔里木河下游不同覆盖度灌木防风固沙功能野外观测研究[J].中国沙漠,2007,27(6):1022-1026.
    [60]程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008(1):13-18
    [61]崔宝侠.基于GIS的水环境评价决策支持系统研究[D].华北水利水电学院.2005.
    [62]崔朋.基于BP人工神经网络的小城镇生态规划研究——以梅河口市中和镇为例[D].东北师范大学.2008.
    [63]董健,林永启,于世河,等.东部白松抗冻优良种源的选择[J].东北林业大学学报,2009,37(11):4-6.
    [64]董治宝,屈建军,陆锦华,等.1∶35万《库姆塔格沙漠地貌图》的编制[J].中国沙漠,2010,30(3):483-491.
    [65]樊华,赵方莹.北京市门头沟区植被恢复立地类型划分[J].中国水土保持,2007,(8):29-31.
    [66]范锦龙,张晓煜.2009.宁夏近18年植被动态变化遥感时序分析[J].干旱区研究,26(1):53-58.
    [67]冯海霞,侯元兆,冯仲科.山东省森林调节温度的生态服务功能[J].林业科学,2010,46(5):20-26.
    [68]冯恒栋.基于人工神经网络和模糊分类的森林植被遥感图像分类研究[D].东北师范大学.2009.
    [69]盖永芹,李晓兵,张立,等.2009.土地利用/覆被变化与植被盖度的遥感监测———以北京市密云县为例[J].资源科学,31(3):523-529.
    [70]高尚玉,张春来,邹学勇,等.京津风沙源治理工程效益[M].北京:科学出版社,2008:38-41.
    [71]顾祝军,曾志远.遥感植被盖度研究[J].水土保持研究,2005,12(2):18-22.
    [72]郭芬芬,范建容,严冬.基于像元二分模型的昌都县植被盖度遥感估算[J].中国水土保持,2010,(5):65-67.
    [73]郭惠娟.基于信息量模型的滑坡危险性分区及景观格局分析——以莆田市为例[D].福建农林大学.2010.
    [74]郭永盛,白玉英,杨宏伟,等.内蒙古大青山典型植被水源涵养功能分析[J].林业资源管理,2010,(3):75-78.
    [75]韩兰英,王宝鉴,张正偲,等.基于RS的石羊河流域植被覆盖度动态监测[J].草业科学,2008,25(2):11-15.
    [76]韩永伟,拓学森,高吉喜,等.黑河下游重要生态功能区植被防风固沙功能及其价值初步评估[J].自然资源学报,2011,26(1):58-65.
    [77]何丽丽.基于不同比例尺和分辨率DEM的数字地形分析[D].西南大学.2007.
    [78]胡淑萍.北京山区典型流域防护林体系对位配置研究[D].北京林业大学.2008.
    [79]黄春燕,王登伟,陈冠文,等.基于高光谱植被指数的棉花干物质积累估算模型研究[J].棉花学报,2006,18(2):115-119.
    [80]黄富祥,牛海山,王明星,等.毛乌素沙地灌木覆盖率与风蚀输沙率定量关系[J].地理学报,200,56(6):700-710.
    [81]黄富祥,王明星,王跃思.植被覆盖度对风蚀地表保护作用研究的某些新进展[J].植物生态学报,2002,26(5):627-633.
    [82]黄庆斌.BP算法的改进及其应用研究[D].西南交通大学.2010.
    [83]黄维友.基于GIS技术的闽江流域生态脆弱性分析研究[D].福建农林大学.2007.
    [84]黄志辉.人工神经网络优化算法研究[D].中南大学.2009.
    [85]纪芳,侯-筠.改进BP算法在风暴潮极值水位预报中的应用[J].中国海洋大学学报(自然科学版),2011,41(5):120-123.
    [86]贾庆宇,王笑影,吕国红,等.辽宁省气候-植被指标时空变化特征及森林适宜性分析[J].生态环境学报,2010,19(9):2031-2035.
    [87]江洪,汪小钦,陈星.-种以FCD模型从SPOT影像提取植被覆盖率的方法[J].地球信息科学,2005,7(4):113-116.
    [88]江洪,王钦敏,汪小钦.福建省长汀县植被覆盖度遥感动态监测研究[J].自然资源学报,2006,21(1):126-132.
    [89]江辉.基于遥感的植被覆盖度估算及其动态研究——以鄱阳湖区为例[D].南昌大学.2005.
    [90]蒋航,李亚光,周延夫,等.基于GIS的密云县水源涵养林区立地类型分类制图[J].水土保持通报,2010,30(6):103-106.
    [91]焦超卫.基于DEM的1:50000区域尺度水土流失地形因子研究——以黄土高原部分样区的实验为例[D].西北大学.2006.
