Rol基因向棉花基因组的导入及其对棉花生育特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地棉(Gossypium hirsutum L.)是我国重要的经济作物之一。由于其根系再生能力差,移栽成活困难,生产上常采用营养钵育苗移栽和地膜覆盖技术,以解决棉花移栽成活困难的问题,使棉花生育期提前。但即使采用营养钵育苗移栽,棉花缓苗期仍至少有15d,不仅影响了棉花早发,同时也影响了三桃(伏前桃、伏桃和秋桃)所占的比重,因而培育出生根力强的棉花新品种对于棉花生产具有重要意义。
     转基因技术可以打破物种间的生殖隔离,充分利用自然界中的基因,为选育新品种提供了全新的和有效的辅助途径。本研究将源于发根农杆菌的人工重组生根基因(rol基因)转移到陆地棉栽培品种中,以期增强棉花的生根能力和改善其根系发育状况,为培育出强生根的棉花新品种提供优良的种质材料。
     本研究建立了高效的棉花茎尖转化再生体系,通过农杆菌介导法将rol基因导入陆地棉基因组中,获得了生根能力加强的棉花转基因株系。
     本研究取得的主要实验结果如下:
     1.建立了棉花茎尖再生体系。以发芽5d的棉花无菌苗茎尖为外植体,通过对2,4-D和KT的不同浓度及配比,诱导茎尖直接产生不定芽。结果表明,在简单的MS培养基上就可直接诱导出不定芽,为了提高再生芽的诱导率可适当加入0.1mg/L的KT。
     2.在茎尖分化再生的最佳培养基上进行Km抗性试验表明:50mg/L的卡那霉素对茎尖分化再生有极强的抑制作用,几乎全部再生芽都逐渐退绿变枯,叶片发白,最后死亡。200mg/L的噻孢霉素钠盐抑菌效果很好,且不影响外植体分化再生。
     3.建立了农杆菌介导的棉花茎尖转化体系。将茎尖在0.6-0.80D的农杆菌中浸染15min后,经过2-3d共培养后转入到抑菌培养基上培养3d,最后再转入到含卡那霉素的筛选培养基上进行筛选,三种转化结构均获得了抗性苗。
     4.通过嫁接方法,对转化后的再生苗进行定植,成活率达到30%-40%。在本研究中,通过嫁接方法共获得移栽到大田中的转基因再生植株17株。
     5.对获得的转基因植株当代进行PCR和Southern杂交检测,结果表明外源基因已整合到棉花基因组中,转化率100%。对T_1代转基因植株进行PCR检测,PCR阳性率为20%-80%,说明转基因当代所获得的植株部分为嵌合体。
     6.转基因植株当代及子代的生育特性与对照植株相比,都有较大差异,主要表现为棉铃小,节间变短,果枝转变成叶枝,倒伏等性状。转基因子代的株高与对照相比普遍偏矮,有少数植株打顶后株高仍只有30cm、40cm左右。
     7.对T_1代转基因植株的生根能力测验结果表明,转化株的主根长度、根鲜重、干重都较对照有较大提高。
Upland Cotton (Gossypium hirsutum L.) is one of the most important economic crops. Because of its poor root regeneration ability and the difficulty in keeping the plants lively after transplantation, we often adopt the nourishment pot transplanting and the soil protecting membrine techniques to resolve the problem and make the growth and developmental period be earlier during the cotton growing season in the central area of China. Even so, the recovery period of the transplanted young plants still at least lasts 15 days, hence not only affecting the earlier ripening of cotton, also affecting the ratio of the three kinds of bolls (bolls set before hot summer days, bolls set during hot summer days, and the bolls set during Autumn). Therefore breeding new cotton varieties with the strong rooting ability is an important way to overcome the barrier that we meet at the early stage of cotton production.
    Transgene technology could break through species' reproductive isolation and make the fully use of natural gene sauces. Plant genetic engineering provides a modern and effective method for plant breeding. In this study, the artificially reconstructed rooting genes (rol genes) were used to transform some varieties of upland cotton to strengthen the rooting ability, improve the growth situation of roots, and supply excellent germplasm for cotton breeding programme.
    In this study, the system of cotton shoot apex transformation has been established. Upland cotton genome was transformed with rol genes by Agrobacertium mediated transformation. We had obtained transgenic plants and their progenies with strong rooting ability.
