OCT-4在喉鳞状细胞癌中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喉癌是耳鼻喉科最常见的恶性肿瘤,由于喉癌生长部位的特殊性,且手术、放射和化学治疗仍然存在并发症多、毒副作用大的问题,给患者带来较大的痛苦。因此,急需要在分子生物学的基础上提出新的诊断方法和简便、有效的治‘疗手段,这已成为当前研究的热点课题。
     虽然肿瘤发病机制迄今尚不明了,但可以肯定的是肿瘤的发生发展是多步骤、多阶段和多基因参与并异常表达的过程。很多科研机构研究结果发现肿瘤中存在很小比例的具有干细胞特性的肿瘤细胞,称其为瘤干细胞样细胞(Cancer stem cell-like cells, CSCLC),研究者认为这些CSCLC在肿瘤的起源和发展过程中起着关键的作用。虽然该学说目前的争议较大,但是有一点可以明确的是,肿瘤细胞中应该存在某些调控自我更新的关键基因的异常表达,这是保证肿瘤细胞失控的、异常的、单克隆无限制增殖的基础。
     生物体内有一系列信号分子维持着干细胞多能性,目前研究的最为广泛是OCT-4。OCT-4基因是POU转录因子家族的一个成员,在胚胎干细胞和成人干细胞上均有表达,参与胚胎发育过程中多向性分化的调节,而且可以控制其无限增殖的特性。目前研究发现OCT-4不仅在多能性胚胎干细胞和原始生殖细胞中表达,在某些恶性生殖细胞肿瘤如精原细胞瘤、胚胎性癌及实体瘤内也检测到了OCT-4的异常表达。有关在喉鳞状细胞癌中OCT-4的表达及其意义的研究,迄今国内外鲜有报道。
     为深入探讨OCT-4基因与喉癌恶性生物学行为的关系,明确OCT-4在喉癌发生、发展中的作用,寻求喉癌诊断、治疗和预后指标及寻找抑制喉癌发生、发展的有效方法,本研究检测了喉癌组织、癌旁正常组织及声带息肉组织中OCT-4的表达情况,探讨了OCT-4与喉癌恶性生物学行为的关系。并构建了携带OCT-4mRNA编码区cDNA序列和siRNA序列的真核表达载体来研究OCT-4对喉癌Hep-2细胞增殖及p-STAT3/STAT3和Survivin表达水平的影响;检测了丙戊酸钠(VPA)对喉癌Hep-2细胞OCT-4、p-STAT3/STAT3和Survivin表达水平的影响;通过裸鼠移植瘤实验进行体内试验,从多个方面深入探讨OCT-4和VPA对喉癌Hep-2细胞的影响,试图阐明OCT-4的表达在喉癌发生、发展中的意义;并进一步阐明OCT-4基因的抑制和VPA处理对喉癌Hep-2细胞增殖的抑制是否与下调STAT3蛋白磷酸化水平及Survivin的表达有关。为进一步探讨喉癌发生、发展的机制及寻找抑制喉癌发生、发展的治疗途径提供理论基础。本研究共分以下4章。
     第一章:OCT-4和Survivin在喉鳞状细胞癌组织中的表达及意义
     方法
     采用免疫组织化学、Real-time PCR和western的方法检测77例喉癌组织、18例癌旁正常组织及15例声带息肉组织之中OCT-4和Survivin的表达情况。
     结果
     喉癌组织OCT-4和Survivin阳性表达高于癌旁正常组织和声带息肉组织,三种喉组织表达差异有统计学意义(P<0.01);OCT-4阳性表达率与喉癌患者病理分级和淋巴结转移有关(P<0.01);Survivin阳性表达率与喉癌患者病理分级、淋巴结转移和T分期有关(P<0.01)。且喉癌组织中OCT-4和Survivin的表达相互之间呈明显的正相关(P<0.05)。
     第二章:OCT-4对喉癌Hep-2细胞影响的体外研究
     方法
     1.构建携带人OCT-4基因mRNA编码区全长cDNA序列和特异性siRNA序列的真核表达质粒载体,转染并筛选出阳性稳定转染细胞克隆。
     2.采用MTT和平板克隆法测定对照组和各转染组Hep-2细胞增殖和克隆能力。
     3.采用流式细胞术(FCM)测定对照组和各转染组Hep-2细胞周期和凋亡的情况。
     4.采用Real-time PCR和Western blot的方法检测对照组和各转染组Hep-2细胞p-STAT3/STAT3和Survivin表达的情况。
     结果
     1. pcDNA3.1-OCT-4和pSUPER-EGFP-OCT-4真核表达载体构建及转染Hep-2细胞成功。
     2.MTT实验结果显示:与对照组相比,pcDNA3.1-OCT-4-2组细胞增殖和克隆能力明显增强(P<0.01),而pSUPER-EGFP-OCT-4-c组细胞增殖和克隆能力明显减弱(P<0.01),pcDNA3.1和pSUPER-EGFP空质粒组则无明显差异(P>0.05)。
     3.FCM结果显示:与对照组相比,pcDNA3.1-OCT-4-2组G0/G1期细胞比例明显减少(P<0.01),S和G2/M期细胞比例升高(P<0.05); pSUPER-EGFP-OCT-4-c组G0/G1期细胞比例明显升高(P<0.01),S和G2/M期细胞比例减少(P<0.05),同时与各组相比其凋亡率增加;pcDNA3.1和pSUPER-EGFP空质粒组则无明显差异(P>0.05)。
     4. Real-time PCR和western结果显示:与对照组相比,pcDNA3.1-OCT-4-2组细胞p-STAT3蛋白、Survivin mRNA和蛋白表达升高,而在pSUPER-EGFP-OCT-4-c组表达降低(P<0.01), pcDNA3.1和pSUPER-EGFP空质粒组表达则无明显差异(P>0.05)。
     第三章:VPA对喉癌Hep-2细胞增殖作用的影响及机制研究
     方法
     1.采用MTT方法检VPA作用后Hep-2细胞增殖活性的改变,计算其抑制率。
     2.采用FCM检测经3mmol/L VPA作用0(对照组)、24、48、72h后Hep-2细胞细胞周期和凋亡情况。
     3.采用Real-time PCR和western方法检测经3mmol/L VPA作用0(对照组)、24、48、72h后Hep-2细胞OCT-4、p-STAT3/STAT3和Survivin表达的情况。
     结果:
     1.MTT结果显示:VPA对Hep-2细胞的生长抑制作用具有剂量和时间依赖性。
     2.FCM结果显示:经3mmol/L VPA作用后,随着时间的增加,G0/Gl期细胞比例逐渐升高(P<0.01),S期细胞比例逐渐降低(P<0.01),而G2/M期细胞比例无明显变化(P>0.05),细胞凋亡率呈时间依赖性逐渐增加。
     3. Real-time PCR和Western blot结果显示:经3mmol/L VPA作用后,随着时间的增加,OCT-4 mRNA和蛋白表达逐渐升高(P<0.01), p-STAT3蛋白及Survivin mRNA和蛋白的表达逐渐降低(P<0.01)。
     第四章:OCT-4和VPA对喉癌Hep-2细胞裸鼠移植瘤的影响及机制研究
     方法
     1.建立人喉癌裸鼠移植瘤模型。分为对照组、pcDNA3.1-OCT-4-2组、pSUPER-EGFP-OCT-4-c组和VPA实验组。每周测量瘤体大小,绘制肿瘤体积生长曲线。治疗终止时处死小鼠,剥除肿瘤称重,计算抑瘤率。