    [92]靳松.参数自调节的BP-神经网络研究[D].河北农业大学.2003.
    [93]赖日文,刘健,余坤勇.闽江流域森林生产力遥感空间分区[J].福建农林大学学报(自然科学版),2008,37(5):491-495.
    [94]赖日文,孟宪宇,冯仲科.基于空间数据库的林分生长模型的研究[J].江西农业大学学报,2007,29(2):220-224.
    [95]冷疏影,冯仁国,李锐,等.土壤侵蚀与水土保持科学重点研究领域与问题[J].水土保持学报,2004,18(1):1-6,26.
    [96]李斌,张金屯.不同植被盖度下的黄土高原土壤侵蚀特征分析[J].中国生态农业学报,2010,18(2):241-244.
    [97]李春静,武应霞,徐达,等.GIS技术在农田防护林优化配置中的应用[J].南京林业大学学报(自然科学版),2005,29(5):101-105.
    [98]李海洋,范文义.基于概率神经网络的遥感图像分类MATLAB实现[J].东北林业大学学报,2008,36(6):55-56.
    [99]李红,卢振兰,李德志,等.2009.上海崇明县植被覆盖度动态变化遥感监测研究[J].城市环境与城市生态,22(2):8-11.
    [100]李家存.基于RS和GIS的区域坡地重力侵蚀危险性评价研究[D].中国科学院遥感应用研究所.2006.
    [101]李强.基于GIS的重庆市北碚区滑坡灾害危险性评价[D].西南大学.2008.
    [102]李义军.福建省东南沿海风蚀规律研究[D].福建农林大学.2008.
    [103]李占斌,朱冰冰,李鹏.土壤侵蚀与水土保持研究进展[J].土壤学报,2008,45(5):802-809.
    [104]林兰稳,余炜敏,肖振奇,等.沙罗竹人工林生长与立地条件的关系研究[J].生态环境学报,2011,20(1):88-90.
    [105]刘静,银山,张国盛,等.2009.毛乌素沙地17年间植被覆盖度变化的遥感监测[J].干旱区资源与环境,23(7):162-167.
    [106]刘爱利,汤国安.中国地貌基本形态DEM的自动划分研究[J].地球信息科学,2006,8(4):8-14.
    [107]刘海江,柴慧霞,程维明,等.基于遥感的中国北方风沙地貌类型分析[J].地理研究,2008,27(1):109-118.
    [108]刘艳妮.基于LVQ神经网络和灰度共生矩阵的遥感图像分类及其应用[D].成都理工大学.2009.
    [109]刘占宇,黄敬峰,吴新宏,等.天然草地植被覆盖度的高光谱遥感估算模型[J].应用生态学报,2006,17(6):997-1002.
    [110]刘祖军,刘健,余坤勇.基于马尔柯夫理论的森林火灾趋势预测[J].福建林学院学报,2008,28(1):77-80.
    [111]卢晓仓.基于GIS的信息量模型在滑坡灾害危险性分析中的应用[D].华北水利水电学院.2007.
    [112]吕-峰.基于ASTER影像的DEM与数字地貌制图研究——以福州盆地为例[D].福建师范大学.2008.
    [113]吕红梅.基于CBERS02B和SAR的喀斯特地区土地利用景观格局研究——以毕节市为例[D].贵州师范大学.2009.
    [114]马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报,2001,21(4):6-9.
    [115]马浩,周志祥,王鹏程,等.基于多目标灰色局势决策的三峡库区防护林类型空间优化配置[J].应用生态学报,2010,21(12):3083-3090.
    [116]马利强.乌兰布和沙漠东北部农林复合系统持续经营研究[D].内蒙古农业大学.2009.
    [117]马勤建,王登伟,黄春燕,等.棉花叶面积指数和地上干物质积累量的高光谱估算模型研究[J].棉花学报,2008,20(3):217-222.
    [118]马勤建.基于高光谱植被指数的棉花冠层结构参数的估算研究[D].石河子大学.2008.
    [119]马月存,陈源泉,隋鹏,等.土壤风蚀影响因子与防治技术[J].生态学杂志,2006,25(11):1390-1394.
    [120]潘伟彬,邓恢.4种草本水土保持植物的耐旱生理特性[J].华侨大学学报(自然科学版),2009,30(3):305-308.
    [121]亓兴兰,李宝银,刘健,等.基于RS与GIS的闽江流域土地利用景观格局变化分析[J].福建农林大学学报(自然科学版),2008,37(5):539-543.
    [122]亓兴兰,刘健,陈国荣,等.应用MODIS遥感数据监测马尾松毛虫害研究[J].西南林学院学报,2010,30(1):42-46,54.
    [123]钱春明.仿射传播聚类在遥感图像分类中的应用研究[D].成都理工大学.2009.