    The main results in this experiment were as follows:
    1. The establishment of regeneration system of cotton shoot apex: Cotton shoot apex were cultured on MS basic medium containing different concentration and combinations of 2, 4-D and kinetin to directly generate the adventitious buds. The results showed that the MS basic medium could induce adventitious bud formation and the basic MS medium supplemented with 0. Img/L kinetin has an advantage to the differentiation of adventitious buds.
    2. The kanamycin resistance assay showed that 50mg/L kanamycin could completely inhibit the shoot formation. Most of the untransformed regenerative shoot gradually became white and finally died. 200mg/L cefotaxime sufficiently inhibits Agrobacterium growth and didn't affect the explants differentiation.
    3. Agrobacertium-medialed transformation of cotton shoot apex: Adopted explants were drenched in 0.6-0.8 OD concentrations Agrobacertium about 15 min, then co-cultivated 2-3d at 28℃. The explants were transferred onto the shoot inducing medium
    
    
    only supplied with cefotaxime of 200 mg/ L, and cultured 3 d to suppress the bacterium growth, then transferred to the selective medium supplemented with 50 mg/ L kanamycin and 200mg/L cefotaxime to isolate kanamycin-resistance plants.
    4. The regenerants were grafted to the cotton seedling with 1 to 2 flatted true leaves. The survival rate of plantlets reached 30%-40%. In this way, we obtained 21 transgenic plants.
    5. By PCR analysis and Southern blotting, the results showed that the foreign genes had integrated into the genome of TO transgenic plants successfully; the efficiency of transformation retained 100%. Also by PCR analysis on the TI generation of transgenic plants, 20%-80% of which were transgenic. Therefore it is concluded that most of the TO transgenic plants were chimera.
    6. Great difference in growth characters existed, while compared TO and TI generations with the control, for examples: the transgenic plants usually have smaller bolls, shortened internodes; boll-bearing branch changed to foliage branch, and stunted growth etc.
    7. The rooting ability assay of TI transgenic plants showed that the length of taproot, fresh and dry weights significantly gained an advantage over the control.
引文
1.于元杰,尹承佾,马骏,沈法富,黄清杰.异科外源DNA导入陆地棉引起性状变异初报.山东农业大学学报,1991,22(4):335-340
    2.于晓红,朱勇清,陈晓亚,许智宏,周宝良,陈松,沈新莲.种子特异表达ipt转基因棉花根和纤维的改变.植物学报,2000,42(1):59-63
    3.方宏筠,王关林.黑核桃体细胞胚状体发生及其基因转化系统.园艺学报,2000,27(6):406-411
