酚酸类物质与牡丹试管苗生根及褐化关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以牡丹品种‘乌龙捧盛’、‘太平红’和‘凤丹白’腋芽为供试材料,研究不同品种试管苗在褐化和生根过程中总酚含量及相关酶活性的动态变化,并对不同品种试管苗中的酚类物质定性定量分析,比较未褐化试管苗和褐化试管苗中的酚类物质种类和含量差异及主要酚类物质在试管苗生根过程中的变化差异,探讨酚类物质和相关酶活性与牡丹试管苗褐化及生根的关系;同时,以牡丹试管苗中主要酚类物质和IAA为原料,研究哪些酚类物质能在多酚氧化酶的催化下与IAA发生反应,并对产物分离、提纯,鉴定其结构,明确牡丹试管苗中酚类物质、IAA和PPO之间的关系,为了解试管苗体内的生理生化代谢提供了重要证据,以期为解决牡丹试管苗生根困难和褐化等问题提供理论指导意义。主要研究结果如下:
     1.通过研究3个褐变程度不同的牡丹品种在增殖过程中总酚含量和PPO、PAL及POD活性的动态变化,结果表明,总酚含量及PPO、POD和PAL活性与牡丹试管苗在增殖过程中的褐变密切相关,褐变越严重的品种,总酚含量和POD活性越低,PPO活性越高,PAL活性的高低与牡丹的褐变程度未能表现出类似的规律。
     2.以绿原酸、没食子酸、儿茶酚、4-甲基儿茶酚、香豆酸、6-羟基香豆素、咖啡酸、肉桂酸、苯甲酸、4-羟基苯甲酸、莽草酸、3-羟基-4-甲氧基苯乙酮、2,3-二羟基-4-甲氧基苯乙酮、丹皮酚、4-羟基苯甲酰肼、白藜芦醇、没食子酸甲酯、芍药苷18种酚酸作为标准样品,采用LC-MS方法,定性定量分析3个品种在增殖过程中未褐化试管苗和褐化试管苗中的酚类物质种类和含量差异,结果如下:在3个品种的试管苗中均检测到苯甲酸、4-羟基苯甲酸、咖啡酸、没食子酸、没食子酸甲酯、莽草酸、儿茶酚、芍药苷、3-羟基-4-甲氧基苯乙酮、绿原酸这10种酚酸,其余8种未能检出。在3个品种中,没食子酸、4-羟基苯甲酸、咖啡酸在褐化试管苗中的含量均低于未褐化试管苗,芍药苷、没食子酸甲酯、苯甲酸、莽草酸、儿茶酚在褐化的试管苗中含量高于未褐化试管苗;其中没食子酸、苯甲酸和莽草酸在褐化严重的品种中含量较高,咖啡酸在褐变严重的品种中含量较低。初步认为,牡丹试管苗褐化与这9种酚酸有关,其中以没食子酸和咖啡酸关系最为密切。
     3.通过对生根能力不同的3个品种牡丹试管苗生根培养中相关酶活性与总酚含量的测定与分析,结果表明,在生根培养的前20天,3个品种的试管苗体内的相关酶活性和总酚含量发生了变化,这些变化因生根时期不同而不同。生根率较高的品种‘凤丹白’与生根率较低的品种‘乌龙捧盛’和‘太平红’之间存在显著差异。生根率较高的品种体内的POD活性和总酚含量总体上高于生根率低的品种,而IAAO活性始终低于生根率低的品种;PPO和PAL活性在3个品种中因生根时期不同表现出不同差异。
     4.在试管苗生根培养过程中,不同品种试管苗体内主要酚酸的含量与对照相比均发生了的变化,‘太平红’体内的芍药苷、苯甲酸、4-羟基苯甲酸含量整体上高于‘乌龙捧盛’和‘凤丹白’,而没食子酸甲酯和莽草酸含量则低于‘乌龙捧盛’和‘凤丹白’,没食子酸在不同品种体内的变化趋势和含量差异不大。本研究初步认为芍药苷、没食子酸甲酯、没食子酸、莽草酸、苯甲酸、4-羟基苯甲酸可能与牡丹试管苗生根密切相关。
     5.以牡丹试管苗中检测到的10种酚类物质和IAA为原料,研究酚类物质在PPO的催化下与IAA的反应,结果如下:苯甲酸、4-羟基苯甲酸、莽草酸、3-羟基-4-甲氧基苯乙酮、芍药苷在20h内不会被PPO氧化,它们不是PPO的适宜作用底物,也不能与IAA发生反应;绿原酸、没食子酸、没食子酸甲酯、儿茶酚、咖啡酸在2-7小时内易被PPO氧化,是PPO作用的适宜底物;其中绿原酸、咖啡酸和儿茶酚与PPO及IAA同时存在的条件下,混合液中发生了反应,产生了新的物质,通过对绿原酸与IAA作用产物的分离、提纯,结构鉴定,明确了这种新化合物并不是绿原酸与IAA相结合的产物,是与IAA结构类似的一类化合物,推测在绿原酸、IAA和PPO同时存在的环境中,可促使IAA发生反应,形成新的化合物。
Three cultivars of tree peony (Paeonia suffruticosa Andr.)'Wu Long Peng Sheng','Tai Ping Hong' and 'Feng Dan Bai' were used as materials, the dynamic changes of phenolic content and related enzymes activities were assessed during the in vitro rooting and browing process of three cultivars of tree peony. Qualitatively and quantitatively of phenolic acids were analyzed of the higher browing degree plantlets and lower browing degree plantlets and the dynamic changes of the main phenolic acids was assessed during the in vitro rooting process of three cultivars of tree peony. The relationship between phenolic acids and related enzymes activities and rooting and browing of three cultivars of tree peony in vitro will be discussed. In order to clear the relationship between phenolic acids, IAA and PPO, the main phenolic acids in tree peony and IAA as materials, the reaction between them using PPO as catalyst was researched and the chemical structures of products were identified. An understanding for physiological and biochemical of plantlets provided is expected to provide vital clues to how better to try and improve tree peony in vitro rooting and browing. The main results were as follows:
     1. The dynamic changes of phenolic contents and PAL, PPO and POD activities were assessed during the differentiation process of three tree peony (Peaonia suffruticosa Andr.) cultivars grown in vitro. The results were as follows:there is a close relationship between PAL, PPO, POD activity as well as phenolic contents and tissue browning during the differentiation process in tree peony in vitro. The similar regulation was not appeared between the high or low level of PAL activity and tree peony browning degree, as the higher browning degree the cultivars, the lower phenolic contents and POD activities, and the higher PPO activities.