    [124]钱茹茹.遥感影像分类方法比较研究[D].长安大学.2007.
    [125]师华定,高庆先,齐永清,等.蒙古高原土壤风蚀危险度的FCM模糊聚类研究[J].自然资源学报,2009,24(5):881-888.
    [126]宋佳.基于DEM的我国地貌形态类型自动划分研究[D].西北大学.2006.
    [127]孙晓娟.基于“3S”技术的区域林业生态工程空间配置的研究[D].东北林业大学.2003.
    [128]田静,阎雨,陈圣波.植被覆盖率的遥感研究进展[J].国土资源遥感,2004(1):1~5.
    [129]王春玲,王鹏.防护林体系空间配置优化系统的研究与应用[J].北京林业大学学报,2008,30(4):126-130.
    [130]王改萍,朱振贤,彭方仁.盐胁迫对7种造林树种生长量及生理特性的影响[J].江西农业大学学报,2008,30(6):1066-1072.
    [131]王宏,李晓兵,韩瑞波等.利用NOAANDVI和MSAVI遥感监测中国北方不同纬度带植被生长季变化[J].应用生态学报,2006,17(12):2236-2240.
    [132]王宏,李晓兵,李霞,等.基于NOAANDVI和MSAVI研究中国北方植被生长季变化[J].生态学报,2007,27(2):504-515.
    [133]王静伟.人工神经网络在泥沙运动中的应用与研究[D].大连理工大学.2007.
    [134]王先保.安徽省高山区茶叶栽培技术及水土保持效益分析[J].水土保持学报,2003,17(5):182-183.
    [135]吴静,李纯斌,张德罡,等.青藏高原东北缘天祝县土地利用/土地覆盖变化研究[J].草地学报,2010,18(1):16-20.
    [136]吴学军.城市TM遥感图像分类方法研究[D].广西师范大学.2007.
    [137]吴云,曾源,吴炳方,等.基于MODIS数据的三北防护林工程区植被覆盖度提取与分析[J].生态学杂志,2009,28(9):1712-1718.
    [138]谢仕远.基于人工神经网络的土地利用自动分类研究[D].中山大学.2005.
    [139]谢晓华,赖日文,李永实.2008.基于RS技术的闽江流域植被覆盖度时空变化分析[J].贵州大学学报:自然科学版,25(5):536-539.
    [140]邢著荣,冯幼贵,杨贵军,等.基于遥感的植被覆盖度估算方法述评[J].遥感技术与应用,2009,24(6):849-854.
    [141]杨成英,吴虹.桂林毛村岩溶地下河流域水土流失遥感动态监测研究[J].中国岩溶,2009,28(2):206-211,224.
    [142]杨建平.近50a长江黄河源区生态与环境变化综合研究[D].中国科学院寒区旱区环境与工程研究所.2006.
    [143]杨挺.基于BP神经网络改进算法的湖南省GDP预测研究[D].中南大学.2008.
    [144]杨晓华.基于神经网络和支持向量机的水稻遥感信息提取研究[D].浙江大学.2007.
    [145]姚宝琪.中国东南沿海混交海防林建设研究进展[J].防护林科技,2010,(3):58-61.
    [146]易胜.基于RS和GIS岩溶地区植被覆盖度分析——以湖南洛塔为例[D].广西师范大学.2008.
    [147]于文婧,杨建宇,张超,等.基于MODIS数据的三北工程区的林地提取方法研究[A].中国农业工程学会电气信息与自动化专委会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文集[C].2010.:1-4.
    [148]余坤勇,林芳,刘健,等.基于RS的闽江流域马尾松林分蓄积量估测模型研究[J].福建林业科技,2006,33(1):16-19,23.
    [149]余坤勇,刘健,洪桢华,等.基于RS技术闽江流域生态公益林森林资源专题信息动态监测研究[J].福建林业科技,2007,34(2):66-71.
    [150]余坤勇,刘健,黄维友,等.基于GIS技术的闽江流域生态脆弱性分析[J].江西农业大学学报,2009,31(3):568-573
    [151]余坤勇,刘健,赖玫妃,等.基于水土保持的富屯溪流域森林资源开发利用适宜性评价[J].西北林学院学报,2009,24(5):176-179.
    [152]余坤勇,刘健,赖日文,等.基于3S技术闽江流域杉木商品林林地质量测定[J].福建林学院学报,2009,29(4):326-331.
    [153]余坤勇,刘健,缪丽娟,等.基于地物特征的遥感图像融合效果[J].福建农林大学学报(自然科学版),2010,39(2):196-201.
    [154]余坤勇,刘健,亓兴兰,等.基于RS技术闽江流域生态公益林林分蓄积量的动态监测[J].福建农林大学学报(自然科学版),2007,36(5):481-485.
