肿瘤靶向性普鲁兰基自组装纳米药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的高速发展,肿瘤靶向性纳米药物载体的研究成为热点之一,叶酸受体在某些癌细胞表面的高表达给靶向治疗提供了理论依据。本研究以乙酰普鲁兰叶酸偶合体(FPA)为材料,制备并研究肿瘤靶向性白组装纳米药物载体,同时制备一种新型的表阿霉素纳米药物制剂,评价普鲁兰基自组装体作为纳米药物载体的可行性。
     本研究以普鲁兰多糖为主链,通过乙酰化反应合成疏水性的乙酰普鲁兰(PA),再以N,N’-二环己基碳二亚胺(DCC)为偶联剂,4-二甲氨基吡啶(DMAP)为催化剂,将叶酸与PA偶联合成FPA;采用氢核磁共振(1H-NMR)方法对PA和FPA的结构进行了表征,用透析法制备了FPA纳米粒子(FPANs)和包载表阿霉素的FPA纳米粒子(FPA/EPI),应用透射电子显微镜(TEM)和扫描电子显微镜(SEM)观察了纳米粒子的形貌,动态光散射法(DLS)测定了粒径及粒径分布;考察了FPANs和FPA/EPI在水溶液中的粒径和在不同介质中的电位;考察了FPANs和FPA/EPI在水溶液中的稳定性;应用流式细胞仪检测了宫颈癌Hela细胞对FPA/EPI的摄取,并研究了其摄取机制;通过将空白FPANs和乙酰普鲁兰纳米粒子(PANs)200mg/kg尾静脉注射到ICR小鼠体内,并观察动物的一般体征、体重和食量的变化,考察了其体内安全性;将FPA/EPI(EPI等效剂量10mg/kg)静脉注射到Wistar大鼠体内,测定了给药后血药浓度的变化趋势,计算其药代动力学参数,并与游离药物EPI进行比较,考察了其体内缓释效果;建立了宫颈癌Hela移植瘤动物模型,将FPA/EPI静脉注射到建立了肿瘤模型的动物体内,考察了其体内分布特征以及抗肿瘤作用效果,并用TUNEL法检测了肿瘤细胞的凋亡情况。
     研究结果显示,成功合成的FPA其叶酸取代度为0.235;应用透析法制备的FPANs和FPA/EPI,纳米粒子呈均匀的球形,电中性,FPANs粒径为(204.2±10.9)nm,其分散度(PDI)为0.172±0.036,载药后粒径和分散度分别为(273.4±11.0)nm和0.165±0.026,在水溶液中,FPANs和FPA/EPI粒径及粒径分布三个月内没有明显改变;FPA/EPI通过叶酸受体介导进入细胞,具有明显的剂量效应关系;FPANs和PANs静脉注射到小鼠体内后对动物的一般体征、体重、食量及主要脏器均未见明显的毒副作用;FPA/EPI的半衰期(t1/2)、平均滞留时间(MRT0-24h)和血药浓度—时间曲线下面积(AUC 0-24h)分别是游离药物的1.57、1.33和3.95倍;静脉注射后2h药物主要蓄积于肿瘤动物的肝、脾和肺,与游离药物比较,在肿瘤组织和肝脏中,FPA/EPI较长时间保持较高的药物含量,在胃和肠的含量显著减少;FPA/EPI尾静脉注射Hela移植瘤到裸鼠体内,给药4次,给药剂量为5.0mg/kg和7.5mg/kg,相对肿瘤增殖率分别为81.38%和37.72%,瘤重抑制率分别为32.37%和61.19%,具有明显的剂量效应关系,EPI和FPA/EPI各组均可诱导Hela细胞凋亡。
     本研究结果表明,肿瘤靶向性普鲁兰基自组装纳米药物载体体外稳定性和体内安全性较好,对药物具有缓释作用,可改变其体内分布特征,减小药物对部分脏器的毒性,具有一定的肿瘤靶向性和较好的抗肿瘤效果,并呈剂量效应关系。普鲁兰基自组装体可以作为一种有应用前景的肿瘤靶向性纳米药物载体。
Folate receptors (FRs), overexpressed on the surface of a variety of tumor cells, are potential targets for tumor targeting therapy. This study aimed to develop folate conjugated pullulan acetate as a FRs -mediated drug delivery system to target chemotherapeutic agents to FRs-overexpressed tumor cells and tumor in vitro and in vivo.
     Folate was coupled to pullulan acetate (PA) by N, N'-Dicyclohexylcarbodiimide (DCC) and 4-Dimethylamino-pyridine (DMAP) mediated ester formation. The product was characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy. The degree of folate substitution (DS) was caculated by ultraviolet spectrometry is 0.235 per sugar residues of PA. Folate conjugated pullulan acetate nanoparticles (FPANs) and Epirubicin-loaded FPANs (FPA/EPI) were prepared by dialysis method. Various physicochemical properties of FPA and FPA/EPI including size, surface charge and morphology were characterized by dynamic light scattering (DLS), scanning electron microscope (SEM) and transmission electron microscope (TEM). FPANs and FPA/EPI had the nearly spherical shape with a size range of (204.2±10.9) nm and (273.4±11.0) nm respectively, they had lowζpotentials both in distill water and in 10%FBS. The storage stability of FPA and FPA/EPI were observed in distilled water, the size andζpotential were determined once a month. The nanoparticles were stable for at least three months. Flow cytometry test revealed that FPA/EPI NPs exhibited a dose dependent cellular uptake against human epithelial cervical cancer (Hela) cells with over-expressing folate receptors on the surface. Ensemble-averaged measurements with flow cytometry indicate that FPA/EPI can be internalized by HeLa cells in a dose dependent manner through receptor-mediated endocytosis, as confirmed by competitive inhibition assays.
     An in vivo toxicity study was performed to establish the safety of the prepared blank FPANs and PANs after i.v. administration in ICR mice. The study indicated that the NPs were well tolerated at 125mg/kg and 200mg/kg, respectively. The in vivo pharmacokinetics was investigated after an i.v. administration at 10mg EPI/kg in rats. Promisingly,1.57-fold increase in the half-life (t1/2),1.33-fold increase in the mean retention time (MRT0-24h) and 3.95-fold increase in the area under the curve (AUC0-24h) of EPI were achieved for the FPA/EPI compared with the free EPI. Moreover, the in vivo biodistribution and anticancer effects were investigated using a model of nude mice xenografted with Hela cells in the study. The drug level in stomach and gastric was significantly reduced, which is an indication of reduced side effects. The antitumor test demonstrated that when systemically administered at dose of 5.0mg/kg and 7.5mg/kg, the anti-cancer effects of FPA/EPI appear to be dose-dependent and the highest dose completely inhibits tumor growth through inducing the tumor cell apoptosis, the related rate of reproduction were 81.38% and 37.72%, and the rate of tumor inhibition were 32.37% and 61.19% respectively.
     All results suggested that FPANs were prepared easily, stable, safe and showed a promising potential on reducing the toxicity and improving the anticancer efficiency of the encapsulated drug. The conjugate showed great potential to be a carrier of nanodrug.
引文
[1]Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles [J]. Int J Cancer,2007,120(12):2527-37.
    [2]De Jong WH, Borm PJ. Drug delivery and nanoparticles—applications and hazards [J]. Int J Nanomedicine,2008,3(2):133-49.
    [3]NanoMarkets Report. Nano-enabled drug delivery market to pass $1.7 billion in 2009. http://www.nanotechnow.com/news.cgi?story_id=08590
    [4]Project on Emerging Nanotechnologies, FDA-Regulated products containing nanotechnology materials.http://www.nanotechproject.org/process/assets/files/2712/111_pen_fdacomments_init ial.pdf
    [5]国家食品药品监督管理局—数据查询网.http://app1.sfda.gov.cn/datasearch/face3/dir.html
    [6]陈振玲,陈令新,刘建娣,罗国安.纳米药物分析[J].化学进展,2006,18(7/8):1014-1018
    [7]朱盛山.药物新剂型[M].北京:化学工业出版社,2003
    [8]Moghimi SM, Hunter AC, Murray JC. Murray, Nanomedicine:current status and future prospects [J]. FASEB J,2005,19 (3):311-30.