     2. Chlorogenic acid, gallic acid, catechol,4-methylcatechol, coumalic acid,6-hydroxycoumarin, caffeic acid, cinnamic acid, benzoic acid,4-hydroxy benzoic acid, shikimic acid,4-methoxy-3-hydroxyacetophenone,4-hydroxybenzhydrazide, paeonolum, resveratrol, paeoniflorin,2,3-dihydroxy-4-methoxyacetophenone methyl gallate were used as standard. The LC-MS method was used to qualitative and quantitative analysis of some phenolic acids in higher browing degree plantlets and lower browing degree plantlets of three cultivars of tree peony. The results were as follows:ten phenolic acids were detected in three different cultivars tree peony plantlets, and it is respectively paeoniflorin, methyl gallate, gallic acid, shikimic acid, benzoic acid,4-hydroxy benzoic acid,4-methoxy-3-hydroxyacetophenone, caffeic acid, catechol and chlorogenic acid. The rest of the eight kinds failed to detected. The content of gallic acid,4-hydroxy benzoic acid and caffeic acid in higher browing degree plantlets was lower than in lower browing degree plantlets in three cultivars; The content of paeoniflorin, methyl gallate, benzoic acid, shikimic acid and catechol was higher than in lower browing degree plantlets in three cultivars; The content of gallic acid, shikimic acid and benzoic acid was higher in higher browing degree cultivars, however, the content of caffeic acid was lower in higher browing degree cultivars. So, this study preliminary holds that these nine phenolic acids are related to tissue browing of tree peony, and gallic acid and coffee acid are related to tissue browing closely.
     3. Enzyme-related activities and total phenol content, which were related to the rooting of tree peony, changed in rooting culture for all three tree peony cultivars. These changes differed over the rooting period and there were significant differences between higher rooting rate cultivar 'Feng Dan Bai' and lower rooting rate cultivars 'Wu Long Peng Sheng'and'Tai Ping Hong'. POD activity and total phenolic content were higher in the higher rooting rate cultivar'Feng Dan Bai'than in lower rooting rate cultivars'Tai Ping Hong'and'Wu Long Peng Sheng'on the whole, while IAAO activity was lower in'Feng Dan Bai'than in'Tai Ping Hong'and'Wu Long Peng Sheng'throughout the entire experimental period. PPO and PAL activity showed different differences in different period in rooting process of three cultivars.
     4. During the rooting culture process of tree peony, the phenolic acids in all three cultivars had changed compared with that of in control. And the content of paeoniflorin, benzoic acid and4-hydroxy benzoic acid in'Tai Ping Hong'cultivar was higher than that of in'Wu Long Peng Sheng'and'Feng Dan Bai'. While the gallicin and shikimic acid was lower than that of in'Wu Long Peng Sheng'and'Feng Dan Bai'. However, no significantly different could be drawn for gallic acid in three tree peony cultivars. So, this study preliminary holds that paeoniflorin, gallicin, gallic acid, shikimic acid, benzoic acid and4-hydroxy benzoic acid may be closely related with rooting in vitro of tree peony.
