阻断TGF-β信号通路增强NK-92细胞过继性治疗的抗肿瘤效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过oligo化学合成及PCR扩增法合成人显性抑制TGF-βⅡ型受体(Dominant-negative transforming growth factor-βreceptorⅡ, DNTβRⅡ)目的基因,构建pIRES2-AcGFP-DNTβRⅡ真核表达质粒;利用Nucleofector技术将质粒转染NK-92细胞,观察阻断TGF-β信号通路的NK-92细胞的体外抗肿瘤效应;建立裸鼠荷Calu-6人肺癌细胞皮下移植瘤模型,观察阻断TGF-β信号通路的NK-92细胞过继性治疗的体内抗肿瘤效应。
     方法(1)根据Genebank数据库确定DNTβRⅡ目的基因,利用化学合成法进行单链oligo的合成,PCR法将合成的oligo拼接成完整的序列,装入PMD18-T载体并转染感受态细胞DH5α,经XhoI和EcoRI酶切后连接至目的载体pIRES2-AcGFP中,酶切电泳和DNA测序鉴定,转染COS-7细胞,倒置荧光显微镜观察GFP表达。(2)流式细胞术检测NK-92细胞TGF-βⅠ型和Ⅱ型受体表达情况,ELISA法检测Calu-6、A-549、MDA-MB231和HT-29四种肿瘤细胞系的TGF-β1分泌水平;采用Nucleofector技术将pIRES2-AcGFP-DNTβRⅡ质粒和pIRES2-AcGFP对照质粒转染NK-92细胞,流式细胞术、RT-PCR法及倒置荧光显微镜检测DNTβRⅡ在NK-92细胞的转染及表达,western blot险测转染后NK-92细胞Smad2蛋白的活化状态;将分泌水平最高的Calu-6细胞系与TGF-β1(终浓度10ng/m1)共孵育24小时,CCK-8法比较转染后的NK-92细胞对Calu-6人肺癌细胞系的体外杀伤活性。(3)采用细胞悬液接种法,将Calu-6细胞(1×106)接种于裸鼠背部皮下;成瘤实验同期经尾静脉分别输注转染pIRES2-AcGFP的NK-92细胞(B组)和转染pIRES2-AcGFP-DNTβRⅡ的NK-92细胞(C组),A组不予另外处理,接种后第10天比较各组成瘤率;抑瘤实验于接种后第10天、17天经尾静脉进行2次过继性输注,分为生理盐水组(a组)、NK92/pIRES2-AcGFP组(b组)和NK92/pIRES2-AcGFP-DNTβRⅡ组(c组),接种第56天处死动物;比较各组皮下移植瘤体积、生存期变化及外周血IFN-γ水平,肺转移情况。
     结果(1)合成DNA经测序验证与目的基因一致,真核表达质粒pIRES2-AcGFP-DNTβRⅡ转染后,倒置荧光显微镜证实DNTβRⅡ在COS-7细胞的表达。(2)Calu-6细胞系在四种肿瘤细胞系中TGF-β1表达水平最高;流式细胞术证实了NK-92细胞表面TβRⅠ、TβRⅡ的高表达;采用Nucleofector技术,pIRES2-AcGFP和pIRES2-AcGFP-DNTβRⅡ质粒对NK-92细胞的转染效率分别为28.53%和18.86%,RT-PCR和倒置荧光显微镜证实了DNTβRⅡ的表达,western blot显示虽有TGF-β的刺激,转染pIRES2-AcGFP-DNTβRⅡ质粒的NK-92细胞未见Smad2蛋白的活化。Calu-6细胞与TGF-β1共孵后,NK-92细胞对Calu-6细胞的杀伤活性较共孵前明显减弱(p<0.001):转染DNTβRⅡ阳性质粒的NK-92细胞对Calu-6细胞杀伤活性明显高于GFP转染组(p<0.001)。(3)成瘤实验显示3组间成瘤率存在差异,C组成瘤率低于A组(p<0.05)。抑瘤实验表明转染DNTβRⅡ阳性质粒的NK-92细胞(c组)过继性治疗后裸鼠皮下移植瘤体积缩小,肺转移率下降,生存期明显延长,外周血IFN-γ水平明显增高。
     结论(1)成功构建pIRES2-AcGFP-DNTβRⅡ真核表达质粒,为阻断NK-92细胞的TGF-β信号通路提供了载体;(2)Nucelofector核转染技术实现了pIRES2-AcGFP-DNTβRⅡ质粒在NK-92细胞的有效转染和表达;(3)pIRES2-AcGFP-DNTβRⅡ质粒的转染在受体水平阻断了NK-92细胞的TGF-β信号通路;(4)阻断TGF-β信号通路的NK-92细胞能够在体外抵抗TGF-β的免疫抑制作用;(5)阻断TGF-β信号通路能够明显增强NK-92细胞过继性治疗的体内抗肿瘤效应;(6)改善肿瘤微环境中的免疫抑制作用,可能增强过继性免疫细胞治疗的临床疗效。
Objective Transforming growth factor (TGF)-βis a potent suppressor in tumor microenvironment, which may lead to tumor evasion from the host immune surveillance and tumor progression. The present study is to synthesize the gene of human dominant-negative TGF beta receptorⅡ(DNTβRⅡ) and construct its eukaryotic expression vector pIRES2-AcGFP-DNTβRⅡ; block TGF-βsignaling pathway in NK-92 cells by transfection with pIRES2-AcGFP-DNTβRβⅡplasmid using Nucleofector technology; investigate the in vitro and in vivo antitumor effect of this TGF-βinsensive NK-92 cells against human Calu-6 lung cancer cells which secrete high levels of TGF-β1.