     2.采用TUNEL法检测各组裸鼠移植瘤组织中肿瘤细胞凋亡情况,统计细胞凋亡指数。
     3.采用Real-time PCR和western检测各组裸鼠移植瘤组织中OCT-4、p-STAT3/STAT3和Survivin表达情况。
     Results
     1. pcDNA3.1-OCT-4-2组裸鼠移植瘤体积显著大于对照组裸鼠移植瘤体积,组间比较差异具有统计学意义(P< 0.05); pSUPER-EGFP-OCT-4-c组和VPA组裸鼠移植瘤体积显著小于对照组裸鼠移植瘤体积,组间比较差异具有统计学意义(P<0.05)。
     2. TUNEL结果显示pSUPER-EGFP-OCT-4-c组和VPA组裸鼠移植瘤组织中凋亡细胞与对照组相比明显增多,组间比较差异具有统计学意义(P<0.01)。
     3. pcDNA3.1-OCT-4-2组和VPA组裸鼠移植瘤OCT-4 mRNA和蛋白表达显著高于对照组,组间比较差异具有统计学意义(P<0.01); pSUPER-EGFP-OCT-4-c组显著低于对照组,组间比较差异具有统计学意义(P<0.01)。pcDNA3.1-OCT-4-2组裸鼠移植瘤p-STAT3蛋白及Survivin mRNA和蛋白表达显著高于对照组,组间比较差异具有统计学意义(P<0.01);pSUPER-EGFP-OCT-4-c和VPA组显著低于对照组,组间比较差异具有统计学意义(P<0.01)。STAT3蛋白在每一组都没有明显变化。
     结论
     1.OCT-4在喉癌组织中高表达,与喉癌的病理分级和淋巴结转移密切相关,与Survivin的表达相互之间呈明显的正相关;OCT-4促进喉癌Hep-2细胞的增殖和克隆,当抑制其表达时会导致细胞增殖和克隆能力的减弱,阻滞细胞于G0/G1期,诱导凋亡;其机制与抑制p-STAT3和Survivin表达密切相关。
     2.VPA可以抑制Hep-2细胞的增殖,阻滞细胞于G0/G1期,诱导凋亡。VPA可以下调p-STAT3和Survivin表达来抑制肿瘤的发生、发展。
     3.体内试验与体外实验结果相似,抑制OCT-4的表达或给与VPA处理均可通过下调p-STAT3和Survivin表达来抑制肿瘤的发生、发展。
Laryngeal carcinoma is the most common tumor in ENT, due to the growth of parts of the particularity of laryngeal carcinoma, and there are still more complications, side effects problem of surgery, radiation therapy and chemotherapy, to bring greater suffering for patients. Therefore, an urgent need to proposed the new diagnostic methods and simple effective treatment based on molecular biology has become a hot topic of current research.
     Although the pathogenesis of cancer has so far not clear, but it is certain that the incidence of tumor development is the multi-step, multi-stage and multi-and abnormal expression of genes involved in the process. Studies in a lot of scientific research institutions found that existing a small percentage of tumor cells that have stem cell characteristics, called tumor stem cell-like cells (CSCLC), the researchers believe that these CSCLC in tumor origin and development process plays a key role. Although the doctrine of the current dispute to a larger, but one thing clear is that the tumor cells should be the existence of the abnormal expression of certain key genes regulating self-renewal, and this is to ensure that tumor cells out of control, abnormal, monoclonal unlimited proliferation basis.
     Creatures have a series of signaling molecules to maintain stern cell pluripotency, the most widely current study is about OCT-4. OCT-4 gene is a member of POU transcription factor family, expressed in embryonic stem cells and adult stem cells were, involved in embryonic development of multiple regulation of multiple differentiation, and can control the unlimited proliferation of features. Study found that OCT-4, not only expressed in pluripotent embryonic stem cells and primordial germ cells, in some malignant germ cell tumors such as seminoma, embryonal carcinoma and solid tumors also detected abnormal expression of OCT-4. About the research on OCT-4 expression in the laryngeal carcinoma and its significance, so far little has been reported at home and abroad.