    [9]Karina R.Vega-Villa, Jody K.Takemoto, Jaime A.Yanez, Connie M.Remsberg, M.Laird Forrest, Neal M.Davies. Clinical toxicities of nanocarrier system [J]. Adv Drug Deliv Rev,2008, 60(8):929-38.
    [10]Walker NJ, Bucher JR. A 21st century paradigm for evaluating the health hazards of nanoscale materials [J]? Toxicol Sci,2009,110(2):251-4.
    [11]赵琢,王利兵,张园,李学洋,于智睿,王华.纳米物质生物安全性研究进展[J].纳米科技,2008,5(2):61-5.
    [12]Service RF. Nanotoxicology. Nanotechnology grows up [J]. Science,2004,304(5678):1732-4.
    [13]Fischer HC, Chan WC., Nanotoxicity:the growing need for in vivo study [J]. Curr Opin Biotechnol,2007,18(6):565-71.
    [14]郭振楚.糖类化学[M].北京:化学工业出版社,2005
    [15]Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems [J]. Adv Drug Deliv Rev,2008,60(15):1650-62.
    [16]Mima S, Miya M, Iwamoto R and Yoshikawa S. Highly deacetylated chitosan and its properties [J]. J Appl Polym Sci,1983,28(6):1909-17.
    [17]Fini A, Orienti I. The role of chitosan in drug delivery:current and potential applications [J]. Am J Drug Deliv,2003,1(1):43-59.
    [18]Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Domb, Chitosan chemistry and pharmaceutical perspectives [J]. Chem Rev,2004,104(12):6017-84.
    [19]Park JH, Saravanakumar G, Kim K, Kwon IC., Targeted delivery of low molecular drugs using chitosan and its derivatives [J]. Adv Drug Deliv Rev,2010,62(1):28-41.
    [20]Paolicelli P, de la Fuente M, Sanchez A, Seijo B, Alonso MJ., Chitosan nanoparticles for drug delivery to the eye [J]. Expert Opin Drug Deliv,2009,6(3):239-53.
    [21]Yuan X B, Li H and Yuan Y B. Preparation of cholesterol-modified chitosan self-aggregates for delivery of drugs to ocular surface [J]. Carbohydr Polym,2006,65(3):337-45.
    [22]Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod DS, Uno K, Mennon M, Rodriguez L, Leong K, Lutty GA.Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium [J]. Nanomedicine,2008,4(4):340-9.
    [23]Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X, Zhou H, Xu F.Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan [J]. Biomaterials,2009,30(12):2340-8.
    [24]Yoksan R, Chirachanchai S. Amphiphilic chitosan nanosphere:studies on formation, toxicity,
    and guest molecule incorporation [J]. Bioorg Med Chem,2008,16(5):2687-96.
    [25]Zhang C, Qu G, Sun Y, Yang T, Yao Z, Shen W, Shen Z, Ding Q, Zhou H, Ping Q.Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs [J]. Eur J Pharm Sci,2008,33(4-5):415-23.
    [26]Pattani A, Patravale VB, Panicker L, Potdar PD., Immunological effects and membrane interactions of chitosan nanoparticles [J]. Mol Pharm,2009,6(2):345-52.
    [27]李富荣,郭跃华,周汉新,齐晖.卡铂碳包铁纳米笼壳聚糖微球在大鼠体内的分布和药代动力学研究[J].中国药理学通报,2009,25(6):809-13.
    [28]曹俊,周南进,壳聚糖抗肿瘤作用的研究进展[J].中国生化药物杂志,2005,26(2):126-127.
    [29]Maeda Y, Kimura Y. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice [J]. J Nutr,2004,134(4):945-50.
    [30]Hwang HY, Kim IS, Kwon IC, Kim YH.Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles [J]. J Control Release,2008,128(1):23-31.
    [31]Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, Jo HG, Park JH, Choi K, Jeong SY, Park RW, Kim IS, Kim K, Kwon IC.Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice [J]. J Control Release,2008,127(1):41-9.
    [32]Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park RW, Kim IS, Choi K, Chan Kwon I. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy [J]. Biomaterials, 2008,29(12):1920-30.
    [33]Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, Ding Q, Yuan S, Shen Z, Ping Q, Zhou H. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel [J]. Biomaterials,2008,29(9):1233-41.
    [34]Cafaggi S, Russo E, Stefani R, Parodi B, Caviglioli G, Sillo G, Bisio A, Aiello C, Viale M. Preparation, characterisation and preliminary antitumour activity evaluation of a novel nanoparticulate system based on a cisplatin-hyaluronate complex and N-trimethyl chitosan [J]. Invest New Drugs.2009 Dec 29. DOI:10.1007/s10637-009-9373-y
    [35]Wang Q, Zhang L, Hu W, Hu ZH, Bei YY, Xu JY, Wang WJ, Zhang XN, Zhang Q. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery [J]. Nanomedicine,2010,6(2):371-81.
    [36]Yu JM, Li YJ, Qiu LY, Jin Y. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery:preparation and in-vitro and in-vivo characterization [J]. J Pharm Pharmacol.2009; 61(6):713-9.
    [37]邬思辉,苏政权.壳聚糖及其衍生物作为药物载体研究进展[J].现代生物医学进展,2008,8(8):1588-92.
    [38]Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery [J]. Biomaterials,2009, 30(12):2329-39.
    [39]Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin:ex vivo and in vivo studies [J]. Int J Pharm,2008,356(1-2):259-66.
    [40]Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption [J]. J Control Release,2009,135(2):144-51.
    [41]Prego C, Paolicelli P, Diaz B, Vicente S, Sanchez A, Gonzalez-Fernandez A, Alonso MJ. Chitosan-based nanoparticles for improving immunization against hepatitis B infection [J]. Vaccine,2010,28(14):2607-14.
    [42]Bal SM, Slutter B, van Riet E, Kruithof AC, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations [J]. J Control Release,2010,142(3):374-83.
    [43]Csaba N, Koping-Hoggard M, Alonso MJ. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery [J]. Int J Pharm,2009, 382(1-2):205-14.
    [44]Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery [J]. Nanomedicine,2010,6(1):64-9.
    [45]Li GP, Liu ZG, Liao B, Zhong NS. Induction of Thl-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice [J]. Cell Mol Immunol,2009,6(1):45-50.
    [46]Lin HR, Yu SP, Lin YJ, Wang TS. High pH tolerance of a chitosan-PAA nanosuspension for ophthalmic delivery of pilocarpine [J]. J Biomater Sci Polym Ed,2010,21(2):141-57.
    [47]Ramteke S, Ganesh N, Bhattacharya S, Jain NK. Amoxicillin, clarithromycin, and omeprazole based targeted nanoparticles for the treatment of H. pylori [J]. J Drug Target,2009, 17(3):225-34.
    [48]Cheong SJ, Lee CM, Kim SL, Jeong HJ, Kim EM, Park EH, Kim DW, Lim ST, Sohn MH. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system [J]. Int J Pharm,2009,372(1-2):169-76.
    [49]张阳德,赵志坚,张浩伟,张彦琼.纳米药物的药代动力学研究进展[J].中国现代医学杂志,2006,16(7):1028-31.
    [50]Yang KW, Li XR, Yang ZL, Li PZ, Wang F, Liu Y.Novel polyion complex micelles for
    liver-targeted delivery of diammonium glycyrrhizinate:in vitro and in vivo characterization [J]. J Biomed Mater Res A,2009,88(1):140-8.
    [51]Lee CM, Jeong HJ, Kim SL, Kim EM, Kim DW, Lim ST, Jang KY, Jeong YY, Nah JW, Sohn MH. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes [J]. Int J Pharm, 2009,371(1-2):163-9.
    [52]Dong L, Gao S, Diao H, Chen J, Zhang J. Galactosylated low molecular weight chitosan as a carrier delivering oligonucleotides to Kupffer cells instead of hepatocytes in vivo [J]. J Biomed Mater Res A,2008,84(3):777-84.
    [53]Saravanakumar G, Min KH, Min DS, Kim AY, Lee CM, Cho YW, Lee SC, Kim K, Jeong SY, Park K, Park JH, Kwon IC. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel:synthesis, characterization, and in vivo biodistribution [J]. J Control Release,2009, 140(3):210-7.