     5. The ten phenolic acids which were detected in tree peony and IAA as materials, the reaction between them using PPO as catalyst was researched, the results showed that, benzoic acid,4-hydroxy benzoic acid, shikimic acid,4-methoxy-3-hydroxyacetophenone and paeoniflorin were not the appropriate substrate on PPO because they could not be oxidation by PPO Within20hours and could not be reaction with IAA. Gallicin, caffeic acid, chlorogenic acid and gallic acid were the appropriate substrate on PPO because they could be oxidation by PPO Within2-7hours. When IAA and PPO was added to chlorogenic acid or caffeic acid or catechol solution, the mixtures had reacted and produced new compounds. The new compounds were not chlorogenic acid combinating with IAA after identified the chemical structures, but a class of compounds similar with IAA, which may be speculated that when chlorogenic acid, IAA and PPO were presence at the same time, IAA may be reacted with itself and formed a new compounds.
引文
安佰义,赵飞.牡丹不同类型总酚含量与PPO活性研究[J].北华大学学报(自然科学版),2005,6(2):169-172.
    安佰义。牡丹组培离体再生系统的建立[D].辽宁:东北林业大学,2005.
    包满珠.花卉学(第二版)[M].北京:中国农业出版社,2003,489-499.
    贝奇YPS著.林木和果树生物技术[M].北京:中国林业出版社,1991,283-284.
    陈莉.牡丹组织培养技术的初步研究[D].河南农业大学,2006.6.
    陈恰平,丁兰,赵敏贵.用紫斑牡丹不同外植体诱导愈伤组织的研究[J].西北师范大学学报(自然版),2001,37(3):66-69.
    陈伟,叶明志,周洁.植物酚类物质研究进展[J].福建农业大学学报,1997,26(4):502-508.
    陈笑蕾.牡丹组织培养的初步研究[D].河南:河南农业大学,2005.6.
    成仿云,王友平.牡丹嫩枝生根的细胞组织学观察[J].园艺学报,1993,20(2):176-180.
    储成才,李大卫.牡丹组织培养中玻璃化现象的出现及初步观察[J].河南师范大学学报(自然版),1992,20(1):70-73.
    董建华.几种热带水果的褐变与PPO[J].热带作物研究,1990,19(2):92-99.
    范小峰,郭小强,马世荣.三种牡丹组织培养比较研究[J].北方园艺,2010,(4):132-134.
    郭延平,李嘉瑞.多效唑对猕猴桃离体试管苗生长及内源激素的影响[J].园艺学报,1994,21(1):26-30.
    郭子彪.内源激素IAA, ABA对大豆萌发子叶胚性愈伤组织诱导及其分化的调控[J].大豆科学,1997,16(3):194-198.
    何华勤,林文雄.水稻化感作用生理生化特性研究[J].中国农业生态学报,2001,9(3):56-57.
    何松林,陈笑蕾,陈莉,等.牡丹叶柄离体培养中褐化防止的初步研究[J].河南科学,2005,23:47-50.
    何松林,陈莉,陈笑蕾,等.牡丹鳞芽诱导与增殖过程中影响因子研究[J].河南农业大学学报,2009,43(5):511-516.
    贺丹.牡丹试管苗生根调控研究[D].河南农业大学,2009.6.
    胡虹,季本仁,段金玉,等.云南山楂中吲哚乙酸、脱落酸、玉米素和玉米素核苷的内源水平及其生根率[J].云南植物研究,1993,15(3):278-384.
    扈红军,曹帮华,尹伟伦,等.不同处理对欧榛硬枝扦插生根的影响及生根过程中相关氧化酶活性的变化[J].林业科学,2007,43(12):70-75.
    黄浩,鲁明波.红豆杉细胞培养中抗褐变剂的筛选[J].华中理工大学学报,1999,4(2):107-108.
    黄守印.牡丹胚培养与植株再生[J].植物生理学通讯,1987,(2):54-55.
    贾东坡,李庆伟,冯林剑,等.锥花福禄考根段的组织培养[J].农业生物技术科学,2007, 23(3):94-96.
    姜东.一种冷冻提取植物细胞液的方法.发明专利,2007.8.15.
    鞠志国,朱广廉,曹宗巽.莱阳茌梨果实褐变与PPO及酚类物质区域化分布的关系[J].植物生理学报,1988,14(4):256-261.
    鞠志国.酚类物质与梨果实品质的研究进展[J].莱阳农学院学报,1988,5(3):59-65.
    孔祥生,张妙霞.牡丹离体快繁技术研究[J].北方园艺,1998,3(4):87-89.
    朗玉涛,罗晓芳.牡丹愈伤组织的诱导及愈伤褐化抑制的研究[J].河南林业科技,2007,27(1):4-7.
    李明,黄卓烈,谭绍满,等.难易生根桉树多酚氧化酶、吲哚乙酸氧化酶活性及其同工酶的比较研究[J].林业科学研究,2000,13(5):493-500.
    李萍,成仿云,张颖星.防褐剂对牡丹组培褐化发生、组培苗生长和增殖的作用[J].北京林业大学学报,2008,30:71-76.