     In order to thoroughly explore the OCT-4 gene and malignant biological behavior; of laryngeal carcinoma, study of the role of OCT-4 in laryngeal carcinoma occurrence and development for diagnosis, treatment and prognosis of laryngeal carcinoma indicators and look for effective methods to inhibit the development of laryngeal carcinoma, this study first detected the expression of OCT-4 in laryngeal carcinoma tissue, adjacent normal tissue and vocal nodules tissue, and explore the relationship between the OCT-4 and malignant biological behavior of in laryngeal carcinoma; Successfully constructed eukaryotic expression vector containing the OCT-4 mRNA code cDNA and the siRNA sequence to detect the impact of OCT-4 on human laryngeal carcinoma Hep-2 cells and Survivin, p-STAT3/STAT3 expression level; detected the impact of sodium valproate (VPA) on laryngeal carcinoma Hep-2 cells OCT-4, p-STAT3/STAT3 and Survivin expression. The final experiment was adoption of xenografts in nude mice in vivo. From several aspects analyzed OCT-4 and VPA impact on the laryngeal carcinoma Hep-2 cells in an attempt to clarify the OCT-4 expression in laryngeal carcinoma occurrence and development and it significance; And to further clarify the relation of OCT-4 gene inhibition and VPA treatment and the inhibition of Hep-2 cells proliferation whether by inhibiting phosphorylation of STAT3 protein and reducing tumor Survivin expression. To further explore the laryngeal carcinoma occurrence and development mechanism and to find inhibition methods for laryngeal carcinoma occurrence and development and provide a theoretical basis for therapeutic approaches. This study is divided into the following four chapters.
     The first chapter:the expression of OCT-4 and Survivin in laryngeal squamous cell carcinoma and it significance
     Methods:
     The expressions of OCT-4 and Survivin protein were detected in 77 cases of laryngeal carcinoma tissue,18 cases of adjacent normal tissues and 15 cases of vocal nodules tissue by immunohistochemical, Real-time PCR and western.
     Results
     The expression of OCT-4 protein and survivin in laryngeal carcinoma tissues were higher than in adjacent normal laryngeal tissues and vocal cords polyps tissues; The expression of OCT-4 had significant relations with histological grade and lymphatic metastasis (P<0.01); The expression of Survivin had significant relations with histological grade、lymphatic metastasis and T staging (P<0.01); There were significantly positive correlations among the expression of OCT-4 and Survivin in laryngeal carcinoma tissues (P<0.05).
     The second chapter:the impact of OCT-4 on human laryngeal carcinoma Hep-2 cells in vitro
     Methods:
     1. Constructed the eukaryotic expression vector with OCT-4 gene mRNA full-length cDNA code sequence and with siRNA sequence, transfected into and screened Hep-2 cells for positive stable transfected cell clones.
     2. The Hep-2 cell proliferative activity and clones capacity among the control group and the transfected group was observed by MTT and plate cloning method.
     3. The apoptosis rate and cell cycle distribution of the Hep-2 cells among the control group and the transfected group respectively analyzed by flow cytometry (FCM).
     4. The expression of p-STAT3/STAT3 and Survivin in Hep-2 cells of the control group and the transfected group was detected by Real-time PCR and Western,
     Results:
     1. The pcDNA3.1-OCT-4-2和pSUPER-EGFP-OCT-4-c eukaryotic expression vector were successfully constructed, transfected into Hep-2 cells.
     2. MTT and Plate cloning results showed that:Compared with the control group, the Hep-2 cell proliferative activity and clones capacity were markedly increased in pcDNA3.1-OCT-4-2 group (P<0.01); while decreased in pSUPER-EGFP-OCT-4-c groups (P<0.01); no significant difference in pcDNA3.1 and pSUPER-EGFP group (P> 0.05).
     3. FCM results showed that:Compared with the control group, in pcDNA3.1-OCT-4-2 group the proportion of cells in G0/G1 phase decreased (P<0.01), while cells in S and G2/M phase increased(P<0.05); in pSUPER-EGFP-OCT-4-c group the proportion of cells in G0/G1 phase was significantly higher (P<0.01), while cells in S and G2/M phase reduced (P<0.05), at the same time compared with each groups the apoptosis rate increased; pcDNA3.1 and pSUPER-EGFP empty plasmid group had no significant difference (P>0.05)
     4. Real-time PCR and western results showed that:Compared with the control group, the p-STAT3 protein and Survivin mRNA and protein were markedly increased in pcDNA3.1-OCT-4-2 group(P<0.01); while decreased in pSUPER-EGFP-OCT-4-c group(P<0.01); no significant difference in pcDNA3.1 and pSUPER-EGFP groups(P> 0.05).
     The third chapter:the impact of VPA on the Hep-2 cells proliferation and it mechanism
     Methods:
     1. The proliferative activity of the Hep-2 cells treated with VPA was observed by MTT method.
     2. The apoptosis rate and cell cycle distribution of the Hep-2 cells treated with 3mmoL/L VPA at 0 (control),24,48,72 h was detected by FCM.
     3. The expression of OCT-4 and Survivin in Hep-2 cells after treated with 3mmoL/L VPA at 0 (control),24,48,72 h were detected by Real-time PCR and Western.
     Results:
     1. MTT results showed that:the VPA inhibited Hep-2 cell growth in a dose-and time-dependent manner.
     2. FCM results showed that:After 3mmoL/L VPA treatment, along with the time increasing the cells in G0/G1 phase increased gradually (P<0.01), cells in S phase decreased gradually (P<0.01), while the cells in G2/M phase no significant change (P> 0.05), the rate of apoptosis was time-dependent increase gradually.
     3. Real-time PCR and western results showed that:After 3mmoL/L VPA treatment, along with the time increasing OCT-4 mRNA and protein expression gradually increased (P<0.01), while p-STAT3 protein Survivin mRNA and protein expression decreased gradually (P<0.01).
     The forth chapter:the study on the impact of OCT-4 and VPA on the Hep-2 cell xenografts in nude mice and its mechanism
     Methods:
     1. After establishment of human laryngeal carcinoma xenografts in nude mice were divided into control group, pcDNA3.1-OCT-4-2 group, pSUPER-EGFP-OCT-4-c group and the VPA experimental group, Weekly measureed each tumor size and nude body mass, drawn tumor volume growth curves. The mice were killed and removed tumor weighed to calculate tumor inhibition rate at termination of treatment.