    [54]Lee CM, Jeong HJ, Cheong SJ, Kim EM, Kim DW, Lim ST, Sohn MH. Prostate Cancer-Targeted Imaging Using Magnetofluorescent Polymeric Nanoparticles Functionalized with Bombesin [J]. Pharm Res,2010,27(4):712-21.
    [55]Wang S, Jiang T, Ma M, Hu Y, Zhang J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting [J]. Int J Pharm,2010,386(1-2):249-55.
    [56]Lin A, Chen J, Liu Y, Deng S, Wu Z, Huang Y, Ping Q. Preparation and evaluation of N-caproyl chitosan nanoparticles surface modified with glycyrrhizin for hepatocyte targeting [J]. Drug Dev Ind Pharm,2009,35(11):1348-55.
    [57]Li FR, Yan WH, Guo YH, Qi H, Zhou HX. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer [J]. Int J Hyperthermia,2009,25(5):383-91.
    [58]Rekha MR. and Chandra P. Sharma. Pullulan as a Promising Biomaterial for Biomedical Applications:A Perspective [J]. Trends Biomater Artif Organs,2007,20(2):116-21.
    [59]Leathers TD. Biotechnological production and applications of pullulan [J]. Appl Microbiol Biotechnol,2003,62(5-6):468-73.
    [60]Shingel KI. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan [J]. Carbohydr Res,2004,339(3):447-60.
    [61]Motozato Y, Ihara H, Tomoda T. Preparation and gel permeation chromatographic properties of pulluIan spheres [J]. J Chromatogra,1986,55:434-7.
    [62]Jung SW, Jeong YI, Kim SH. Characterization of hydrophobized pullulan with various hydrophobicities [J]. Int J Pharm,2003,254(2):109-21.
    [63]Na K, Lee KH, Bae YH. pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate [J]. J Control Release,2004,97(3):513-25.
    [64]Na K, Lee ES, Bae YH. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH:pH-dependent cell interaction, internalization and cytotoxicity in vitro [J]. J Control Release,2003,87(1-3):3-13.
    [65]Na K, Lee TB, Park KH, et al. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system [J]. Eur J Pharm Sci,2003,18(2):165-73.
    [66]Zhang HZ, Li XM, Gao FP, Liu LR, Zhou ZM, Zhang QQ. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery [J]. Drug Delivery,2010,17(1): 48-57.
    [67]Akiyoshi K., Degu S., Moriguchi N., Yamaguchi S., Sunamoto J. Self-Aggregates of Hydrophobized Polysaccharides in Water. Formation and Characteristics of Nanoparticles [J]. Macromolecules,1993,26(12):3062-68.
    [68]Na K., Lee K.H., Bae Y. H. Self-Organized Nanogels Responding to Tumor Extracellular pH: pH-Dependent Drug Release and in Vitro Cytotoxicity against MCF-7 Cells [J]. Bioconjugate Chem.,2007,18(5):1568-74.
    [69]Shimizu T, Kishida T, Hasegawa U, Ueda Y, Imanishi J, Yamagishi H, Akiyoshi K, Otsuji E, Mazda O. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy [J]. Biochem Biophys Res Commun,2008,367(2):330-5.
    [70]Gu XG, Schmitt M, Hiasa A, Nagata Y, Ikeda H, Sasaki Y, Akiyoshi K, Sunamoto J, Nakamura H, Kuribayashi K, Shiku H.A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas [J]. Cancer Res,1998,58(15):3385-90.
    [71]Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs:complexation and stabilization of insulin [J]. J Control Release,1998,54(3):313-20.
    [72]Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals [J]. Curr Pharm Des,2008, 14(29):3168-95.
    [73]Gao FP, Zhang HZ, Liu LR, et al. Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates [J]. Carbohyd Polym,2008,71(4):606-613.
    [74]Gao F, Zhang H, Yang W, Zhou J, Chen H, Zhou Z, Wang Y, Cai Y, Li XM, Liu L, Zhang QQ., Deoxycholic acid modified-carboxymethyl curdlan conjugate as a novel carrier of epirubicin:
    In vitro and in vivo studies [J]. Int J Pharm,2010,392(1-2):254-260.
    [75]Smorenburg SM, Van Noorden CJ. The complex effects of heparins on cancer pro-gression and metastasis in experimental studies [J]. Pharmacol Rev,2001,53(1):93-105.
    [76]Cho KJ, Moon HT, Park GE, Jeon OC, Byun Y, Lee YK. Preparation of sodium deoxycholate (DOC) conjugated heparin derivatives for inhibition of angiogenesis and cancer cell growth [J]. Bioconjug Chem,2008,19(7):1346-51.
    [77]Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex [J]. J Control Release,2007, 121(1-2):91-9.
    [78]Park K, Lee GY, Kim YS, Yu M, Park RW, Kim IS, Kim SY, Byun Y. Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity [J]. J Control Release,2006,114(3):300-6.
    [79]Clemons KV, Ranney DF, Stevens DA. A novel heparin-coated hydrophilic preparation of amphotericin B hydrosomes [J]. Curr Opin Investig Drugs,2001,2(4):480-7.
    [80]Chung YI, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC. The effect of surface functionalization of PLGA nanoparticles by heparin-or chitosan-conjugated Pluronic on tumor targeting [J]. J Control Release,2010,143(3):374-82.
    [81]Chertok B, David AE, Moffat BA, Yang VC. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking [J]. Biomaterials, 2009,30(35):6780-7.
    [82]Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin HJ, Tighiouart M, Nie S, Chen ZG, Shin DM. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors [J]. ACS Nano,2009,3(10):3165-74.
    [83]Socha M, Bartecki P, Passirani C, Sapin A, Damge C, Lecompte T, Barre J, El Ghazouani F, Maincent P. Stealth nanoparticles coated with heparin as peptide or protein carriers [J]. J Drug Target,2009,17(8):575-85.
    [84]Jung Y, Chung YI, Kim SH, Tae G, Kim YH, Rhie JW, Kim SH, Kim SH. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-betal loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex [J]. Biomaterials,2009, 30(27):4657-64.
    [85]Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes [J]. Biomaterials,2008, 29(35):4709-18.
    [86]Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin [J].
    Nanomedicine,2007,3(4):246-57.
    [87]Na SJ, Chae SY, Lee S, Park K, Kim K, Park JH, Kwon IC, Jeong SY, Lee KC. Stability and bioactivity of nanocomplex of TNF-related apoptosis-inducing ligand [J]. Int J Pharm,2008, 363(1-2):149-54.
    [88]Pathak A, Patnaik S, Gupta KC. Polyethylenimine derived nanoparticles for efficient gene delivery [J]. Nucleic Acids Symp Ser (Oxf),2009, (53):57-8.
    [89]Jiang G, Park K, Kim J, Kim KS, Hahn SK. Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis [J]. Mol Pharm,2009,6(3):727-37.
    [90]Kim EJ, Shim G, Kim K, Kwon IC, Oh YK, Shim CK. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs [J]. J Gene Med,2009, 11(9):791-803.
    [91]Bhang SH, Won N, Lee TJ, Jin H, Nam J, Park J, Chung H, Park HS, Sung YE, Hahn SK, Kim BS, Kim S. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging [J]. ACS Nano,2009,3(6):1389-98.
    [92]Jain A, Jain SK, Ganesh N, Barve J, Beg AM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer [J]. Nanomedicine,2010,6(1):179-90.
    [93]Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, Romond E. Intratumoral delivery of Paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations [J]. AAPS PharmSciTech,2009,10(2):410-7.
    [94]Zavan B, Vindigni V, Vezzu K, Zorzato G, Luni C, Abatangelo G, Elvassore N, Cortivo R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers:a placebo-controlled study [J]. J Mater Sci Mater Med,2009,20(1):235-47.
    [95]Yu Z, Xiaoliang W, Xuman W, Hong X, Hongchen G.Acute toxicity and irritation of water-based dextran-coated magnetic fluid injected in mice [J]. J Biomed Mater Res A,2008, 85(3):582-7.