    李萍,成仿云.牡丹组织培养技术的研究进展[J].北方园艺,2007(11):102-106.
    李航.不同牡丹外植体组织培养中因子分析及生根研究[D].河南:河南农业大学,2007.6.
    李合生.植物生理生化实验原理和技术[D].北京:高等教育出版社,2003:164-165。
    李嘉珏.中国牡丹与芍药[M].北京:中国林业出版社,1996,156-157.
    李玲.间苯二酚、水杨酸对绿豆下胚轴不定根形成的作用[J].热带亚热带植物学报,1995,(4):67-71.
    李明,黄卓烈,谭绍满,等.吲哚乙酸处理桉树插条后氧化酶活性及同工酶变化与生根关系的比较研究[J].林业科学研究,2001,14(2):131-140.
    李胜,武季玲,李唯,等.初代和继代培养葡萄试管苗的内源队IAA、ZRs和ABA含量变化及其与生根的关系[J].植物生理学通讯,2005,41(3):286-288.
    李胜,李唯,杨德龙,等.不同光质对葡萄试管苗根系生长的影响[J].园艺学报,2005,32(5):872-874.
    李小芳,汤章城,何玉科.不定根的形态发生与调节机制[J].细胞生物学杂志,2001,23(3):130-136.
    李艳敏,罗晓芳.牡丹离体培养与快速繁殖研究进展[J].西南林学院学报,2004,24(1):70-73.
    李艳敏.几个牡丹品种组织培养技术的研究[D].北京林业大学,2004.6.
    李玉龙,吴德玉,潘淑龙,等.牡丹试管苗繁殖技术的研究[J].科学通报,1984,29(8):500-502.
    李玉龙,吴德玉,等.名贵花卉组织培养究[J].河南农业科学,1982,12:2.
    李志军,王国栋.牡丹组织培养快繁新技术[J].莱阳农学院学报(自然科学版),2006,23(2):122-125.
    李志军,刘志国,李红梅.牡丹组培快繁技术研究[J].山东林业科技,2006,3:39-40.
    梁海荣,温阳,杨立中.四倍体刺槐嫩枝插穗生根的解剖学观察[J].内蒙古林业科技,2006,32(4):53-56.
    刘曼西.有机酸对马铃薯多酚氧化酶活性的影响[J].植物生理学通讯,1991,27(5):350-353.
    刘淑敏.牡丹‘古班同春’组培通报[J].中国花卉盆景,1987,7:24.
    刘洋.阿月浑子和黄连木外植体启动培养研究[D].北京:北京林业大学,2005,29-53.
    鲁涤非.花卉学[M]。北京:林业出版社,1998:323-375.
    罗晓芳,田砚亭,姚洪军.组织培养过程中PPO活性和总酚含量的研究[J].北京林业大学学报,1999,21(1):92-95.
    马英,李明鹤,沈宝仙,等.杉木优树侧枝接根埋干法的复壮效果[J].华中农业大学学报,1996,15(4):389-394.
    孟军,韩杰,祖恩普.牡丹组织培养研究进展[J].北方园艺,2007,(1):153-154.
    邱璐,陈善娜.云桑组织培养中褐化问题的研究[J].蚕业科学,2000,26(2):118-119.
    森下义郎.植物扦插理论与技术[D].北京:中国林业出版社,1988.
    石岭,霍秀文.不同光质对河套蜜瓜器官培养的影响[J].内蒙古农牧学院学报,1999,20(2):76-79.
    孙红梅,李天来,李云飞.低温解除休眠过程中兰州百合鳞茎酚类物质含量及相关酶活性变化[J].中国农业科学,2004,37(11):1777-1782.
    时侠清,张子学.凤凰山牡丹药用器官的愈伤组织培养[J].核农学报,2005,19(3):186-190.
    史俊燕.核桃、枣繁殖技术及其理论研究[D].西北农林科技大学,2006,6.
    谭文澄,戴策刚.观赏植物组织培养技术[M].北京:中国林业出版社,1997.
    唐玉林,陈婉芳,周燮.烟草叶块分化根和芽过程中内源激素水平的变化[J].南京农业大学学报,1996,19(2):12-16.
    王东霞,李长杰.如何对抗植物组培中的组织褐变[J].中国花卉盆景,2002,29(2):17-20.
    王二强,王占营,王晓晖,等.国内外牡丹组织培养技术研究现状[J].内蒙古农业科技,2008,(6):75-77.
    王富民,薛应龙.百生小鳞茎离体发生过程中内源多胺水平和多胺氧化酶活性的变化[J].植物生理学报,1982,14(4):350-354.
    王金祥,潘瑞炽.乙烯利、ACC、AOA和AgNO3对绿豆下胚轴插条不定根形成的作用[J].热带亚热带植物学报,2004,12(6):506-510.
    王军娥.牡丹组织培养技术的研究[D].郑州:河南农业大学,2005.6.
    王军娥,巩振辉,李新凤.牡丹愈伤组织诱导与分化技术的优化研究[J].西北农业学报,2008,17(5):282-286.