     2. The apoptosis in xenografts tissue in nude mice of each group were detected by TUNEL.
     3. the expression OCT-4、p-STAT3/STAT3 and Survivin in tumor tissue of each nude mice group were detected by Real-time PCR and western.
     Results
     1. The volume of the tumors in pcDNA3.1-OCT-4-2 nude mice group was significantly higher than the control group, the difference between the two groups was statistically significant (P<0.05); The tumor volume in pSUPER-EGFP-OCT-4-c group and; the VPA Group were significantly smaller than the tumor volume in control group, the difference among the three groups were statistically significant (P<0.05).
     2. TUNEL results showed that the apoptotic cells of nude mice tumor tissue in pSUPER-EGFP-OCT-4-c group and VPA group significantly increased than control group, the difference among the three groups was statistically significant (P<0.01).
     3. The protein and mRNA expression of OCT-4 gene in pcDNA3.1-OCT-4-2 group and VPA group were significantly higher than the control group, the difference among the three groups was statistically significant (P<O.01); while in pSUPER-EGFP-OCT-4-c group was significantly lower than the control group, the difference between the two groups was statistically significant(P<0.01). The expression of p-STAT3 protein and Survivin mRNA and protein in tumor of pcDNA3.1-OCT-4-2 group was significantly higher than the control group, the difference between the two groups was statistically significant (P<0.01); while in pSUPER-EGFP-OCT-4-c group and VPA group was significantly lower than the control group, the difference among groups were statistically significant (P<0.01); each group was no obvious STAT3 protein in the change.
     Conclusion:
     1. The expression of OCT-4 protein were higher in laryngeal carcinoma tissues; The expression of OCT-4 had significant relations with histological grade and lymphatic metastasis, and have significantly positive correlations with the expression of Survivin in laryngeal carcinoma tissues; The OCT-4 gene can promote the Hep-2 cell proliferation activity and cloning capability, while inhibiting the OCT-4 expression will lead to cell proliferation activity and cloning capability inhibition, block cells in the Go/Gi phase and induce apoptosis, its mechanism were related to inhibition of p-STAT3 and Survivin expression.
     2. VPA can inhibit the proliferation of laryngeal carcinoma Hep-2 cells, blocking cell in the Go/G1 phase and induce apoptosis; VPA can inhibit p-STAT3 and Survivin expression to participate in tumorigenesis and development.
     3. Results in vivo and in vitro experiments were similar that OCT-4 can regulate p-STAT3 and Survivin expression to participate in tumor occurrence and development.
引文
[1]Rich JN, Eyler CE. Cancer stem cells in brain tumor biology[J]. Cold Spring Harb Symp Quant Biol,2008,73:411-420.
    [2]Nishii T, Yashiro M, Shinto O, et al. Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma[J]. Cancer Sci,2009,100 (8):1397-1402.
    [3]Garg M. Gain of antitumor functions and induction of differentiation in cancer stem cells contribute to complete cure and no relapse[J]. Crit Rev Oncog,2009,15(1):57-78.
    [4]Bjerkvig R, Johansson M, Miletic H, et al. Cancer stem cells and angiogenesis[J]. Semin Cancer Biol,2009,19 (5):279-284.
    [5]Wan G, Zhou L, Xie M, et al. Characterization of side population cells from laryngeal carcinoma cell lines[J]. Head Neck.2010,20.
    [6]Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells[J]. Science.2007:317:337.
    [7]Cheng L, Hammond H, Ye Z, et al. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture[J]. Stem Cells,2003,21 (2):131-42.
    [8]Okuda T, Tagawa K, Qi ML, et al. Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo[J]. Brain Res Mol Brain Res,2004,132 (1):18-30.
    [9]Roche S, Richard MJ, Favrot MC. OCT-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression[J]. J Cell Biochem,2007, 101 (2):271-80.
    [10]Cheng CJ, Wu YC, Shu JA, et al. Aberrant expression and distribution of the OCT-4 transcription factor in seminomas[J]. J Biomed Sci,2007,14 (6):797-807.
    [11]Flasza M, Shering AF, Smith K, et al. Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers[J]. Cloning Stem Cells,2003,5 (4):339-54.
    [12]Atlasi Y, Mowla SJ, Ziaee SA, et al. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer[J]. Int J Cancer,2007,120 (7):1598-602.
    [13]Pei D. Regulation of pluripotency and reprogramming by transcription factors[J]. J. Biol. Chem,2009,284:3365-3369.
    [14]Yao HL, Yang ZL, Li YG. Expression and significance of prostate stem cell antigen and OCT-4 in benign and malignant lesions of the stomach [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2008,33 (7):623-7.
    [15]Chiou SH, Yu CC, Huang CY, et al. Positive correlations of OCT-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res, 2008,14 (13):4085-95.
    [16]秦薇,张晓伟,章莉,等.OCT-4在胃癌组织中的表达及临床意义[J].上海交通大学学报(医学版),2009,29(1):733-736.
    [17]Fan B, Wang YX, Yao T, et al. p38 Mitogen-activated protein kinase mediates hypoxia-induced vascular endothelial growth factor release in human endothelial cells[J]. Acta Physiologica Sinica,2005,57:Ⅰ3-20.
    [18]Kashyap V, Rezende NC, Scotland KB, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT-4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs[J]. Stem Cells Dev,2009,18 (7):1093-108.
    [19]Ryan AK, Rosenfeld MG. Genes Dev. POU domain family values:flexibility, partnerships, and developmental codes[J]. Genes Dev.1997,11 (10):1207-25.
    [20]Clerc RG, Corcoran LM, LeBowitz JH, et al. The B-cell specific Oct-2 protein contains POU box-and homebox-type domains [J]. Genes Dev.1988,2 (12A):1570-81.
    [21]Scheidereit C, Cromlish JA, Gerster T, et al. A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homoeobox protein[J]. Nature,1988,336 (6199):551-7.