    [96]Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ.Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity [J]. Eur J Pharm Sci,2007, 30(5):392-7.
    [97]Choi KC, Bang JY, Kim C, Kim PI, Lee SR, Chung WT, Park WD, Park JS, Lee YS, Song CE, Lee HY. Antitumor effect of adriamycin-encapsulated nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran [J]. J Pharm Sci,2009,98(6):2104-12.
    [98]Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier [J]. J Control Release, 2001,74(1-3):317-23.
    [99]Moore A, Marecos E, Bogdanov A Jr, Weissleder R.Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model [J]. Radiology,2000,214(2):568-74.
    [100]Shi K, Li C, He B.[Magnetic drug delivery system-adriamycin-carboxymethyl dextran magnetic nanoparticles] [J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2000,17(1):21-4.
    [101]Tiyaboonchai W, Limpeanchob N.Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles [J].Int J Pharm,2007,329(1-2):142-9.
    [102]Kakizawa Y, Nishio R, Hirano T, Koshi Y, Nukiwa M, Koiwa M, Michizoe J, Ida N. Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles [J]. J Control Release,2010,142(1):8-13.
    [103]Ma LL, Feldman MD, Tam JM, Paranjape AS, Cheruku KK, Larson TA, Tam JO, Ingram DR, Paramita V, Villard JW, Jenkins JT, Wang T, Clarke GD, Asmis R, Sokolov K, Chandrasekar B, Milner TE, Johnston KP. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy [J]. ACS Nano,2009,3(9):2686-96.
    [104]Towner R, Smith N, Asano Y, He T, Doblas S, Saunders D, Silasi-Mansat R, Lupu F, Seeney CE. Molecular MRI Approaches used to Aid in the Understanding of Angiogenesis in vivo: Implications for Tissue Engineering [J]. Tissue Eng Part A,2010,16(2):357-64.
    [105]Huang YF, Gu WL, Li ZH, Chen RF, Zhou JJ, Zhou QB, Guo N. [Preparation of doxorubicin encapsulated in amphiphilic polysaccharide nanoparticles and anti-hepatocarcinoma effect thereof] [J]. Zhonghua Yi Xue Za Zhi,2009,89(12):810-2.
    [106]Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R.18F labeled nanoparticles for in vivo PET-CT imaging [J]. Bioconjug Chem,2009,20(2):397-401.
    [107]Gharehaghaji N, Oghabian MA, Sarkar S, Amirmohseni S, Ghanaati H. Optimization of pulse sequences in magnetic resonance lymphography of axillary lymph nodes using magnetic nanoparticles [J]. J Nanosci Nanotechnol,2009,9(7):4448-52.
    [108]Riviere C, Lecoeur C, Wilhelm C, Pechoux C, Combrisson H, Yiou R, Gazeau F. The MRI assessment of intraurethrally--delivered muscle precursor cells using anionic magnetic nanoparticles [J]. Biomaterials,2009,30(36):6920-8.
    [109]Ahmad Z, Khuller GK.Alginate-based sustained release drug delivery systems for tuberculosis [J]. Expert Opin Drug Deliv,2008,5(12):1323-34.
    [110]Ma HL, Qi XR, Ding WX, Maitani Y, Nagai T.Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles [J]. J Biomed Mater Res A,2008,84(3):598-606.
    [111]Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis [J]. J Biomed Mater Res A,2010,92(3):1131-8.
    [112]Chen F, Zhang ZR, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery [J]. Int J Pharm,2008, 349(1-2):226-33.
    [113]Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P.Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes [J]. J Control Release,2008,125(3):236-45.
    [114]de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue [J]. Gene Ther,2008, 15(9):668-76.
    [115]Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ.New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules [J]. Biomacromolecules,2009,10(2):243-9.
    [116]Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery [J]. Pharm Res,2007,24(12):2198-206.
    [117]Zhao Q, Han B, Wang Z, Gao C, Peng C, Shen J.Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle:doxorubicin loading and in vitro and in vivo studies [J]. Nanomedicine,2007,3(1):63-74.
    [118]Lu Z, Yeh TK, Tsai M, Au JL, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy [J]. Chin Cancer Res,2004,10(22):7677-84.
    [119]王晋,吕球军,胡新等.淀粉纳米粒包裁小分子抗癌药物的研究[J].中国药学杂志,2002,37(8):598-601.
    [1]Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors [J]. Expert Opin Drug Deliv, 2008,5(3):309-19.
    [2]Lacey SW, Sanders JM, Rothberg KG, et al. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol [J]. J Clin Invest, 1989,84(2):715-20.
    [3]Ratnam M, Marquardt H, Duhring JL, Freisheim JH. Homologous membrane folate binding proteins in human placenta:cloning and sequence of a cDNA [J]. Biochemistry,1989, 28(20):8249-54.
    [4]Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy [J]. Adv Drug Deliv Rev,2004,56(8):1067-84.
    [5]Shen F, Ross JF, Wang X, Ratnam M. Identification of a novel folate receptor, a truncated receptor, and receptor type in hematopoietic cells:cDNA cloning, expression, immunoreactivity, and tissue specifi city [J]. Biochemistry,1994,33(5):1209-15.
    [6]田慧,张奇,项光亚.叶酸受体介导的肿瘤靶向治疗研究进展[J].中国临床药理学杂志,2006,22(3):227-9.
    [7]Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents [J]. Adv Drug Deliv Rev,2002,54(5):675-93.
    [8]Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers [J]. Int J Cancer,1997,74(2):193-8.
    [9]Ross JF, Chaudhuri PK, Ratnam M. Differential regula tion of folate receptor isoforms in normal and malignant tumors:in vivo and in established cell lines. Physiologic and clinical implications [J]. Cancer,1994,73(9):2432-43.
    [10]Weitman SD, Frazier KM, Kamen BA. The folate receptor in central nervous system malignancies of childhood [J]. J Neurooncol,1994,21(2):107-12.
    [11]Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting:from therapeutics to diagnostics [J]. J Pharm Sci,2005,94(10):2135-46.
    [12]Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates [J]. Bioorg Med Chem,2005,13(17):5043-54.
    [13]Mathias CJ, Lewis MR, Reichert DE, et al.Preparation of 66 Ga-and 68 Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals [J]. Nucl Med Biol,2003,30(7):725-31.
    [14]Mathias CJ, Wang S, Waters DJ, et al.Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical [J]. J Nucl Med,1998,39(9):1579-85.
    [15]Guo W, Hinkle GH, Lee RJ.99m Tc-HYNIC-folate:a novel receptor-based targeted radiopharmaceutical for tumor imaging [J], J Nucl Med,1999,40(9):1563-9.
    [16]Trump DP, Mathias CJ, Yang Z, et al. Synthesis and evaluation of 99mTc(CO)(3)-DTPA-folate as a folate-receptor-targeted radiopharmaceutical [J]. Nucl Med Biol,2002,29(5):569-73.
    [17]Reddy JA, Xu LC, Parker N, et al. Preclinical evaluation of 99m Tc-EC20 for imaging folate receptor-positive tumors [J]. J Nucl Med,2004,45(5):857-66.
    [18]Aronov O, Horowitz AT, Gabizon A, Gibson D. Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies [J]. Bioconjug Chem,2003,4(3):563-74.
    [19]Majoros IJ, Myc A, Thomas T, et al. PAMAM dendrimer-based multifunctional conjugate for cancer therapy:synthesis, characterization, and functionality [J]. Biomacromolecules,2006, 7(2):572-9.
    [20]Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC 145, a folate-vinca alkaloid conjugate [J]. Cancer Res,2007,67(9):4434-42.
    [21]Suzuki T, Hisakawa S, Itoh Y, et al. Design, synthesis, and biological activity of folalte receptor-targeted prodrug of thiolate histone deacetylase inhibitors [J]. Bioorg Med Chem Lett, 2007,17(15):4208-12.
    [22]Paulos CM, Varghese B, Widmer WR, et al. Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis [J]. Arthritis Res Ther,2006,8(3):R77.
    [23]Varghese B, Haase N, Low PS. Depletion of folate-receptor-positive macrophages leads to alleviation of symptoms and prolonged survival in two murine models of systemic lupus erythematosus [J]. Mol Pharm,2007,4(5):679-85.