     Methods (1) According to the Genebank Database, the sequence of target gene DNTβRβⅡwas determined. The single chain oligo was synthesized chemically and then ligated into full length gene by PCR. The synthesized gene was cloned into plasmid PMD18-T and transferred into competent cells DH5α, then it was inserted into the corresponding restriction site on eukaryotic expression vector pIRES2-AcGFP, the DNTβRⅡgene was confirmed by double enzyme digesting and DNA sequencing analysis. After transfer into COS-7 cells, expression of DNTβRⅡwas identified by inverted fluorescent microscope. (2) The expression of TGF-βtypeⅠ(TβRⅠ) and typeⅡreceptors (TβRⅡ) in parental NK-92 cells were detected by fluorescence activated cell sorter (FACS). Mean levels of TGF-β1 secreted by 4 human tumor cell lines(Calu-6、A549、MDA-MB231 and HT-29) were determined by ELISA. NK-92 cells were transfected with recombinant plasmid pIRES2-AcGFP-DNTβRⅡand control plasmid pIRES2-AcGFP using Amaxa Nucleofector technology. RT-PCR and inverted fluorescent microscope were used to identify the expression of DNTβRⅡ, FACS was used to analyse the transfection efficiency, then western blot was used to detect the phosphorylated satus of Smad2. TGF-β1 was added at the final concentration of lOng/ml with Calu-6 cells for 24h. The cytotoxicity of two types transfected NK-92 cells against Calu-6 cells was detected and analyzed by CCK-8 kit. (3) According to the model of tumor formation,24 BALB/C-nu mice received a single subcutaneouly injection of 1x106 Calu-6 cells into the back; at the same time, 1x107 NK-92 cells transfected with DNTβRⅡpositive vector (group C) or GFP control plasmid (group B) were injected via tail vein while there was no intervention added in group A.10 days afer transplantion, tumor formation rate of mice bearing Calu-6 cells in 3 groups was compared. According to the model of tumor suppression, 1x106 Calu-6 cells were injected subcutaneouly into the back of BALB/C mice, then saline (group a)、1x107 NK-92 cells transfected with plasmid pIRES2-AcGFP (group b) or pIRES2-AcGFP-DNTβRⅡ(group c) were respectively injected via tail vein on the day 10,17 following transplantion. Serum IFN-y levels of tumor-bearing mice in different groups were detected by ELISA on the day next to the second adoptive transfer.56 days after transplantion, all animals were sacrificed and histologic examination was done.