    [22]Pesce M, Scholer HR. Oct-4:control of totipotency and germline determination[J]. Mol Reprod Dev,2000,55 (4):452-7.
    [23]Lenardo MJ, Staudt L, Robbins P, et al. Repression of the IgH enhancer in teratocarcinoma cells associated with a novel octamer factor[J]. Science,1989,243 (4890):544-6.
    [24]Ruvkun, G. Finney, M. Regulation of transcription and cell identity by POU domain proteins[J]. Cell,1991,64:475-478.
    [25]Herr W; Cleary M A. The POU domain:versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain[J]. Genes & development,1995,9 (14):1679-93.
    [26]Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells[J]. Nat. Genet,2000,24:372-376.
    [27]Guo Y, Costa R, Ramsey H, et al. The embryonic stem cell transcription factors OCT-4 and FoxD3 interact to regulate endodermal-specific promoter expression[J]. Proc Natl Acad Sci US A,2002,99 (6):3663-7.
    [28]Mullen EM, Gu P, Cooney AJ. Nuclear Receptors in Regulation of Mouse ES Cell Pluripotency and Differentiation[J]. PPAR Res,2007,2007:61563.
    [29]Guo Y, Mantel C, Hromas RA, et al. OCT-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress:effects associated with STAT3/survivin[J]. Stem Cells,2008,26 (1):30-4.
    [30]Zhou YY, Zeng FY. Two vital transcriptional factors OCT-4 and Nanog to keep the pluripotency and self-renewal of stem cells and related regulation network[J]. Yi Chuan, 2008,30 (5):529-36.
    [31]Kraft HJ, Mosselman S, Smits HA, et al. OCT-4 regulates alternative platelet-derived growth factor alpha receptor gene promoter in human embryonal carcinoma cells[J]. J Biol Chem, 1996,271 (22):12873-8.
    [32]Oliver RT. Germ cell cancer[J].Curr Opin Oncol,1999,11 (3):236-41.
    [33]Zito G, Richiusa P, Bommarito A, et al. In vitro identification and characterization of CD133 (pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines[J]. PLoS One,2008; 3 (10):e3544.
    [34]Zhang P, Zhang Y, Mao L, et al. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes[J]. Cancer Lett,2009,277 (2):227-34.
    [35]Feng D, Peng C, Li C, et al. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri[J]. Oncol Rep,2009,22 (5):1129-34.
    [36]Hochedlinger K, Yamada Y, Beard C, et al. Ectopic expression of OCT-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues[J]. Cell,2005,121 (3):465-77.
    [37]Marques DS, Sandrini JZ, Boyle RT, et al. Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid leukemia cell lines [J]. Leuk Res, 2009,5.
    [38]LaCasse EC, Baird S, Korneluk RG, et al. The inhibitors of apoptosis (IAPs) and their emerging role in cancer[J]. Oncogene,1998,17 (25):3247-59.
    [39]Fest S, Brachwitz N, Schumacher A, et al. Supporting the hypothesis of pregnancy as a tumor:survivin is upregulated in normal pregnant mice and participates in human trophoblast proliferation [J]. Am J Reprod Immunol,2008,59 (1):75-83.
    [40]Zhang Y, Chen ZD, Du CJ, et al. siRNA targeting survivin inhibits growth and induces apoptosis in human renal clear cell carcinoma 786-0 cells [J]. Pathol Res Pract,2009,205 (12):823-7.
    [41]Zhang R, Ma L, Zheng M, et al. Survivin knockdown by short hairpin RNA abrogates the growth of human hepatocellular carcinoma xenografts in nude mice[J]. Cancer Gene Ther, 2010,17 (4):275-88.
    [42]Zhen HN, Li LW, Zhang W, et al. Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells[J]. Int J Oncol,2007,31 (5):1111-7.
    [43]Hoel AW, Wang GJ, Simosa HF, et al. Regulation of vascular smooth muscle cell growth by surviving[J]. Vascular,2007,15 (6):344-9.
    [44]Liu WS, Yan HJ, Qin RY, et al. siRNA directed against survivin enhances pancreatic cancer cell gemcitabine chemosensitivity[J]. Dig Dis Sci,2009,54 (1):89-96.
    [45]Mita AC, Mita MM, Nawrocki ST, et al. Survivin:key regulator of mitosis and apoptosis and novel target for cancer therapeutics [J]. Clin Cancer Res,2008,14 (16):5000-5.
    [46]Ryan BM, O'Donovan N, Duffy MJ. Survivin:a new target for anti-cancer therapy[J]. Cancer Treat Rev,2009,35 (7):553-62.
    [47]Chen XM, Luan XY, Lei DP, et al. Suppression of survivin expression by short hairpin RNA induces apoptosis in human laryngeal carcinoma cells[J]. ORL J Otorhinolaryngol Relat Spec,2008,70 (3):168-75.
    [48]黄品助,卢灿亮,李斌奎,等.OCT-4在肝细胞癌中的表达及其临床意义[J].癌症,2010,29(1):111-11.
    [49]Chen YC, Hsu HS, Chen YW, et al. OCT-4 expression maintained cancer stem-like properties in lung cancer-derived CD 133-positive cells[J]. PLoS One,2008,3 (7):e2637.
    [50]Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates OCT-4:effects of hypoxia on stem cell function, embryonic development, and tumor growth[J]. Genes Dev,2006,20 (5):557-70.
    [51]Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors[J]. Cell Res,2008,18 (2):254-67.
    [52]Costantino L, Barlocco D. STAT3 as a target for cancer drug discovery[J]. Curr Med Chem, 2008,15 (9):834-43.
    [53]Yue P, Turkson J. Targeting STAT3 in cancer:how successful are we? [J]. Expert Opin Investig Drugs,2009,18 (1):45-56.
    [54]Konjevic G. STAT proteins in cancerogenesis and therapy of malignancies [J]. Srp Arh Celok Lek,2009,137 (1-2):98-105.
    [55]Hankey PA. Regulation of hematopoietic cell development and function by STAT3[J]. Front Biosci,2009,14:5273-90.