    [24]Ward CM, Pechar M, Oupicky D, et al. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo [J]. J Gene Med,2002,4(5):536-47.
    [25]Guo W, Lee RL. Receptor-targeted gene delivery via folate-conjugated polyethylenimine [J]. AAPS Pharm Sci,1999,1(4):E19.
    [26]Benns JM, Mahato RI, Kim SW. Optimization of factors infl uencing the transfection effi ciency of folate-PEG-folate-graft-polyethylenimine [J]. J Control Rel,2002,79(1-3):255-69.
    [27]Chan P, Kurisawa M, Chung JE, et al. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery [J]. Biomaterials,2007, 28(3):540-9.
    [28]van Steenis JH, van Maarseveen EM, Verbaan FJ, et al. Preparation and characterization of folate-targeted PEG-coated pDMAEMA-based polyplexes [J]. J Control Release,2003, 87(1-3):167-76.
    [29]Zhao XB, Muthusamy N, Byrd JC, et al. Cholesterol as a bilayer anchor for PEGylation and targeting ligand in folate-receptor-targeted liposomes [J]. J Pharm Sci,2007,96(9):2424-35.
    [30]Pan XQ, Wang H, Lee RJ. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model [J]. Pharm Res,2003,20(3):417-22.
    [31]Lu Y, Wu J, Gonit M, et al. Role of formulation composition in folate receptor-targeted liposomal doxorubicin delivery to acute myelogenous leukemia cells [J]. Mol Pharm,2007, 4(5):707-12.
    [32]Pan XQ, Lee RJ. In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model [J]. Anticancer Res,2005,25(1 A):343-6.
    [33]Wu J, Liu Q, Lee RJ. A folate receptor-targeted liposomal formulation for paclitaxel [J]. Int J Pharm,2006,316(1-2):148-53.
    [34]Stevens PJ, Sekido M, Lee RJ. Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation [J]. Anticancer Res,2004, 24(1): 161-5.
    [35]Chiu SJ, Marcucci G, Lee RJ. Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes [J]. Anticancer Res,2006,26(2A):1049-56.
    [36]Jung SW, Jeong YI, Kim SH. Characterization of hydrophobized pullulan with various hydrophobicities [J]. Int J Pharm,2003,254(2):109-21.
    [37]Zhang HZ, Gao FP, Liu LR, Li XM, Zhou ZM, Yang XD, Zhang QQ. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy [J]. Colloids Surf B Biointerfaces,2009,71(1):19-26.
    [38]Zhang HZ, Li XM, Gao FP, Liu LR, Zhou ZM, Zhang QQ. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery [J]. Drug Delivery,2010,17(1): 48-57.
    [1]Xu R, Winnik MA, Hallett FR, et al. Light-scatting study of the association behavior of
    styrene-ethylene oxide block copolymers in aqueous solution [J]. Macromolecules,1991,24(1): 87-91.
    [2]Chu D, Thomas JK. Photophysical and photochemical studies on a polymeric intramolecular micellar system [J]. Macromolecules,1987,20(9):2133-8.
    [3]Akiyoshi K, Deguchi S, Moriguchi N, et al. Self-aggregates of hydrophobized polysaccharides in water:Formation and characteristics of nanoparticles [J]. Macromolecules,1993,26(12):3062-8.
    [4]Guenoun P, Davis HT, Tirrell M, et al. Aqueous micellar solutions of hydrophobically modified polyelectrolytes [J]. Macromolecules,1996,29(11):3965-9.
    [5]Lee KY, Jo WH. Physicochemical characteristics of self-aggregates of hydrophobically modified chitosans [J]. Langmuir,1998,14(9):2329-32.
    [6]Kataoka K, Kwon GS, Yokoyama M, et al. Block copolymer micelles as vehicles for drug delivery [J]. J Control Release,1993,24(1-3):119-32.
    [7]Yokoyama M, Okano T, Sakurai Y, et al. The use of macromolecular carried targeted drug delivery system in cancer treatment [J]. Cancer Res,1991,51(12):3229-36.
    [8]Lee IS, Akiyoshi K. Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces [J]. Biomaterials,2004,25(15):2911-8.
    [9]Shinji S, Masahiro H, Mitsuru A. Design of nanoparticles composed of graft copolymers for oral peptide delivery [J]. Adv Drug Deliv Rev,2001,47(1):21-37.
    [10]Banerjee T, Mitra S, Kumar Singh A, et al. Preparation,characterization and biodistribution of ultrafine chitosan nanoparticles [J]. Int J Pharm,2002,243(1-2):93-105.
    [11]Abismail B. Emulsification by ultrasound:drop size distribution and stability [J]. Ultrason Sonochem,1999,6(1-2):75-83.
    [12]Lamprecht A. Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification [J]. Int J Pharm,1999,184(1):97-105.
    [13]Lamprecht A. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique [J]. Int J Pharm,2000,196(2):177-82.
    [14]Fessi H. Nanocapsule formation by interfacial polymer deposition following solvent displacement [J]. Int J Pharm,1989,55(1):R1-4.
    [15]平其能等编著.现代药剂学[M],北京:中国医药科技出版社,1998.
    [16]Thioune O, Fessi H, Devissaguet JP, et al. Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant [J]. Int J Pharm, 1997,146(2):233-238.
    [17]Kun Na, Lee TB, Park KH, et al. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system [J]. Eur J Pharm Sci,2003,18(2):165-73.
    [18]Jeon HJ, Jeong YI, Jang MK, Park YH, Nah JW. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics [J]. Int J Pharm,2000,207(1-2):99-108.
    [19]Zhang ZP, Feng SS. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy [J]. Biomacromolecules,2006,7(4):1139-46.
    [20]Boddu SH, Jwala J, Vaishya R, Earla R, Karla PK, Pal D, Mitra AK. Novel nanoparticulate gel formulations of steroids for the treatment of macular edema [J]. J Ocul Pharmacol Ther,2010, 26(I):37-48.
    [21]Errico C, Bartoli C, Chiellini F, Chiellini E. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery [J]. J Biomed Biotechnol,2009, doi:10.1155/2009/571702
    [22]Chen XG, Lee CM, Park HJ. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acids modified chitosan in the aqueous system [J]. J Agric Food Chem, 2003,51(10):3135-9.
    [23]Lee M, Cho YW, Park JH, et al. Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method [J]. Colloid Polym Sci,2006,284:506-12.
    [24]Jeong YI, Kim SH, Jung TY, Kim IY, Kang SS, Jin YH, Ryu HH, Sun HS, Jin SG, Kim KK, Ahn KY, Jung S. Polyion complex micelles composed of all-trans retinoic acid and poly (ethylene glycol)-grafted-citosan [J]. J Pharm Sci,2006,95(11):2348-60.
    [25]Yang XD, Zhang QQ, Wang YS, Chen H, Zhang HZ, Gao FP, Liu LR. Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan:Synthesis; characterization; aggregation and methotrexate release in vitro [J]. Colloids and Surface B,2008,61(2):125-31.
    [26]Wang YS, Jiang Q, Li RS, Liu LR, Zhang QQ, Wang YM, Zhao J. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel [J]. Nanotechnology,2008,19(14):145101 (8pp)
    [27]Kataoka K, Matsumotob T, Yokoyamac M, Okanoc T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS. Doxorubicin-loaded poly(ethylene glycol)-poly (b-benzyl-Laspartate) copolymer micelles:their pharmaceutical characteristics and biological significance [J]. J Control Release, 2000,64(1-3):143-53.
    [28]Wang YS, Liu LR, Jiang Q, Zhang QQ. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin [J]. Eur Polym J,2007,43(1):43-51.
    [29]Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases [J]. Biochim Biophys Acta,1993,1151(2):201-15.
    [30]Hana HD, Lee A, Songa CK, Hwang T, Seong H, Ock Lee C, Shin BC. In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes [J]. Int J Pharm,2006, 313(1-2):181-8.
    [31]Sludden J, Uchegbu IF, Schatzlein AG. The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution [J]. J Pharm Pharmacol,2000,52(4):377-82.
    [32]Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives [J]. Adv Drug Deliv Rev,2010,62(1):28-41.