     Results (1) The synthesized fragment was consistent with the target gene DNTβRⅡby DNA sequence analysis. After the recombinant expression plasmid pIRES2-AcGFP-DNTβRⅡtransferring into COS-7 cells, DNTβRⅡwas instantaneously transfected and expressed successfully. (2) The highest level of TGF-β1 was secreted by Calu-6 cell-line while the lowest level of TGF-β1 was secreted by HT-29 cell-line. High expression of TβRⅠand TβRⅡwas identified by FACS. Using nucleofector technology, the transfection efficiency was 18.80% for the plasmid pIRES2-AcGFP-DNTβRⅡand 28.53% for the control vector pIRES2-AcGFP to NK-92 cells. The expression of DNTβRⅡin NK-92 cells was confirmed by inverted fluorescent microscope and RT-PCR. By the irritation of TGF-β1, western blot detected inactive Smad2 status in NK-92 cells transfected with pIRES2-AcGFP-DNTβRⅡ. Parental NK-92 cells displayed lower cytotoxity against Calu-6 cells incubated with TGF-β1 than that without TGF-β1 (E:T ratio 10:1,32.93%±0.80% vs.17.90%±0.75%, p< 0.001; E:T ratio 20:1, 46.33%±1.40% vs.26.46%±1.10%, p<0.001). The cytotoxity of NK-92 cells transfeced with DNTβRⅡvector was higher than that with control GFP vector against Calu-6 cells cultured with TGF-β1(E:T ratio 29.73%±0.96% vs. 15.43%±0.97%, p<0.001; E:T ratio 20:1,45.0%±1.20% vs.24.83%±1.21%, p< 0.001). (3) The tumor formation rate of mice bearing Calu-6 cells in group C was lower than group A(p<0.05). After adoptive transfer, decreased tumor volume, increased survival, lower lung metastasis rate and higher levels of serum IFN-y were shown in group c which received adoptive transfer of NK-92 cells transfected with DNTβRⅡpositive vector.
     Conclusion (1) The eukaryotic expression vector pIRES2-AcGFP-DNTβRⅡwas constructed successfully, providing the basis for blocking TGF-βsignaling pathway in NK-92 cells. (2) The pIRES2-AcGFP-DNTβRⅡplasmid was successfully transferred and expressed in NK-92 cells by nucleofector technology. (3) pIRES2-AcGFP-DNTβRⅡplasmid transfection can block TGF-βsignaling pathway in NK-92 cells at the receptor level. (4) Blocking TGF-P signaling pathway in NK-92 cells can resist immunosupression effect of TGF-P in vitro. (5) Blocking TGF-βsignaling pathway can augment antitumor efficacy of adoptive NK-92 cell therapy in vivo. (6) Relieving immuosupression in tumor microenvironmet may enhance the efficacy of adoptive therapy in clinical practice.
引文
1. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol, 2009,25,625(1-3):41-54.
    2. Frazier JL, Han JE, Lim M, Olivi A. Immunotherapy combined with chemotherapy in the treatment of tumors. Neurosurg Clin N Am,2010,21 (1):187-194.
    3. Weiner LM, Surana R, Wang S. Monoclonal antibodies:versatile platforms for cancer immunotherapy. Nat Rev Immunol,2010,10(5):317-327.
    4. Campoli M, Ferris R, Ferrone S, Wang X. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies. Clin Cancer Res,2010,16(1):11-20.
    5. Berry LJ, Moeller M, Darcy PK.Adoptive immunotherapy for cancer:the next generation of gene-engineered immune cells. Tissue Antigens,2009,74(4):277-289.
    6. Geiger C, Nossner E, Frankenberger B, et al. Harnessing innate and adaptive immunity for adoptive cell therapy of renal cell carcinoma. J Mol Med,2009,87(6):595-612.
    7. Mittendorf EA, Sharma P. Mechanisms of T-cell inhibition:implications for cancer immunotherapy. Expert Rev Vaccines,2010,9(1):89-105.
    8. Vera JF, Brenner MK, Dotti G. Immunotherapy of human cancers using gene modified T lymphocytes. Curr Gene Ther,2009, (5):396-408.
    9. Caligiuri MA. Human natural killer cells. Blood,2008,112(3):461-469.
    10. Topham NJ, Hewitt EW. Natural killer cell cytotoxicity:how do they pull the trigger? Immunology,2009,128(1):7-15.
    11. Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer:current insights and future prospects. J Intern Med,2009,266(2):154-181.
    12. Empson VG, McQueen FM, Dalbeth N. The natural killer cell:a further innate mediator of gouty inflammation? Immunol Cell Biol,2010,88(1):24-31.
    13. Srivastava S, Lundqvist A, Childs RW. Natural killer cell immunotherapy for cancer:a new hope. Cytotherapy,2008,10(8):775-83.
    14. Malmberg KJ, Bryceson YT, Carlsten M, et al. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother,2008,57(10):1541-1552.
    15. Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma:a phase Ⅰ trial. Cytotherapy, 2008,10(6):625-632.