    [56]Devarajan E, Huang S. STAT3 as a central regulator of tumor metastases[J]. Curr Mol Med, 2009,9 (5):626-33.
    [57]Okumura K, Nakase M, Nakamura S, et al. Bax gene therapy for human osteosarcoma using cationic liposomes in vivo[J]. Oncol Rep,2007,17 (4):769-73.
    [58]Wang Y, Tao ZZ, Chen SM, et al. Application of combination of short hairpin RNA segments for silencing VEGF, TERT and Bcl-xl expression in laryngeal squamous carcinoma[J]. Cancer Biol Ther,2008,7 (6):896-901.
    [59]Darnell JE. Jr STATs and gene regulation. Science[J].1997,277 (5332):1630-5.
    [60]Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its egulation[J]. Biochem J,2003,374:1-20.
    [61]Raz R, Lee CK, Cannizzaro LA, et al. Essential role of STAT3 for embryonic stem cell pluripotency[J]. Proc Natl Acad Sci U S A,1999,96 (6):2846-51.
    [62]Humphrey RK, Beattie GM, Lopez AD, et al. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent[J]. Stem Cells,2004,22 (4):522-30.
    [63]Kidder BL, Yang J, Palmer S. STAT3 and c-Myc genome-wide promoter occupancy in embryonic stem cells[J].PLoS One,2008,3 (12):e3932.
    [64]Setati MM, Prinsloo E, Longshaw VM, et al. Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells[J]. IUBMB Life,2010,62 (1):61-6
    [65]Bard JD, Gelebart P, Amin HM, et al. Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4[J]. FASEB J,2009,23 (5):1405-14.
    [66]Sun C, Nakatake Y, Ura H, et al. Stem cell-specific expression of Daxl is conferred by STAT3 and Oct3/4 in embryonic stem cells[J]. Biochem Biophys Res Commun.2008,372 (1):91-6.
    [67]Torres J, Watt FM. Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFkappaB and cooperating with STAT3[J]. Nat Cell Biol,2008,10(2):194-201.
    [68]Chan KS, Sano S, Kataoka K, et al. Forced expression of a constitutively active form of STAT3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis[J]. Oncogene,2008,27 (8):1087-94.
    [69]Ning ZQ, Li J, McGuinness M, et al. STAT3 activation is required for Asp (816) mutant c-Kit induced tumorigenicity[J]. Oncogene,2001,20 (33):4528-36.
    [70]Klampfer L. The role of signal transducers and activators of transcription in colon cancer[J]. Front Biosci,2008,13:2888-99.
    [71]Pensa S, Watson CJ, Poli V. STAT3 and the inflammation/acute phase response in involution and breast cancer[J].J Mammary Gland Biol Neoplasia,2009,14 (2):121-9.
    [72]He M, Young CY. New approaches to target the androgen receptor and STAT3 for prostate cancer treatments [J]. Mini Rev Med Chem,2009,9(3):395-400.
    [73]Leeman RJ, Lui VW, Grandis JR. STAT3 as a therapeutic target in head and neck cancer[J]. Expert Opin Biol Ther,2006,6 (3):231-41.
    [74]Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway:clinical implications [J]. Clin Cancer Res,2007,13 (5):1362-6.
    [75]Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy [J]. Clin Cancer Res,2007,13 (19):5665-9.
    [76]Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity:a leading role for STAT3[J]. Nat Rev Cancer,2009,9 (11):798-809.
    [77]Cai L, Zhang G, Tong X, et al. Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA[J]. Eur J Obstet Gynecol Reprod Biol,2010, 148 (1):73-80.
    [78]Li J, Piao YF, Jiang Z, et al. Silencing of signal transducer and activator of transcription 3 expression by RNA interference suppresses growth of human hepatocellular carcinoma in tumor-bearing nude mice[J]. World J Gastroenterol,2009,15 (21):2602-8.
    [79]Yang G, Huang C, Cao J, et al. Lentivirus-mediated shRNA interference targeting STAT3 inhibits human pancreatic cancer cell invasion[J]. World J Gastroenterol,2009,15 (30):3757-66.
    [80]Alshamsan A, Hamdy S, Samuel J, et al. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine[J]. Biomaterials, 2010,31 (6):1420-8.
    [81]Barre B, Vigneron A, Perkins N, et al. The STAT3 oncogene as a predictive marker of drug resistance[J]. Trends Mol Med,2007,13 (1):4-11.
    [82]Sonnemann J, Kumar KS, Heesch S, et al. Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells[J]. Int J Oncol,2006,28 (3):755-66.
    [83]Schmudde M, Braun A, Pende D, et al. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells[J]. Cancer Lett,2008,272 (1):110-21.
    [84]Condorelli F, Gnemmi I, Vallario A, et al. Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells[J]. Br J Pharmacol,2008,153 (4):657-668.
    [85]Blaheta RA, Michaelis M, Driever PH, et al. Evolving anticancer drug valproic acid:insights into the mechanism and clinical studies [J]. Med Res Rev,2005,25 (4):383-97.
    [86]Platta CS, Greenblatt DY, Kunnimalaiyaan M, et al. Valproic acid induces Notch1 signaling in small cell lung cancer cells[J]. J Surg Res,2008,148 (1):31-37.
    [87]Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only OCT-4 and Sox2[J]. Nat Biotechnol,2008,6(11):1269-75
    [88]Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer[J]. Mol Oncol,2007,1 (1):19-25.
    [89]Ellis L, Hammers H, Pili R. Targeting tumor angiogenesis with histone deacetylase inhibitors[J]. Cancer Lett,2009,280 (2):145-53.
    [90]Marson CM. Histone deacetylase inhibitors:design, structure-activity relationships and therapeutic implications for cancer[J]. Anticancer Agents Med Chem,2009,9 (6):661-92.
    [91]Xu LN, Wang X, Zou SQ. Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines[J]. World J Gastroenterol.2008,14 (16):2578-81.