    [33]Ringsdorf H. Structure and properties of pharmacologically active polymers [J]. J Polym Sci Symp,2007,51(1):135-153.
    [34]Son YJ, Jang JS, Cho YW, Chung H, Park RW, Kwon IC, Kim IS, Park JY, Seo SB, Park CR, Jeong SY. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect [J]. J Control Release,2003,91 (1-2):135-45.
    [35]Lee E, Lee J, Lee IH, Yu M, Kim H, Chae SY, Jon S. Conjugated chitosan as a novel platform for oral delivery of paclitaxel [J]. J Med Chem,2008,51(20):6442-9.
    [36]Seymour LW, Ulbrich K, Wedge SR, Hume IC, Strohalm J, Duncan R. Duncan. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactosereceptor: pharmacokinetics in DBA2 mice [J]. Br J Cancer,1991,63(6):859-66.
    [37]Cheng X, Zhang F, Zhou G, Gao S, Dong L, Jiang W, Ding Z, Chen J, Zhang J. DNA/chitosan nanocomplex as a novel drug carrier for doxorubicin [J]. Drug Deliv,2009,16(3):135-44.
    [38]Hu Y, Ding Y, Ding D, Sun M, Zhang L, Jiang X, Yang C. Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers [J]. Biomacromolecules,2007,8(4):1069-76.
    [39]Keresztessy Z, Bodnar M, Ber E, Hajdu I, Zhang M, Hartmann JF, Minko T,Borbely J. Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery [J]. Colloid Polym Sci,2009,287(7):759-65.
    [40]Jung SW, Jeong YI, Kim YH, Kim SH. Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier [J]. Arch Pharm Res,2004,27(5):562-9.
    [41]Na K, Lee ES, Bae YH. Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells [J]. Bioconjug Chem, 2007,18(5):1568-74.
    [42]Zhang HZ, Gao FP, Liu LR, Li XM, Zhou ZM, Yang XD, Zhang QQ. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy [J]. Colloids Surf B Biointerfaces,2009,71(1):19-26.
    [43]Zhang HZ, Li XM, Gao FP, Liu LR, Zhou ZM, Zhang QQ. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery [J]. Drug Deliv,2010,17(1): 48-57.
    [44]Cersosimo RJ, Hong WK. Epirubicin:a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue [J]. J Clin Oncol,1986,4(3):425-39.
    [45]Mayhew EG, Lasic D, Babbar S, Martin FJ. Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid [J]. Int J Cancer,1992,51 (2):302-9.
    [46]Gabizon AA. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes [J]. Cancer Res,1992,52 (4):891-6.
    [47]Vladimir P Torchilin. Block copolymer micelles as a solution for drug delivery problems [J]. Expert Opin Ther Pat,2005,15 (1):63-75.
    [48]Le Garrec D, Ranger M, Leroux JC. Micelles in anticancer drug delivery [J]. Am J Drug Deliv, 2004,2(1):15-42.
    [49]Paillard A, Passirani C, Saulnier P, Kroubi M, Garcion E, Benoit JP, Betbeder D. Positively-charged, porous, polysaccharide nanoparticles loaded with anionic molecules behave as'stealth'cationic nanocarriers. Pharm Res.2010,27(1):126-33.
    [50]Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. Liposome clearance in mice:the effect of a separate and combined presence of surface charge and polymer coating [J]. Int J Pharm,2002,240(1-2):95-102.
    [51]Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles [J]. Mol Pharm,2008,5(4):505-15
    [52]Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles [J]. Mol Pharm,2008, 5(4):496-504.
    [53]Lourenco C, Teixeira M, Simoes S, Gaspar R. Steric stabilization of nanoparticles:size and surface properties [J]. Int J Pharm,1996,138(1):1-12.
    [54]Dai W, Zhang D, Duan C, Jia L, Wang Y, Feng F, Zhang Q. Preparation and characteristics of oridonin-loaded nanostructured lipid carriers as a controlled-release delivery system [J]. J Microencapsul,2010,27(3):234-41.
    [55]Bonadonna G, Gianni L, Santoro A, et al. Drug ten years later:epirubicin [J]. Ann Oncol,1993, 4(5):359-69.
    [56]Tong Z, Luo W, Wang Y, Yang F, Han Y, Li H, Luo H, Duan B, Xu T, Maoying Q, Tan H, Wang J, Zhao H, Liu F, Wan Y. Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain [J]. PLoS One.2010,5(4):e10234
    [1]Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates [J]. Bioorg Med Chem,2005,13(17):5043-54.
    [2]Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents [J]. Adv Drug Deliv Rev,2002,54(5):675-93.
    [3]Leamon CP, Low PS. Delivery of macromolecules into living cells:A method that exploits folate receptor endocytosis [J]. Proc Natl Acad Sci U S A,1991,88(13):5572-6.
    [4]Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors [J]. Expert Opin Drug Deliv, 2008,5(3):309-19.
    [5]Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting:from therapeutics to diagnostics [J]. J Pharm Sci,2005,94(10):2135-46.
    [6]Ganta S, Devalapally H, Shahiwala A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery [J]. J Control Release,2008,126(3):187-204.
    [7]Panyama J, Labhasetwara V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J]. Adv Drug Deliv Rev,2003,55(3):329-47.
    [8]Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery [J]. Adv Drug Deliv Rev,2007,59(8):748-58.
    [9]Alonso MJ. Nanomedicines for overcoming biological barriers [J]. Biomed Pharmacother,2004, 58(3):168-72.
    [10]Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides [J]. Adv Drug Deliv Rev,2005,57(4):637-51.
    [11]Qin L, Xue M, Wang W, Zhu R, Wang S, Sun J, Zhang R, Sun X. The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin [J]. Int J Pharm,2010,388(1-2):223-30.
    [12]Kundu J, Chung YI, Kim YH, Tae G, Kundu SC. Silk fibroin nanoparticles for cellular uptake and control release [J]. Int J Pharm,2010,388(1-2):242-50.
    [13]Chung YI, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC. The effect of surface functionalization of PLGA nanoparticles by heparin-or chitosan-conjugated Pluronic on tumor targeting [J]. J Control Release,2010,143(3):374-82.
    [14]Ma P, Dong X, Swadley CL, Gupte A, Leggas M, Ledebur HC, Mumper RJ. Development of Idarubicin and Doxorubicin Solid Lipid Nanoparticles to Overcome Pgp-mediated Multiple Drug Resistance in Leukemia [J]. J Biomed Nanotechnol,2009,5(2):151-61.
    [15]Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y. PEGylated PAMAM dendrimer-doxorubicin conjugates:in vitro evaluation and in vivo tumor accumulation [J]. Pharm Res,2010, 27(1):161-74.
    [16]Zhang HZ, Gao FP, Liu LR, Li XM, Zhou ZM, Yang XD, Zhang QQ. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy [J]. Colloids Surf B Biointerfaces,2009,71(1):19-26.
    [17]Zhang HZ, Li XM, Gao FP, Liu LR, Zhou ZM, Zhang QQ. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery [J]. Drug Deliv,2010,17(1): 48-57
    [18]Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS):conjugation chemistry, characterization, in vitro and in vivo evaluation [J]. Biomaterials,2008,29(28):3856-65.
    [19]Merdan T, Kunath K, Fischer D, et al. Intracellular processing of poly (ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments [J]. Pharm Res,2002,19(2):140-6.
    [1]Stern ST, McNeil SE. Nanotechnology safety concerns revisited [J]. Toxicol Sci,2008, 101(1):4-21.
    [2]Vega-Villa KR, Takemoto JK, Yanez JA, Remsberg CM, Forrest ML, Davies NM. Clinical toxicities of nanocarrier systems [J]. Adv Drug Deliv Rev,2008,60(8):929-38.
    [3]Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics [J]. Curr Drug Metab,2010,11(2):129-41.
    [4]赵琢,王利兵,张园,李学洋,于智睿,王华.纳米物质生物安全性研究进展[J].纳米科技,2008,5(2):61-5.
    [5]Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology:some physiological principles. Occup Med (Lond) [J].2006,56(5):307-11.
    [6]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles [J]. Environ Health Perspect,2005,113(7):823-39.