    16. Sengupta N, MacFie TS, MacDonald TT, et al. Cancer immunoediting and "spontaneous" tumor regression. Pathol Res Pract,2010,206(1):1-8.
    17. Dunn GP, Bruce AT, Ikeda H,et al. Cancer immunoediting:from immunosurveillance to tumor escape. Nat Immunol,2002,3(11):991-998.
    18. Ostrand-Rosenberg S. Immune surveillance:a balance between protumor and antitumor immunity. Curr Opin Genet Dev,2008,18(1):11-18.
    19. Gajewski TF, Meng Y, Harlin H. Immune Suppression in the Tumor Microenvironment. J Immunother,2006,29(3):233-240.
    20. Ferrone S, Whiteside TL. Tumor microenvironment and immune escape. Surg Oncol Clin N Am,2007,16(4):755-774.
    21. Weinberg RA. Coevolution in the tumor microenvironment. Nat Genet,2008,40(5): 494-495.
    22. Hynes RO. The extracellular matrix:not just pretty fibrils. Science,2009,326 (5957):1216-1219.
    23. de Souza AP, Bonorino C. Tumor immunosuppressive environment:effects on tumor-specific and nontumor antigen immune responses. Expert Rev Anticancer Ther, 2009,9(9):1317-1332.
    24. Chatten C, Bathe OF. Immunoregulatory cells of the tumor microenvironment.Front Biosci,2010, 1(15):291-308.
    25. Mempel TR, Pittet MJ, Khazaie K, et al. Regulatory Tcells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity,2006,25(1):129-141.
    26. Stover DG, Bierie B, Moses HL. A Delicate Balance:TGF-β and the Tumor Microenvironment. Journal of Cellular Biochemistry,2007,101(4):851-861.
    27. Joshi A, Cao D. TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci,2010,15:180-194.
    28. Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009, 21(2):166-176.
    29. Kelly RJ, Morris JC. Transforming growth factor-beta:a target for cancer therapy. J Immunotoxicol,2010,7(1):15-26.
    30. Wrzesinski SH, Wan YY, Flavell RA, et al. Transforming Growth Factor-β and the Immune Response:Implications for Anticancer Therapy. Clin Cancer Res,2007, 13(18):5262-5270.
    31. Zhang B, Halder SK, Zhang S, Datta PK. Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett,2009,277(1):114-20.
    32. Smyth MJ, Teng MW, Swann J, et al. CD4+CD25+T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer. J Immunol,2006,176(3):1582-1587.
    33. Kim SJ, Im YH, Markowitz SD, et al. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev,2000, 11(1-2):159-168.
    34. Li H, Han Y, Guo Q, et al. Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Anergy of NK Cells through Membrane-Bound TGF-β 1. J Immunol,2009,182(1): 240-249.
    35. Trotta R, Col JD, Yu J, et al. TGF-beta utilizes SMAD3 to inhibit CD 16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol,2008,181(6):3784-3792.
    36. Kobie JJ, Wu RS, Kurt RA, et al. Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res,2003,63(8):1860-1864.
    37. Massague J. TGF-beta signal transduction. Annu Rev Biochem,1998,67(1):753-791.
    38. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature,2003,425(6958):577-584.
    39. Diener KR, Need EF, Buchanan G, et al. TGF-beta signalling and immunity in prostate tumourigenesis. Expert Opin Ther Targets,2010,14(2):179-192.
    40. Jones E, Pu H, Kyprianou N. Targeting TGF-beta in prostate cancer:therapeutic possibilities during tumorprogression. Expert Opin Ther Targets,2009,13(2):227-234.
    41. Ge R, Rajeev V, Ray Partha, et al. Inhibition of Growth and Metastasis of Mouse Mammary Carcinoma by Selective Inhibitor of Transforming Growth Factor-β Type Ⅰ Receptor Kinase In vivo. Clin Cancer Res,2006,12(14):4315-4330.
    42. Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP12009. Cytokine Growth Factor Rev,2006, 17(1-2):129-139.
    43. Fakhrai H, Mantil JC, Liu L,et al. Phase Ⅰ clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther,2006,13(12): 1052-1060.
    44. Nam JS, Terabe M, Mamura M, et al. An Anti-Transforming Growth Factor β Antibody Suppresses Metastasis via Cooperative Effects on Multiple Cell Compartments. Cancer Res,2008,68(10):3835-3843.