    [92]Jones J, Juengel E, Mickuckyte A, et al. The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo[J]. J Cell Mol Med,2009,13 (8B):2376-85.
    [93]Neri P, Tagliaferri P, Di Martino MT, et al. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor [J]. Br J Haematol,2008,143 (4):520-31.
    [94]Bartolini G, Orlandi M, Papi A, et al. Growth inhibition and proapoptotic activity induction by IIF and valproic acid on RA-resistant leukemia cells[J]. Anticancer Res,2008,28 (1A):283-8.
    [95]Kim SH, Jeong JW, Park JA, et al. Regulation of the HIF-lalpha stability by histone deacetylases[J]. Oncol Rep,2007,17 (3):647-51.
    [96]Catalano MG, Pugliese M, Poli R, et al. Effects of the histone deacetylase inhibitor valproic acid on the sensitivity of anaplastic thyroid cancer cell lines to imatinib[J]. Oncol Rep,2009, 21 (2):515-21.
    [97]Mologni L, Cleris L, Magistroni V, et al. Valproic acid enhances bosutinib cytotoxicity in colon cancer cells[J].Int J Cancer,2009,124 (8):1990-6.
    [98]Chen X, Wong P, Radany E, et al. HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells[J]. Cancer Biother Radiopharm,2009,24 (6) 689-699.
    [99]Takai N, Kawamata N, Gui D, et al. Human ovarian carcinoma cells:histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis[J]. Cancer,2004,101 (12):2760-2770.
    [100]Grayson WL, Zhao F, Bunnell B, et al. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells[J]. Biochem Biophys Res Commun,2007,358 (3):948-53.
    [101]Levina V, Marrangoni AM, DeMarco R, et al. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties [J]. PLoS One,2008,3(8):e3077.
    [1]Rich JN, Eyler CE. Cancer stem cells in brain tumor biology[J]..Cold Spring Harb Symp Quant Biol,2008,73:411-20.
    [2]Garg M. Gain of antitumor functions and induction of differentiation in cancer stem cells contribute to complete cure and no relapse[J]. Crit Rev Oncog,2009,15(1):57-78.
    [3]Bjerkvig R, Johansson M, Miletic H, et al. Cancer stem cells and angiogenesis[J]. Semin Cancer Biol,2009,19 (5):279-84.
    [4]Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells[J]. Science.2007;317:337.
    [5]Ryan AK, Rosenfeld MG. POU domain family values:flexibility, partnerships, and developmental codes[J]. Genes Dev,1997,11 (10):1207-25.
    [6]Pei D. Regulation of pluripotency and reprogramming by transcription factors[J]. J. Biol. Chem,2009,284:3365-3369
    [7]Lenardo MJ, Staudt L, Robbins P, et al Repression of the IgH enhancer in teratocarcinoma cells associated with a novel octamer factor[J]. Science,1989,243 (4890):544-6.
    [8]Okuda T, Tagawa K, Qi ML, et al. Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo[J]. Brain Res Mol Brain Res,2004,132 (1):18-30.
    [9]Roche S, Richard MJ, Favrot MC. Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression [J]. J Cell Biochem,2007, 101 (2):271-80.
    [10]Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells[J]. Nat. Genet,2000,24:372-376.
    [11]Tai MH, Chang CC, Kiupel M, et al. expression in adult human stem cells:evidence in support of the stem cell theory of carcinogenesis[J]. Carcinogenesis,2005,26 (2):495-502..
    [12]Cheng CJ, Wu YC, Shu JA, et al. Aberrant expression and distribution of the OCT-4 transcription factor in seminomas[J]. J Biomed Sci,2007,14 (6):797-807.
    [13]Flasza M, Shering AF, Smith K, et al. Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers[J]. Cloning Stem Cells,2003,5 (4):339-54.
    [14]Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J]. Cancer Res,2005,65 (13):5506-11.
    [15]Atlasi Y, Mowla SJ, Ziaee SA, et al. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer[J].Int J Cancer,2007,120 (7):1598-602.
    [16]Trosko JE. From adult stem cells to cancer stem cells:Oct-4 Gene, cell-cell communication, and hormones during tumor promotion[J]. Ann N Y Acad Sci,2006,1089:36-58.
    [17]Yao HL, Yang ZL, Li YG. Expression and significance of prostate stem cell antigen and Oct-4 in benign and malignant lesions of the stomach [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2008,33 (7):623-7.
    [18]Chiou SH, Yu CC, Huang CY,et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res,2008,14 (13):4085-95
    [19]Oliver RT. Germ cell cancer. Curr Opin Oncol[J].1999,11(3):236-41.
    [20]Hochedlinger K, Yamada Y, Beard C, et al. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues[J]. Cell,2005,121 (3):465-77.
    [21]Marques DS, Sandrini JZ, Boyle RT, et al. Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid leukemia cell lines [J]. Leuk Res, 2009 Dec 5.
    [22]Fuhrmann G, Sylvester I, Sch ler HR. Repression of Oct-4 during embryonic cell differentiation correlates with the appearance of TRIF, a transiently induced DNA-binding factor[J]. Cell Mol Biol (Noisy-le-grand),1999,45 (5):717-24.
    [23]Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4:effects of hypoxia on stem cell function, embryonic development, and tumor growth [J]. Genes Dev,2006,20 (5):557-70.
    [24]Das B, Tsuchida R, Malkin D, et al. Hypoxia enhances tumor sternness by increasing the invasive and tumorigenic side population fraction[J]. Stem Cells,2008,26 (7):1818-30.
    [25]Guo Y, Costa R, Ramsey H, et al. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression[J]. Proc Natl Acad Sci USA,2002,99 (6):3663-7.
    [26]Mullen EM, Gu P, Cooney AJ. Nuclear Receptors in Regulation of Mouse ES Cell Pluripotency and Differentiation[J]. PPAR Res,2007,2007:61563.
    [27]Guo Y, Mantel C, Hromas RA, et al. Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress:effects associated with Stat3/survivin[J]. Stem Cells, 2008,26 (1):30-4.