    王清民,彭伟秀,张俊佩,等.核桃试管嫩茎生根的形态结构及激素调控研究[J].园艺学报, 2006,33(2):255-259.
    王燕霞,师校欣,杜国强,等.“洛阳红”牡丹组织培养快速繁殖技术研究[J].中国农学通报,2008,24(10):400-404.
    王祝举,唐力英,赫炎.牡丹皮的化学成分和药理作用[J].国外医药·植物药分册,2006,21(4):155-159.
    谢静萱.枯枝牡丹的组织培养[J].植物生理学通讯,1987,2:54-55.
    徐桂娟.牡丹组培快繁技术的研究[D].北京:北京林业大学,2002.6.
    徐盼.环境因子对牡丹试管苗生根的影响[D].河南农业大学,2011.6.
    徐振彪,傅作申.植物组织培养过程中的褐化现象[J].国外农学杂粮作物,1997,(1):55-56.
    许传俊,李玲,李红,等.蝴蝶兰褐变外植体的显微结构观察以及褐变成分的初步分析[J].园艺学报,2005,32:1111-1113.
    闫新房.新型组培光源的开发及其在植物组织培养中的应用[D].河南农业大学,2009.6.
    杨红超,裴冬丽.牡丹种子胚培养研究[J].广西农业科学,2006,(37):108-110.
    杨玲,葛红,黄绵佳,等.热激处理对蝴蝶兰组培褐变的影响[J].园艺学报,2008,35(1):143-146.
    杨青珍,王锋,李娟,等.榛子绿枝插条生根的解剖学观察[J].林业科学,2006,22(7):154-156.
    姚瑞玲,王胤,项东云,等.邓恩桉插条生根抑制物质鉴定[J].福建林学院学报,2010,30(3):275-278.
    叶兴国,王连铮.大豆花药愈伤组织的分化及其内源激素分析[J].作物学报,1997,23(5):555-560.
    印芳,葛红,彭克勤,等.酚类物质与蝴蝶兰褐变关系初探[J].园艺学报,2006,33:1137-1140.
    印芳,葛红,彭克勤,等.蝴蝶兰组培褐变与酚酸类物质及相关酶活性的关系[J].中国农业科学,2008,41:2197-2203.
    张桂花,王洪梅,王连祥.牡丹组织培养技术研究[J].山东农业科学,2001,5:17-18.
    张红晓,经剑颖.木本植物组织培养技术研究进展[J].河南科技大学学报(农学版),2003,(3):66-69.
    张婕,高亦珂,等.发光二极管(LED)在菊花组织培养中的应用研究[J].中国观赏园艺研究进展,2008,32(5):296-299.
    张俊琦,罗晓芳.牡丹组织培养中褐化的发生原因与防止方法的研究[J].沈阳农业大学学报,2006,37(5):720-724.
    张龙勃.牡丹组织培养研究初报[J].河南城市园林,1989,10:21-23.
    张明方,蒋有条.番茄不同分化潜力愈伤组织中内源多胺比较及外源多胺对分化的影响[J]. 浙江农业大学学报,1997,23(6):677-681.
    张盛林,郑彭姬,钟耕.花魔芋和白魔芋褐变机理及褐变抑制研究[J].农业工程学报,2007,23(2):207-211.
    张艳,范俊安.中药材牡丹皮研究概况Ⅲ丹皮化学成分研究概况[J].重庆中草药研究,2008,(2):24-31.
    张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990,210-212.
    张子学,丁为群,时惟静.凤丹组织培养研究[J].现代中药研究与实践,2004,18(1):18-21.
    赵鑫,詹立平,邹学忠.牡丹组织培养研究进展[J].核农学报,2007,21(2):156-159.
    赵扬帆.姬松茸酚类物质的提取及其功能学的研究[D].福建农林大学,2008.6.
    赵滢,杨树华,葛维亚,等.蝴蝶兰外植体酚类物质和活性氧代谢与组培褐变的关系[J].园艺学报,2010,37(6):963-970.
    阵伟.生长调节剂、酚类化合物和多胺对胡桃组织培养生根的影响[J].福建农业大学学报,1994,23(4):490-494.
    郑均宝,梁海永,王进茂,等.杨树和苹果离体茎尖培养和愈伤组织分化与内源IAA, ABA的关系[J].植物生理学报,1999,25(1):80-86.
    中国科学院北京植物研究所鸭梨黑心病研究小组.鸭梨黑心病的研究2-酚类物质的酶促褐变[J].植物学报,1974,16(3):235-241.
    周俊辉,周家容,曾浩森,等.园艺植物组织培养中的褐化现象及抗褐化研究进展[J].尉艺学报,2000,27(增刊):481-486.
    周秀梅,成仿云,钟原,等.紫斑牡丹‘书生捧墨’的体胚诱导与发生[J].北京林业大学学报,2009,31(2):151-154.