    [7]Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms [J]. Curr Mol Med,2006,6(6):651-63.
    [8]Kagan VE, Bayir H, Shvedova AA. Nanomedicine and nanotoxicology:two sides of the same coin [J]. Nanomedicine,2005,1(4):313-6.
    [9]Moghimi SM, Hunter AC, Murray JC. Nanomedicine:current status and future prospects [J]. FASEB J.2005,19(3):311-30.
    [10]Nanotech Rx-Medical applications of nanoscale technologies:what impact on marginalized communities [J]? ETC group (2006) 1-63.
    [11]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel [J]. Science.2006; 311(5761):622-7.
    [12]Igarashi E. Factors affecting toxicity and efficacy of polymeric nanomedicines [J]. Toxicol Appl Pharmacol,2008,229(1):121-34.
    [13]Park JH, Saravanakumar G, Kim K, Kwon IC., Targeted delivery of low molecular drugs using chitosan and its derivatives [J]. Adv Drug Deliv Rev,2010,62(1):28-41.
    [14]Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW.In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery [J]. Biomaterials,2009, 30(12):2329-39.
    [15]Yoksan R, Chirachanchai S. Amphiphilic chitosan nanosphere:studies on formation, toxicity, and guest molecule incorporation [J]. Bioorg Med Chem,2008,16(5):2687-96.
    [16]Zhang C, Qu G, Sun Y, Yang T, Yao Z, Shen W, Shen Z, Ding Q, Zhou H, Ping Q.Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs [J]. Eur J Pharm Sci,2008,33(4-5):415-23.
    [17]Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance [J]. Br J Pharmacol,2007,150(5):552-8.
    [18]Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. What do we (need to) know about the kinetic properties of nanoparticles in the body [J]? Regul Toxicol Pharmacol,2007, 49(3):217-29.
    [19]Walker NJ, Bucher JR. A 21st century paradigm for evaluating the health hazards of nanoscale materials [J]? Toxicol Sci,2009,110(2):251-4.
    [1]Li SD, Huang L.Pharmacokinetics and biodistribution of nanoparticles [J]. Mol Pharm,2008, 5(4):496-504.
    [2]Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. What do we (need to) know about the kinetic properties of nanoparticles in the body [J]? Regul Toxicol Pharmacol,2007, 49(3):217-29.
    [3]Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab [J].2010,11(2):129-41.
    [4]张阳德,赵志坚,张浩伟,张彦琼.纳米药物的药代动力学研究进展[J].中国现代医学杂志,2006,16(7):1028-31.
    [5]张敏,丁安伟,张丽.纳米药物的药代动力学研究概述[J].中华中医药学刊,2008,26(1):127-9.
    [6]Bigotte L, Olsson Y. Distribution and toxic effects of intravenously injected epirubicin on the central nervous system of the mouse [J]. Brain,1989,112 (Pt 2):457-69.
    [7]Ganzina F.4'-epi-doxorubicin, a new analogue of doxorubicin:a preliminary overview of preclinical and clinical data [J]. Cancer Treat Rev,1983,10(1):1-22.
    [8]Mross K, Maessen P, van der Vijgh WJ, Gall H, Boven E, Pinedo HM. Pharmacokinetics and
    Metabolism of Epidoxorubicin and Doxorubicin in Humans [J]. J Clin Oncol,1988,6(3): 517-26.
    [9]龚晓丽,秦永平,梁茂植,余勤,南峰.HPLC荧光和质谱两种检测器测定大鼠血浆及组织中的表阿霉素[J].华西药学杂志,2008,23(1):68-70.
    [10]Barker IK, Crawford SM, Fell AF. Determination of plasma concentrations of epirubicin and its metabolites by high-performance liquid chromatography during a 96-h infusion in cancer chemotherapy [J]. J Chromatogr B Biomed Appl,1996,681(2):323-9.
    [11]Ramanathan-Girish S, Boroujerdi M. Contradistinction between doxorubicin and epirubicin: in-vivo metabolism, pharmacokinetics and toxicodynamics after single-and multiple-dosing in rats [J]. J Pharm Pharmacol,2001,53(7):987-97.
    [12]van der Vijgh WJ, Maessen PA, Pinedo HM. Comparative metabolism and pharmacokinetics of doxorubicin and 4'-epidoxorubicin in plasma, heart and tumor of tumor-bearing mice [J]. Cancer Chemother Pharmacol,1990,26(1):9-12.
    [13]Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D. Preclinical experiences with magnetic drug targeting:tolerance and efficacy [J]. Cancer Res,1996, 56(20):4694-701.
    [14]Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice [J]. Int J Pharm,2005,293(1-2):281-90.
    [15]王晶晶,焦昆,李兵等.介绍一种新的大鼠颈外静脉插管方法,实验动物科学,2008,25(2):52-3.
    [16]Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS):conjugation chemistry, characterization, in vitro and in vivo evaluation [J]. Biomaterials,2008,29(28):3856-65.
    [17]Alexis F, Pridgen E, Molnar LK, Farokhzad OC.Factors affecting the clearance and biodistribution of polymeric nanoparticles [J]. Mol Pharm,2008,5(4):505-15.
    [18]Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature:The key role of tumor-selective macromolecular drug targeting [J]. Adv Enzyme Regul,2001, 41:189-207.
    [19]Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors:A royal gate for targeted anticancer nanomedicines [J]. J Drug Target,2007,15(7-8):457-64.
    [20]Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer therapy [J]. Adv Drug Deliver Rev,2004,56:1649-59.
    [1]Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept:100 years of progress [J]. Nat Rev Cancer,2008,8(6):473-80.
    [2]Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics [J]. Curr Drug Metab,2010,11(2):129-41.
    [3]Safra T. Pegylated liposomal doxorubicin (doxil):Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2[J]. Ann Oncol,2000,11(8):1029-33.
    [4]Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer [J]. Cancer Res,2005,65(12):5317-24.
    [5]Rifkin RM, Gregory SA, Mohrbacher A, Hussein MA. Pegylated liposomal doxorubicin, vincristine, and dexamethasone provide significant reduction in toxicity compared with doxorubicin, vincristine, and dexamethasone in patients with newly diagnosed multiple myeloma: a Phase Ⅲ multicenter randomized trial [J]. Cancer,2006,106(4):848-58.
    [6]Kim S, Kim JH, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery [J]. Eur J Pharm Biopharm,2009,71(3):420-30.
    [7]Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK. Vascular permeability in a human tumor xenograft:molecular size dependence and cutoff size [J]. Cancer Res,1995,55(17):3752-6.
    [8]Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect [J]. Eur J Pharm Biopharm,2009,71(3):409-19.
    [9]Li SD, Huang L.Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm,2008, 5(4):496-504.
    [10]Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano-and microspheres. II:effect of surface charges on in vitro phagocytosis and biodistribution in rats [J]. Eur J Pharm Biopharm,1998,46(3):255-63.
    [11]Zhang JS, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity [J]. Adv Drug Delivery Rev,2005,57(5):689-98.
    [12]Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution [J]. Mol Pharm,2008,5(4):487-95.
    [13]Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. What do we (need to) know about the kinetic properties of nanoparticles in the body [J]? Regul Toxicol Pharmacol,2007, 49(3):217-29.
    [14]Saravanakumar G, Min KH, Min DS, Kim AY, Lee CM, Cho YW, Lee SC, Kim K, Jeong SY, Park K, Park JH, Kwon IC. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of
    paclitaxel:synthesis, characterization, and in vivo biodistribution [J]. J Control Release,2009, 140(3):210-7.
    [15]Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin HJ, Tighiouart M, Nie S, Chen ZG, Shin DM. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors [J]. ACS Nano,2009,3(10):3165-74.
    [16]Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery [J]. Pharm Res,2007,24(12):2198-206.
    [17]Cheong SJ, Lee CM, Kim SL, Jeong HJ, Kim EM, Park EH, Kim DW, Lim ST, Sohn MH. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system [J]. Int J Pharm,2009,372(1-2):169-76.
    [18]Chung YI, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting [J]. J Control Release,2010,143(3):374-82.
    [19]Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P.Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes [J]. J Control Release,2008,125(3):236-45.