    [28]Zhou YY, Zeng FY. Two vital transcriptional factors Oct-4 and Nanog to keep the pluripotency and self-renewal of stem cells and related regulation network[J]. Yi Chuan, 2008,30 (5):529-36.
    [29]Lee J, Kim HK, Han YM, et al. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription [J]. Int J Biochem Cell Biol,2008,40 (5):1043-54.
    [30]Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell,2003,113 (5):643-655.
    [31]Mitsui K, Tokuzawa Y, Itoh H, et al. The humeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell,2003,113 (5):631-642.
    [32]Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells[J]. Oncogene,2004,23 (43):7150-60.
    [33]Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression[J]. Nat Cell Biol,2005,7 (2):165-71.
    [34]Shi W, Wang H, Pan G, et al. Regulation of the pluripotency marker Rex-1 by Nanog and SOX2[J].J Biol Chem,2006,281 (33):23319-25.
    [35]Hart AH, Hartley L, Parker K, et al. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors[J]. Cancer,2005,104 (10):2092-8.
    [36]Ye F, Zhou C, Cheng Q, et al. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashil are highly expressed in malignant cervical epithelial cells[J]. BMC Cancer,2008, 8:108.
    [37]Siu MK, Wong ES, Chan HY, et al. Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome[J]. Am J Pathol,2008,173 (4):1165-72.
    [38]Bourguignon LY, Peyrollier K, Xia W, et al. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells[J]. J Biol Chem,2008,283(25):17635-51.
    [39]Jeter CR, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development[J]. Stem Cells,2009,27 (5):993-1005.
    [40]Meng HM, Zheng P, Wang XY, et al. Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer[J].Cancer Biol Ther,2010,16;9 (4)
    [41]Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell,2005,122:947-956.
    [42]Tomioka M, Nishimoto M, Miyagi S, et al. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex[J]. Nucleic Acids Res,2002,30 (14):3202-13.
    [43]Phi JH, Park SH, Paek SH, et al. Expression of SOX2 in mature and immature teratomas of central nervous system[J]. Mod Pathol,2007,20 (7):742-8.
    [44]Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors[J]. Am J Surg Pathol,2007,31 (6):836-45.
    [45]Chen Y, Shi L, Zhang L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer[J].J Biol Chem,2008,283 (26):17969-78.
    [46]Gangemi RM, Griffero F, Marubbi D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity[J]. Stem Cells,2009,27 (1):40-8.
    [47]Wang Q, He W, Lu C, et al. Oct3/4 and SOX2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma[J]. Anticancer Res,2009,29 (4):1233-41.
    [48]Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, OCT-4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy[J]. Ann Surg Oncol,2009,16 (12):3488-98.
    [49]Sholl LM, Long KB, Hornick JL. SOX2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol,2010,18 (1):55-61.
    [50]Laga AC, Lai CY, Zhan Q, et al. Expression of the embryonic stem cell transcription factor SOX2 in human skin:relevance to melanocyte and merkel cell biology[J]. Am J Pathol,2010, 176 (2):903-13.
    [51]Raz R, Lee CK, Cannizzaro LA, et al. Essential role of STAT3 for embryonic stem cell pluripotency[J]. Proc Natl Acad Sci U S A,1999,96 (6):2846-51.
    [52]Humphrey RK, Beattie GM, Lopez AD, et al. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent[J]. Stem Cells,2004,22 (4):522-30.
    [53]Teng CB, Diao HL, Ma H, et al. Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy[J]. Reproduction,2004,128 (2) :197-205.
    [54]Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality [J]. Proc Natl Acad Sci USA,1997,94 (8):380-3804.
    [55]Kidder BL, Yang J, Palmer S. STAT3 and c-Myc genome-wide promoter occupancy in embryonic stem cells[J]. PLoS One,2008,3 (12):e3932.
    [56]Setati MM, Prinsloo E, Longshaw VM, et al. Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells[J]. IUBMB Life,2010,62 (1):61-6.
    [57]Duan Z, Foster R, Bell DA, et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer[J]. Clin Cancer Res,2006,12 (17):5055-63.
    [58]Yang G, Huang C, Cao J, et al. Lentivirus-mediated shRNA interference targeting STAT3 inhibits human pancreatic cancer cell invasion[J]. World J Gastroenterol,2009,15 (30):3757-66.
    [59]Cai L, Zhang G, Tong X, et al. Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA[J]. Eur J Obstet Gynecol Reprod Biol,2010, 148 (1):73-80.
    [60]Alshamsan A, Hamdy S, Samuel J, et al. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine[J]. Biomaterials, 2010,31 (6):1420-8.
    [61]Pu P, Zhang Z, Kang C, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth [J]. Cancer Gene Ther,2009,16 (4):351-61.
    [62]Wang X, Meng X, Sun X, et al. Wnt/beta-catenin signaling pathway may regulate cell cycle and expression of cyclin A and cyclin E protein in hepatocellular carcinoma cells [J]. Cell Cycle,2009,8 (10):1567-70.
    [63]Jiang H, Xia J, Kang J, et al. Short hairpin RNA targeting beta-catenin suppresses cell proliferation and induces apoptosis in human gastric carcinoma cells [J]. Scand J Gastroenterol,2009,44 (12):1452-62.
    [64]Sasaki N, Okishio K, Ui-Tei K, et al. Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells [J]. J Biol Chem,2008,283 (6):3594-606.
    [68]Lee MY, Lim HW, Lee SH, et al. Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal [J]. Stem Cells,2009,27 (8):1858-68.
    [66]Teng Y, Wang X, Wang Y, et al. Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells[J]. Biochem Biophys Res Commun,2010,392 (3):373-9.
    [67]Jeong AY, Lee MY, Lee SH, et al. PPARdelta agonist-mediated ROS stimulates mouse embryonic stem cell proliferation through cooperation of p38 MAPK and Wnt/beta-catenin[J]. Cell Cycle,2009,8 (4):611-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700