    周艳,陈训.马缨杜鹃组织培养过程中外植体褐变与多酚氧化酶及酚类物质的关系[J].种子,2009,28(7):61-63.
    朱广廉,钟海文,张爱琴.植物生理实验[M].北京:北京大学出版社,1990,37-39.
    Albers M R J, Kunneman B P. Micropropagation of Paeonia [J]. Acta Horticulturae,1992,314: 85-92.
    Ana C, Maria G. Effect of root-promoting products in the propagation of Olea europaea [J]. Hort Science,2008,43:2066-2069.
    Awad M A, Jager A. Flavonoid and chlorogenic acid concentrationsin skin of 'Jonagold' and 'Elstar' apples during and after regular and ultra low oxygen storage [J]. Postharvest Biology and Technology,2000,20:15-24.
    Balakrishnamurthy G, Madhava Rao V N. Changes in phenols during rhizogenesis in rose (Rosa bourboniana Desp.) [J]. Curr Sci,1988,57(17):960-962.
    Bassuk N L, Hunter L D, Howard B H. The apparent of polyphenol oxidase and phioridzin in the production of apple rooting cofactors [J]. J Hort Sci,1981,56 (4):313-322.
    Beruto M, Lanteri L, Portogallo C. Micropropagation of tree peony (Paeonia suffruticosa) [J]. Plant Cell, Tiss and OrgCult,2004,79 (2):249-255.
    Bouillenne R, Bouillenne-Walrand M. Auxines et bouturages [C]. Proc 14 Int Hort Cong,1955,1: 231-238.
    Bouza L, Jacques M, Miginiac E. In vitro propagation of Paeonia suffruticosa Andr. cv.'Mme de Vatry':Developmental effects of exogenous hormones during the multiplication phase [J]. Scientia Horticulturae,1994a,57 (3):241-251.
    Bouza L, Jacques M, Miginiac E. Requirements for in vitro rooting of Paeonia suffruticosa Andr. cv.'Mme de Vatry'[J]. Scientia Horticulturae,1994b,58 (3):223-233.
    Bouza L, Jacques M, Sotta B, et al. Relation between auxinand cytokinin contents and in vitro rooting of tree peony (Paeonia suffruticosa Andr.) [J]. Plant Growth Regulation,1994c, 15.
    Bouza L, Jacques M, Sotta B, et al. The reactivation of tree peony (Paeonia suffruticosa Andr.) in vitro plants by chilling is correlated with modifications of abscisic acid, auxin and cytokininlevels[J]. Plant Science,1994 d,97 (2):153-160.
    Bravo L. Polyphenols:Chemistry, dietary sources, metabolism and nutritional signi cance [J]. Nutrition Reviews,1998,56:317-333.
    Briggs W R, Ray P M. An Auxin inactivation system involving tyrosinase [J]. Plant Physiology, 1955,2:165-167.
    Brukhin V B, Bstygina T B. Embryo culture and somatic embryogenesis in culture of Paeonia-anomala [J]. Phytomorphology,1994,44:151-157.
    Campos-Vargas R, Nonogaki H, Suslow T, et al. Heat shock treatments delay the increase in wound-induced phenylalanine ammonia-lyase activity by altering its expression, not its induction in romaine lettuce (Lactuca sativa) tissue[J]. Physiologia Plantarum,2005,123: 82-91.
    Chen C, Pepchow B. Cytokinin biosynthesis in cultured rootless tobacco plants [J]. Plant Plysiol, 1978,62:861-865.
    Chevre A M. In vitro vegetative multiplication of chestnut [J]. J Hort Sci,1983,58:23-29.
    Conzalez A, Tames S R, Rodriguez R. Ethylene in relation to protein, peroxidase and polyphenol oxidase activities during rooting inhazelnut cotyledons [J]. Physiol Plant,1991,83: 611-620.
    Curir P, Van Sumere C F, Termini A, et al. Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunnii Hook microprogated through axillary bud stimulation[J]. Plant Physiol,1992,92:1148-1153.
    Demetrios J M, Thomas D S, Traianos Y, et al. Peroxidases during adventitious rooting in cuttings of Arbutus unedo and Taxus baccata as affected by plant genotype and growth regulator treatment [J]. Plant Growth Reg,2004,44:257-266.
    Demoise C F, Partanen C R. Efects of subculturing and physical condition of medium on the nuclear behavior of phant tissue culture [J]. Am J Bot,1969,56(2):147-152.
    Gebhardt K. Activation of indole-3-acetic acid oxidase from horseradish and Prunus by phenols and H2O2 [J]. Plant Growth Reg,1982,1:73-84.
    Gorinstein S, Haruenkit R, Park Y S, et al. Bioactive compounds and antioxidant potential in fresh and dried Jaffa sweeties, a new kind of citrus fruit[J]. J Sci Food Agric,2004,84: 1459-1463.
    Gyana R R. Effects of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes [J]. Plant Growth Regulation,2006,48(2):111-117.