    [20]Lee CM, Jeong HJ, Kim SL, Kim EM, Kim DW, Lim ST, Jang KY, Jeong YY, Nah JW, Sohn MH. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes [J]. Int J Pharm, 2009,371 (1-2):163-9.
    [21]Ganzina F.4'-epi-doxorubicin, a new analogue of doxorubicin:a preliminary overview of preclinical and clinical data [J]. Cancer Treat Rev,1983,10(1):1-22.
    [22]van der Vijgh WJ, Maessen PA, Pinedo HM. Comparative metabolism and pharmacokinetics of doxorubicin and 4'-epidoxorubicin in plasma, heart and tumor of tumor-bearing mice [J]. Cancer Chemother Pharmacol,1990,26(1):9-12.
    [23]Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D. Preclinical experiences with magnetic drug targeting:tolerance and efficacy [J]. Cancer Res,1996, 56(20):4694-701.
    [24]Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles [J]. J Control Release,2004,96(2):273-83.
    [25]Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice [J]. Int J Pharm,2005,293(1-2):281-90.
    [26]Bigotte L, Olsson Y. Distribution and toxic effects of intravenously injected epirubicin on the central nervous system of the mouse [J]. Brain,1989,112 (Pt 2):457-69.
    [27]Klausner MA, Hirsch LJ, Leblond PF, Chamberlain JK, Klemperer MR, Segel GB. Contrasting splenic mechanisms in the blood clearance of red blood cells and colloidal particles [J]. Blood,
    1975,46(6):965-76.
    [28]Yamaoka T, Tabata T, Ikada Y. Body distribution profile of polysaccharides after intravenous administration [J]. Drug Deliv,1993, 1(1):75-82.
    [29]Kaneo Y, Tanaka T, Nakano T, Yamaguchi Y. Evidence for receptor-mediated hepatic uptake of pullulan in rats [J]. J Control Release,2001,70(3):365-73.
    [30]Rekha MR and Chandra P. Sharma. Pullulan as a Promising Biomaterial for Biomedical Applications:A Perspective [J]. Trends Biomater Artif Organs,2007,20(2):116-21.
    [31]Xi K, Tabata Y, Uno K, Yoshimoto M, Kishida T, Sokawa Y, Ikada Y. Liver targeting of interferon through pullulan conjugation [J]. Pharm Res,1996,13(12):1846-50.
    [32]Tabata Y, Matsui Y, Uno K, Sokawa Y, Ikada Y. Simple mixing of IFN with a polysaccharide having high liver affinity enables IFN to target to the liver [J]. J Interferon Cytokine Res,1999, 19(3):287-92.
    [1]何国平,褚芳,孙玉芳,褚佳,聂春莲,余立群.两种人卵巢癌裸鼠皮下移植瘤模型的比较研究[J].实验动物与比较医学,2008,28(5):328-30.
    [2]Arai T, Okamoto K, Ishiguro K, Terao K. Hela cell-tumor in nude mice and its response to antitumor agents [J]. Gann,1976,67(4):493-503.
    [3]Lu T, Sun J, Chen X, Zhang P, Jing X. Folate-conjugated micelles and their folate-receptor-mediated endocytosis [J]. Macromol Biosci,2009,9(11):1059-68.
    [4]Zhang B, Li Y, Fang CY, Chang CC, Chen CS, Chen YY, Chang HC. Receptor-mediated cellular
    uptake of folate-conjugated fluorescent nanodiamonds:a combined ensemble and single-particle study [J]. Small,2009,5(23):2716-21.
    [5]Zhang J, Deng D, Qian Z, Liu F, Chen X, An L, Gu Y. The targeting behavior of folate-nanohydrogel evaluated by near infrared imaging system in tumor-bearing mouse model [J]. Pharm Res,2010,27(1):46-55.
    [6]Hwang HY, Kim IS, Kwon IC, Kim YH.Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles [J]. J Control Release, 2008,128(1):23-31.
    [7]Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, Jo HG, Park JH, Choi K, Jeong SY, Park RW, Kim IS, Kim K, Kwon IC.Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice [J]. J Control Release,2008,127(1):41-9.
    [8]Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park RW, Kim IS, Choi K, Chan Kwon I. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy [J]. Biomaterials, 2008,29(12):1920-30.
    [9]Wang Q, Zhang L, Hu W, Hu ZH, Bei YY, Xu JY, Wang WJ, Zhang XN, Zhang Q. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery [J]. Nanomedicine,2010,6(2):371-81.
    [10]Yu JM, Li YJ, Qiu LY, Jin Y. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery:preparation and in-vitro and in-vivo characterization [J]. J Pharm Pharmacol,2009,61(6):713-9.
    [11]宋晖,辛晓燕,肖锋,赵海波,张建芳,王德堂.Surv iv in基因RNA i对子宫颈癌裸鼠移植瘤生长与凋亡的影响[J].中国肿瘤生物治疗杂志,2009,16(4):374-78.
    [12]程丽,刘梅梅,隋丽华,程海燕,张云.YH-16对宫颈癌Hela细胞及其裸鼠皮下移植瘤作用研究[J].现代肿瘤医学,2008,16(1):7-10.
    [13]李牧,苏宝山,李宗芳,杨军,田玮,曾令霞.苦参素对Hela细胞增殖及凋亡的影响[J].西安交通大学学报(医学版),2006,27(5):499-502.
    [14]陈翔,王洪林,李坚,张盟辉.射频消融联合表阿霉素对兔肝VX2肿瘤微血管密度和细胞增殖的影响[J].重庆医学,2005,34(12):1841-2.
    [15]Zhang HZ, Gao FP, Liu LR, et al. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy [J]. Colloids Surf B Biointerfaces,2009,71(1):19-26.
    [16]Zhang HZ, Li XM, Gao FP, et al. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery [J]. Drug Deliv,2010,17(1):48-57.
    [17]Gao F, Zhang H, Yang W, Zhou J, Chen H, Zhou Z, Wang Y, Cai Y, Li XM, Liu L, Zhang QQ., Deoxycholic acid modified-carboxymethyl curdlan conjugate as a novel carrier of epirubicin:In
    vitro and in vivo studies [J]. Int J Pharm,2010,392(1-2):254-60.
    [18]Birnbaum DT, Brannon-Peppas L. Molecular weight distribution changes during degradation and release of PLGA nanoparticles containing epirubicin HCl [J]. J Biomater Sci Polym Ed, 2003,14(1):87-102.
    [19]Chang LC, Wu SC, Tsai JW, Yu TJ, Tsai TR. Optimization of epirubicin nanoparticles using experimental design for enhanced intravesical drug delivery [J]. Int J Pharm,2009, 376(1-2):195-203.
    [20]Kerr J ER,Winterfold CM,Harmon BV. Apoptosis its significance in cancer and cancer therapy [J]. Cancer,1994,73:2013-2026.
    [21]Donnell TJ, Meyn RE, Robertson LE. Implication of apoptotic cell death regulation in cancer therapy [J]. Semin Cancer Biol,1995,6:53
    [22]Eifel PJ. Concurrent chemotherapy and radiation therapy as the standard of care for cervical cancer [J]. Nat Clin Pract Oncol,2006,3(5):248-55.
    [23]韩锐主编.肿瘤的化学预防及药物治疗[M].北京:北京医科大学中国协和医科大学联合出版社,1991,267-268.
    [24]危少华,刘根寿,杨吉成,盛伟华,吴浩荣.表阿霉素诱导人肝癌SMMC-7721细胞凋亡的实验研究[J],江苏医药杂志,2002,28(1):23-25.
    [25]马祖胜,冯英明,姬统理,张贺龙,唐敏章,王文亮,郭比平.表阿霉素和阿霉素诱导人肝癌细胞凋亡[J].第四军医大学学报,2001,22(19):1759-1762.
    [26]Arican GO, Serbes U, Arican E. Evaluation of the cytotoxicity interactions between epirubicin and daunorubicin in HeLa cell cultures [J]. Afr J Biotechnol,2008,7(6):706-711.
    [27]唐正严,齐琳,丁见.表阿霉素诱导膀胱癌细胞凋亡的实验研究及预防浅表性膀胱癌术后复发的疗效观察[J].实用预防医学.2006,13(1):30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700