    45. Peng SB, Yan L, Xia X, et al. Kinetic characterization of novel pyrazole TGF-β receptor Ⅰ kinase inhibitors and their blockade of epithalial mesenchymal transition. Biochemistry,2005,44(7):2293-2304.
    46. Qin W, Tian F, Wang F, et al. Adoptive Transfer of Tumor-Reactive Transforming Growth Factor-β-Insensitive Cytolytic T Cells for Treatment of Established Mouse Renca Tumors. Urology,2008,72(4):943-947.
    47. Wieser R, Attisanol L, Wrana JL, et al. Signaling activity of transforming growth factor β type Ⅱ receptors lacking specific domains in the cytoplasmic region. Mol Cell Biol, 1993,13(12):7239-7247.
    48. Marquez-Aguirre A, Sandoval-Rodriguez A, Gonzalez-Cuevas J, et al. Adenoviral delivery of dominant-negative transforming growth factor beta type Ⅱ receptor up-regulates transcriptional repressor SKI-like oncogene, decreases matrix metalloproteinase 2 in hepatic stellate cell and prevents liver fibrosis in rats. J Gene Med,2009,11(3):207-219.
    49. Ueno H, Sakamoto T, Nakamura T, et al. A Soluble Transforming Growth Factor b Receptor Expressed in Muscle Prevents Liver Fibrogenesis and Dysfunction in Rats. Hum Gene Ther,2000, 11(1):33-42.
    50. Zhang Q, Jang TL, Yang X, et al. Infiltration of tumor-reactive transforming growth factor-beta insensitive CD8+T cells into the tumor parenchyma is associated with apoptosis and rejection of tumor cells. The Prostate,2006,66(3):235-247.
    51. Engler C, Kelliher C, Wahlin KJ, et al. Comparison of non-viral methods to genetically modify and enrich populations of primary human corneal endothelial cells. Mol Vis, 2009,15:629-637.
    52. Hart SL. Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biol Toxicol,2010,26(1):69-81.
    53. Wright JF. Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther,2009,20(7):698-706.
    54. Pegram HJ, Jackson JT, Smyth MJ, et al. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol, 2008,1;181(5):3449-55.
    55. Magg T, Hartrampf S, Albert MH. Stable nonviral gene transfer into primary human T cells. Hum Gene Ther.2009,20(9):989-98.
    56. Geissmann F, Revy P, Regnault A, et al. TGF-β 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol,1999,162:4567-4575.
    57. Levy L, Hill CS. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev,2006,17(1-2):41-58.
    58. Kang Y, He W, Tulley S, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA,2005,102(39):13909-13914.
    59. Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res,2009,15(14):4674-4679.
    60. Moustakas A, Heldin CH. Non-Smad TGF-β signals. Journal of Cell Science,2005, 118(16),3573-3584.
    61. Daly AC, Vizan P, Hill CS. Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-beta responses. J Biol Chem, 2010,285(9):6489-6497.
    62. Zhang B, Halder SK, Zhang S, Datta PK. Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett,2009,277(1):114-20.
    63. Mazzocca A, Fransvea E, Lavezzari G, et al. Inhibition of transforming growth factor beta receptor Ⅰ kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation. Hepatology,2009,50(4):1140-1151.
    64. Kim S, Buchlis G, Fridlender ZG, et al. Systemic blockade of transforming growth factor-β signaling augments the efficacy of immunogene therapy. Cancer Res,2008, 68(24):10247-10256.
    65. Wallace A, Kapoor V, Sun J, et al. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-Cell therapy of established solid cancers. Clin Cancer Res,2008,14(12):3966-3974.
    66. Rausch MP, Hahn T, Ramanathapuram L, et al. An orally active small molecule TGF-beta receptor Ⅰ antagonist inhibits the growth of metastatic murine breast cancer. Anticancer Res.2009,29(6):2099-2109.
    67. Naumann U, Maass P, Gleske AK, et al. Glioma gene therapy with soluble transforming growth factor-β receptors Ⅱ and Ⅲ. Inter J Oncol,2008,33(4):759-765.
    68. Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-β enhances NKG2D mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res,2004,64(20):7596-7603.
    69.余贻汉,杨道锋,谢林卡,等.人截断型转化生长因子β受体Ⅱ真核表达载体的构建和表达.华中科技大学学报(医学版),2007,36(1):130-133.