    Habaguchi K. Alterations in polyphenol oxidase activity during organ redifferentiation in carrot calluses cultured in vitro [J]. Plant Cell Physiol,1977,18:181-189.
    Haissig B E. Influence of auxins and auxin synergists on adventitious root primordium initiation and development [J]. NZ. J. For. Sci,1974,4:311-323.
    Harris R A, Mantell S H. Effect of stage Ⅱ subculture duration on the multiplication rate and rooting capacity of micropropagated shoots of tree peony [J]. Journal of Horticultural Science,1991,66 (1):95-102.
    Hartman H T, Kester D E, Davies F T, et al. Plant Propagation:Principles and Practices[M].6th Edn, Prentice Hall of India, New Delhi,1996,280-284.
    Hartmann H T, Kester D E, Davies F T. Plant propagation-principles and practices[M].5th ed. Prentice Hall of India Pvt Ltd,1993,199-255.
    Hess C E. Phenolic compounds as stimulators of root initiation[M]. Plant Physiol 40,1965, XLV.
    Hess C E. Physiological analysis of root initiation in easy and difficult to root cuttings[M]. Proc. 16th Int. Hort Cong,1962,375-381.
    Hilda E L, Joaquin M, Benjamin G, et al. In vitro clonal propagation of Vanilla planifolia [J]. Hort Science,2008,43:454-458.
    Hisaminato H, Murata M, Homma S. Relationship between the enzymatic browning and phenylalanine ammonia lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis [J]. Bioscience, Biotechnology and Biochemistry, 2001,65:1016-1021.
    Hosoki T, Ando M, Kubara T. In vitro propagation of herbaceous peony (Paeonia lactiflora Pall.) by a longitudinal shootsplit method [J]. Plant Cell Rep,1989,8:243-246.
    Jackson M B. New Root Formation in Plant and Cuttings[M]. Martinus Nijhoff Publishers, Lancaster,1986,223-253.
    Jackson M B. New root formation in plants and cuttings [J]. Boston:Martinus Nijhoff Publishers, 1988,201-207.
    Jones O P, Hatifield S G S. Root initiation in apple shoots cultured in vitro with auxins and phenolic compounds [J]. J Hort Sc,1976,51:495-499.
    Julie A T, Len F, Maitin M, et al. Effect of exogenous gibberellic acid, abscisic acid, and benzylaminopurine on epicotyl dormancy of culture herbaceous peony embryos [J]. Plant cell Tissue and Organ Culture,1994,36:35-43.
    Kahn V. Some biochemical properties of polyphenol oxidase from two avocado varieties differing in their browning rates [J]. J Food Sci,1977,42(1):38-43.
    Kieliszewska-Rokicha B. Effect of treating Scots pine Pinus sylvestris L.) seedlings with phytohormone on the growth of the root system and on the peroxidase and IAA oxidase enzyme activities in roots [J]. Arboretum-Kornckie,1989,32:207-219.
    Kling G J, Meyer M M. Effect of phenolic compounds and indoleacetic acid on adventitious root initiation in cuttings of Phasedus aureus, Acer saccharinum and A. griseum [J]. Hort Science,1983,18(3):352-354.
    Kozai T, Kubota C. Developing a photoautotrophic micropropagation system for woody plants [J]. Journal of Plant Research,2001,114(1116):525-537.
    Lee T T. Effects of phenolic substances on metabolism of exogenous indole-3-acetic acid in maize stems [J]. Plant Physiol,1980,50:107-112.
    Leopold A C, Plummer T H. Auxin-phenol complexes [J]. Plant physiology,1961,36 (5):589-592
    Leyva A. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in a light-dependent manner [J]. Plant Physiol,1995,108 (1):39-46.
    Loomis W D, Battaile J. Plant phenolic compounds and the isolation of plant enzymes [J]. Phytochemistry,1966,5(3):423-438.
    Mager A, Harel M. Polyphenol Oxidases in plants[J]. Phytochemistry,1979,18:193-215.
    Mandal S M, Mandal M, Das A K, et al. Stimulation of indole-acetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids[J]. Arch Microbiol,2009, 191:389-393.
    Molassiotis A N, Dimassi K, Diamantidis G, et al. Changes in peroxidases and catalase activity during in vitro rooting [J]. Biol Plant,2004,48:1-5.
    Molnar J M, Lacroix L J. Studies of the rooting of cuttings of Hydrangea macrophylla:Enzyme changes [J]. Canadian J Bot,1972,50:315-322.
    Moncousin C, Gaspar T H. Peroxidase as a marker for rooting improvement of Cynara scolymus L. culivated in vitro, Biochem [J]. Physiol Plant,1983,178:263-271.
    Murata M, Nishimura M, Haruta M, et al. A transgenic apples callus showing reduced polyphenol oxidase activity and lower browning potential [J]. Bioscience, Biotechnology and Biochemistry,2001,65 (2):383-388.
    Naczk M, Shahidi F. Extraction and analysis of phenolics in food [J]. Journal of Chromatography, 2004,1054:95-111.