    [155]余坤勇,刘健,施聪智,等.基于RS技术的沿海防护林防风固沙效益研究[J].南京林业大学学报(自然科学版),2010,34(1):80-84.
    [156]余坤勇,刘健,施聪智,等.基于土壤有机质含量流失的沿海防护林水土保持效益研究[J].北华大学学报(自然科学版),2009,10(4):362-367.
    [157]余坤勇,刘健,许章华,等.基于RS林地退化监测技术[J].东北林业大学学报,2010,38(1):60-63
    [158]余坤勇,刘健,许章华,等.南方地区竹资源专题信息提取研究[J].遥感技术与应用,2009,24(4):449-455.
    [159]岳德鹏,王计平,刘永兵,等.GIS与RS技术支持下的北京西北地区景观格局优化[J].地理学报,2007,62(11):1223-1230.
    [160]岳新建.东南沿海木麻黄防护林优化配置研究——以福建省平潭县为例[D].福建农林大学.2010.
    [161]张飞,塔西甫拉提·特依拜,孔祥德,等.2006.干旱区绿洲土地利用景观格局动态变化研究[J].资源科学,28(6):167-174.
    [162]张华,李锋瑞,伏乾科,等.沙质草地植被防风抗蚀生态效益的野外观测研究[J].环境科学,2004,25(2):119-124.
    [163]张科利,彭文英,张竹梅.日本近50年来土壤侵蚀及水土保持研究评述[J].水土保持学报,2005,19(2):61-64,68.
    [164]张盼盼,胡远满,肖笃宁,等.-种基于多光谱遥感影像的喀斯特地区裸岩率的计算方法初探[J].遥感技术与应用,2010,25(4):510-514.
    [165]张世利,刘健,余坤勇.基于SPSS相容性林分生物量非线性模型研究[J].福建农林大学学报(自然科学版),2008,37(5):496-500.
    [166]张世利.基于RS、GIS的闽江流域杉木林生物量及碳贮量估测研究[D].福建农林大学.2008.
    [167]张婷.基于DEM的陕北黄土高原多地形因子空间关联特征研究[D].西北大学.2005.
    [168]张友水,冯学智.Kohonen神经网络在遥感影像分类中的应用研究[J].遥感学报,2004,8(2)
    [169]张云霞,李晓兵,陈云浩.2003.草地植被盖度的多尺度遥感与实测量方法综述[J].地球科学进展,18(1):85-93.
    [170]张展羽,张国华,左长清,等.红壤坡地不同覆盖措施的水土保持效益分析[J].河海大学学报(自然科学版),2007,35(1):1-4.
    [171]章文波,符素华,刘宝元.2001a目估法测量植被覆盖度的精度分析[J].北京师范大学学报:自然科学版,37(3):402-408.
    [172]章文波,刘宝元,吴敬东.小区植被覆盖度动态快速测量方法研究[J]水土保持通报,2001,21(6):60-63.
    [173]赵峰,韩煜.基于RegionManager的北京土壤可风蚀性研究[J].水土保持研究,2008,15(6):24-27.
    [174]郑蓉,熊德礼.福建引种丛生竹座标法综合评定及选择[J].江西农业大学学报,2004,26(2):181-186.
    [175]中华人民共和国国家标准.天然草地退化、沙化、盐渍化的分级指标[M].北京:中国标准出版社,2004.
    [176]周勤.基于人工神经网络的遥感图像分类研究[D].西南林学院.2008.
    [177]周淑琴,吴发启,荆耀栋.毛乌素沙地南缘植被覆盖度动态监测——以陕西省靖边县为例[J].安徽农业科学,2007,35(27):8550-8551,8573.
    [178]周志华.基于GIS的三峡库区滑坡地质灾害危险性评价研究[D].西南科技大学.2009.
    [179]朱海波.植被结构特征和空气动力学粗糙度对沙粒跃移起动影响的实验研究[D].西安工程大学.2007.
    [180]朱红春,陈楠,刘海英等.自1:10000比例尺DEM提取地形起伏度--以陕北黄土高原的实验为例[J].测绘科学,2005,30(4):86-88.
    [181]朱红春,汤国安.基于DEM的区域地形信息因子提取与量化关系研究——以陕北黄土高原的实验为例[A].2005年中国地理信息系统协会理论与方法学术会议论文集[C].2005.
    [182]朱金兆,魏天兴,张学培.基于水分平衡的黄土区小流域防护林体系高效空间配置[J].北京林业大学学报,2002,24(5):5-13.
    [183]朱伟杰.基于ANN的毛白杨农田防护林林分密度指数建模[D].河南农业大学.2010.
    [184]朱振贤.几种主要造林树种盐胁迫响应及耐盐机理研究[D].南京林业大学.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700