    70. Wang L, Wen W, Yuan J, et al. Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells. Clin Cancer Res,2010,16(1):164-173.
    71.台桂香.肿瘤免疫治疗的研究进展和发展趋势.中国肿瘤生物治疗杂志,2009,16(5):427-430.
    72.田志刚.基于NK细胞的肿瘤免疫治疗研究进展.中国肿瘤生物治疗杂志,2009,16(1):2-5.
    73.付绍杰,于立新,罗敏,等.NK细胞表面免疫球蛋白受体KIR基因的分析.南方医科大学学报,2009,29(1):109-113.
    74. Chung JW, Yoon SR, Choi I.The regulation of NK cell function and development. Front Biosci,2008,13:6432-6442.
    75.李瑾昱,焦顺昌,林星石,等.NK、T混合淋巴细胞抑制肿瘤细胞的体外研究.军医进修学院学报,2008,29(5):349-351.
    76. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD 19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res, 2009,33(9):1255-1259.
    77. Meier R, Piert M, Piontek G, et al. Tracking of [18F]FDG-labeled natural killer cells to HER2/neu-positive tumors. Nucl Med Biol,2008,35(5):579-588.
    78. Muller T, Uherek C, Maki G, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother.2008,57(3):411-423.
    79. Ames E, Hallett WH, Murphy WJ. Sensitization of human breast cancer cells to natural killer cell-mediated cytotoxicity by proteasome inhibition. Clin Exp Immunol,2009, 155(3):504-513.
    80. Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res,2009,69(19):7775-7783.
    81. Savan R, Chan T, Young HA. Lentiviral gene transduction in human and mouse NK cell lines. Methods Mol Biol,2010,612:209-221.
    82. Nakayama A, Sato M, Shinohara M, et al. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system. Cloning Stem Cells,2007,9(4):523-534.
    83. Ostrand-Rosenberg S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Current Opinion in Immunology,2004,16(2):143-150.
    84.李丽霞,汤永民.人类血.液系肿瘤动物模型的建立及其靶向治疗研究进展.实用肿瘤杂志,2007,22(3):265-269.
    85. Han YH, Moon HJ, You BR, et al. The effect of MAPK inhibitors on arsenic trioxide-treated Calu-6 lung cells in relation to cell death, ROS and GSH levels. Anticancer Res,2009,29(10):3837-3844.
    86. Garnet Suck. Novel approaches using natural killer cells in cancer therapy. Semin Cancer Biol,2006,16(5):412-418.
    87. Terme M, Ullrich E, Delahaye NF, et al. Natural killer cell-directed therapies:moving from unexpected results to successful strategies. Nat Immunol.2008 May;9(5):486-94.
    88. Laouar Y, Sutterwala FS, Gorelik L, et al. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.Nat Immunol,2005,6(6):600-607.
    1. Wrzesinski SH, Wan YY, Flavell RA, et al. Transforming Growth Factor-(3 and the Immune Response:Implications for Anticancer Therapy. Clin Cancer Res,2007, 13(18):5262-5270.
    2. Gajewski TF, Meng Y, Harlin H. Immune Suppression in the Tumor Microenvironment. J Immunother,2006,29:233-240.
    3. Ferrone S, Whiteside TL. Tumor microenvironment and immune escape. Surg Oncol Clin N Am,2007,16(4):755-774.
    4. Weinberg RA. Coevolution in the tumor microenvironment. Nat Genet,2008,40(5): 494-495.
    5. Stover DG, Bierie B, Moses HL. A Delicate Balance:TGF-β and the Tumor Microenvironment. Journal of Cellular Biochemistry,2007,101:851-861.
    6. Massague J. TGF-beta signal transduction. Annu Rev Biochem,1998,67:753-791.
    7. Ge R, Rajeev V, Ray Partha, et al. Inhibition of Growth and Metastasis of Mouse Mammary Carcinoma by Selective Inhibitor of Transforming Growth Factor-β Type Ⅰ Receptor Kinase In vivo. Clin Cancer Res,2006,12(14):4315-4330.
    8. Jones E, Pu H, Kyprianou N. Targeting TGF-beta in prostate cancer:therapeutic possibilities during tumorprogression. Expert Opin Ther Targets.2009,13(2):227-34.
    9. Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signalling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009,21 (2):166-176.
    10. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature,2003,425(6958):577-584.