    Nag S, Saha K, Choudhuri M A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting[J]. Plant Growth Reg,2001,20: 182-194.
    Nanda K K, Bhattacharya N C, Kochhar V K. Biochemical basis of adventitious root formation on etiolated stem segments [J]. New Zealand J For Sci,1974,4:347-348.
    Nhut D T, Takamura T, Watanabe H K, et al. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes(LED) [J]. Plant Cell,2003,73:43-52.
    Nora A, Choveaux J, Van S. The Effect of 1-Naphthalene acetic Acid on the endogenous cytokinin content of aseptically cultured bark segments of salix babylonica [J]. Plant and Cell Physiol, 1981,22(7):1207-1214.
    Nordstrom A C, Eliasson L. Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings [J]. Plant Physiol,1991,82: 599-605.
    Orlikowska T, Marasek A, Kucharska D. Regeneration of Paeonia mlokosewitshii Lom. and P. tenuifolia L. in vitro from different explants [J]. Acta Societatis Botanicorum Poloniae, 1998,67(34):223-227.
    Pacheco P, Calderon X, Vega A. Flavonoids as regulators and markers of root formation by shoots of Eucalyptus globulus raised in vitro[3]. Plant Perox Newslett,1995,5:9-12.
    Pal M, Nabda K K. Rooting etiolated stem segments of populus robusta:interaction of temperature, catechol and sucrose in the presence of IAA[J]. Physiol Plant,1981,53: 540-547.
    Partanen C R. Cytological behaviour of plant tissues in vitro as a reflection of potentialities in vivo[A]. Berkeley:Cuthan Publ CO,1965,1-9.
    Pastrana-Bonilla E, Akoh C C, Sellappan S, et al. Phenolic content and antioxidant capacity of Muscadine grapes[J]. J Agric Food Chem,2003,51:5497-5503.
    Peiser G, Lopez-Galvez G, Cantwell M, et al. Phenylalanine ammonia-lyase inhibitors control browning of cut lettuce[J]. Postharvest Biology and Technology,1998,14:171-177.
    Perez F J, Villegas D, Mejia N. Scorbic acid and flavonoid peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves[J]. Phytochemistry,2002,60:573-580.
    Poapst P A, Durkede A B. Root differentiating properties of some simple aromatic substances of the apple and pear fruit[J]. J Hort Sci,1967,42:429-438.
    Rama Devi S, Prasad M N V. Ferulic acid mediated changes in oxidative enzymes of maize seedlings:Implication in growth[J]. Biol Plant,1996,38:387-395.
    Razmologv V P. Tissue induction from anther culture of Paeoniaxhybirda [J]. Instimulyatory Ingibitory Rostovykh Protsessov Rastenii Moscow,1988,25:62-64.
    Rosalind A, Harris S, Mantell H. Effects of stage Ⅱ subculture duration on the multiplication rate and rooting capcity of micropropagated shoots of tree paeony (paeonia suffruticosa Andr.) [J]. Joural of Horticulture Science,1991,66:95-102.
    Ruigni E. In vitro propagation of some olive(Olea europaen L.)cultivars with different root ability and medium development using analytical data from developing shoots and embryos[J]. Sci Hortic,1984:123-134.
    Santi M, Mahitosh M, Amit D, et al. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids [J]. Arch Microbiol,2009,191: 389-393.
    Shoyama Y, Yamada Y, Nishioka I, et al. Depigmentation and inhibition of cell growth of 6-BA melanoma cells by compounds isolated from Paeonia suffruticosa callus [J]. Plant cell Report,1990,8(12):711-713.
    Smith-Becker J, Marois E, Huguet E J, et al. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of Cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems [J]. Plant Physiol,1998,116:231-238.
    Stefens B, Wang J, Sauter M. Interactions between ethylene gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice[J]. Planta,2005,223(3): 604-612.
    Sunderland N, Dunwell J M. Pathways in pollen emsryogensis:Tissue culture and plant science [M]. New York:Academic Press,1974,141-167.
    Vieiez J, Kingston D G I, Ballester A. Identification of two compounds correleted with lack of rooting capacity of chestnut cuttings [J]. Tree Physiol,1987,3:247-252.
    Wang H, Van Staden J. Establishment of in vitro cultures of tree peonies [J]. South African J Bot, 2001,67:358-361.
    Weisshaar B, Jenkins G I. Phenylpropanoid biosynthesis and its regulation [J]. Curr Opin Plant Biol,1998,1:251-257.
    Williams R. The chemical microenvironment [A]:In automation and environmental control in plant tissue culture [C]. Dordrecht (The Netherlands):Kluwer Academic Publishers,1995, 405-439.
    Winkel-Shirley B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways [J]. Physiologia Plantarum,1999,107(1):142-149.
    Zenkteler M, Misiwra E, Pointka A. Induction of androgenic embryoids in vitro cultured anthers of several trees [J]. Experientia,1975,3:289-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700