    11. Moustakas A, Heldin CH. Non-Smad TGF-β signals. Journal of Cell Science,2005, 118,3573-3584.
    12. Levy L, Hill CS. Alterations in components of the TGF-β superfamily signalling pathways in human cancer. Cytokine Growth Factor Rev,2006,17:41-58.
    13. Kim SJ, Im YH, Markowitz SD, et al. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev,2000, 11(1-2):159-168.
    14. Nam JS, Terabe M, Mamura M, et al. An Anti-Transforming Growth Factorβ Antibody Suppresses Metastasis via Cooperative Effects on Multiple Cell Compartments. Cancer Res,2008,68(10):3835-3843.
    15. Smyth MJ, Teng MW, Swann J, et al. CD4+CD25+T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer. J Immunol,2006,176:1582-1587.
    16. Friese MA, Wischhusen J, Wick W, et al. RNA Interference Targeting Transforming Growth Factor-β Enhances NKG2D Mediated Antiglioma Immune Response, Inhibits Glioma Cell Migration and Invasiveness, and Abrogates Tumorigenicity In vivo. Cancer Res,2004,64:7596-7603.
    17. Mempel TR, Pittet MJ, Khazaie K, et al. Regulatory Tcells reversibly suppress cytotoxicTcell function independent of effector differentiation. Immunity,2006, 25:129-141.
    18. Laouar Y, Sutterwala FS, Gorelik L, et al. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.Nat Immunol,2005,6(6):600-607.
    19. Trotta R, Col JD, Yu J, et al. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol,2008,181(6):3784-92.
    20. Li H, Han Y, Guo Q, et al. Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Anergy of NK Cells through Membrane-Bound TGF-β1. J Immunol,2009,182(1): 240-249.
    21. Geissmann F, Revy P, Regnault A, et al. TGF-β1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol,1999,162:4567-4575.
    22. Kang Y, He W, Tulley S, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA,2005,102:13909-13914.
    23. Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP12009. Cytokine Growth Factor Rev, 2006,17(1-2):129-139.
    24. Fakhrai H, Mantil JC, Liu L,et al. Phase Ⅰ clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther,2006,13:1052-60.
    25. Nam JS, Terabe M, Mamura M, et al. An Anti-Transforming Growth FactorβAntibody Suppresses Metastasis via Cooperative Effects on Multiple Cell Compartments. Cancer Res,2008,68(10):3835-3843.
    26. Kobie JJ, Wu RS, Kurt RA, et al. Transforming growth factor beta inhibits theantigen-presenting functions and antitumor activity of dendritic cell vaccines.Cancer Res,2003,63(8):1860-1864.
    27. Peng SB, Yan L, Xia X, et al. Kinetic characterization of novel pyrazole TGF-β receptor Ⅰ kinase inhibitors and their blockade of epithalial mesenchymal transition. Biochemistry,2005,44:2293-2304.
    28. Bandyopadhyay A, Agyin JK, Wang L, et al. Inhibition of Pulmonary and Skeletal Metastasis by a Transforming Growth Factor-beta Type Ⅰ Receptor Kinase Inhibitor. Cancer Res,2006,66,6714-6721.
    29. Kim S, Buchlis G, Fridlender ZG, et al. Systemic Blockade of Transforming Growth Factor-βSignalling Augments the Efficacy of Immunogene Therapy. Cancer Res, 2008,68(24):10247-10256.
    30. Wallace A, Kapoor V, Sun J, et al. Transforming Growth Factor-β Receptor Blockade Augments the Effectiveness of Adoptive T-Cell Therapy of Established Solid Cancers. Clin Cancer Res,2008,14(12):3966-3974.
    31. Ge R, Rajeev V, Ray Partha, et al. Inhibition of Growth and Metastasis of Mouse Mammary Carcinoma by Selective Inhibitor of Transforming Growth Factor-β Type Ⅰ Receptor Kinase In vivo. Clin Cancer Res,2006,12(14):4315-4330.
    32. Naumann U, Maass P, Gleske AK, et al. Glioma gene therapy with soluble transforming growth factor-βreceptors Ⅱ and Ⅲ. Inter J Oncol,2008,33(4):759-765.
    33. Zhang Q, Jang TL, Yang X, et al. Infiltration of Tumor-Reactive Transforming Growth Factor-Beta Insensitive CD8+T Cells Into the Tumor Parenchyma is Associated With Apoptosis and Rejection of Tumor Cells. The Prostate,2006,66:235-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700