    4.王伟,朱祯,高越峰,石春林,陈宛新,郭仲琛,李向辉.双价抗虫基因陆地棉转化植株的获得.植物学报,1999,41(4):384-388
    5.王关林,方宏筠.植物基因工程.北京:科学出版社,2002
    6.王景雪,孙毅.农杆菌介导的植物基因转化研究进展.生物技术通报,1999,1:7-13
    7.乐锦华,祝建波,崔百明,朱新霞,王爱英,陈正华,刘桂珍,李国英,简桂良,吴刚.利用目的基因转化技术培育抗病新品种.石河子大学学报,2002,6(3):173-178
    8.叶健明,唐克轩,沈大棱.植物转基因方法概述.生命科学,1999,11(2):58-60
    9.左开井.转基因抗虫棉Bt基因的遗传效应及定位研究.[博士学位论文].武汉:华中农业大学图书馆,2000
    10.刘方,王坤波,宋国力.中国棉花转基因研究与应用.棉花学报,2002,14(4):249-253
    11.刘任重,Qing Liu,王留明,王家宝,杨静,Allan Green.硬脂酰脱氢酶基因gh-SAD1倒位重复构建的棉花遗传转化.棉花学报,2001,13(5):304-308
    12.巩万奎,吴家和,姚长兵,刘方,喻树迅,陈志贤,刘志红,李燕娥.葡萄糖氧化酶基因在棉花中的高效转化-转基因再生棉株的获得.棉花学报,2002,14(2):76-79
    13.巩万奎,喻树迅,陈志贤.吴家和,余学科.葡萄糖氧化酶基因在棉花中的高效转化.棉花学报,1999,11(6):241-246
    14.朱卫民,吴敬音,徐建明,蔡小宁,朱祯,李向辉.棉花茎尖分生组织在微粒轰击法基因转化中的应用.江苏农业学报,1998,14(2):74-79
    15.余淑文.植物生理与分子生物学.北京:科学出版社,1992:63-83
    16.吴敬音,朱卫民,徐建明,蔡小宁,朱祯,李向辉.陆地棉(Gossypium hirsutum L.)茎尖分生组织培养及其在基因导入上的应用.棉花学报,1994,6(2):89-92
    17.宋国立,崔荣霞,王坤波,郭立平,黎绍惠,王春英,张香娣.改良CTAB法快速提取棉花DNA.棉花学报.1998,10(5):273-275
    18.张宝红,丰嵘.棉花生物技术研究现状.生物工程进展,1992,12(5):18-21
    19.张宝红,郭腾龙.丰嵘,王武,李秀兰.棉花抗除草剂基因工程研究进展.安徽农业科学,1995,23(1):94-96
    20.张毅.沈文辉.植物基因工程的新载体——农杆菌Ri质粒.生物工程学报,1989,5:173-178
    21.张震林.倪万潮,郭三堆,束春蛾,张保龙,徐英俊.人工合成Bt基因对棉花的遗传转化.江苏农业学报,1998,14(3):145-148
    
    
    22.李付广,郭三堆,刘传亮,李凤莲,崔洪志,周勇,李秀兰.双价基因抗虫棉的转化与筛选研究.棉花学报,1999,11(2):106-112
    23.李付广,崔金杰,刘传亮,武芝霞,李凤莲,周勇,李秀兰.双价基因抗虫棉及抗虫性研究.中国农业科学,2000,33(1):46-52
    24.李用芳,周延清.发根农杆菌及其应用.生物学杂志,2000,17(6):29-32
    25.李燕娥,朱祯,陈志贤,吴霞,王伟,李淑君,朱玉,焦改丽,吴家和,徐鸿林,范小平,孟晋红,肖桂芳,李向辉.豇豆胰蛋白酶抑制剂转基因棉花的获得.棉花学报,1998,10(5):237-243
    26.李燕娥,朱祯,吴霞,孟晋红,范小平,吴家和,史高川,肖娟丽,张换祥.转基因再生棉花嫁接初报.中国棉花,2000,27(3):25-30
    27.杨广东,朱祯,李燕娥,朱祝军.利用根癌农杆菌和基因枪法转化获得抗虫融合蛋白基因(Bt-CpTI)甘蓝植株.实验生物学报,2002,35(2):117-122
    28.肖国缨.根癌农杆菌介导的植物遗传转化研究现状和前景.作物研究,1998(1):44-48
    29.陈布圣.棉花叶面积的速测法.华中农学院学报,1981,3:21-30
    30.陈志贤,LIEWELLYN D J,范云六,李淑君,郭三堆,焦改丽,赵俊侠.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株.中国农业科学,1994,27(2):31-37
    31.周跃钢,王三根.发根农杆菌Ri质粒rol基因研究的综述.遗传,1997,19(6):45-48
    32.岳建雄,张慧军,张炼辉.以对潮霉素抗性筛选标记的棉花遗传转化.棉花学报,2002,14(4):195-199
    33.洪继仁,方光华,陈如梅,钟维瑾.棉花实验方法.北京:农业出版社,1985:131-133
    34.赵俊侠,郭三堆,石跃进,桑瑜,齐宏立,郭三堆,焦改丽,陈志贤.农杆菌介导外源基因在棉花中的表达,棉花学报,2001,13(3):146-148
    35.赵俊侠,焦改丽,李淑君,陈志贤.不同农杆菌菌株和棉花品种在转基因棉花中的应用研究.棉花学报,1997,9(4):213-216
    36.倪万潮,黄俊麒,郭三堆,束春娥,吴敬音,王武钢,张震林,陈松,毛立群,汪洋.徐英俊.转基因抗虫棉的培育.中国农业科学,1998,31(2):8-13
    37.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展.生命科学,2002,14(4):223-225
    38.郭三堆,崔洪志,夏兰芹,武东亮,倪万潮,张震林,张保龙,徐英俊.双价抗虫转基因棉花研究.中国农业科学.1999,32(3):1-7
    39.郭三堆,崔洪志.中国转基因抗虫棉又取得新进展.中国农业科学,1998,31(6):91-94
    40.郭江平.转导外源总DNA创造棉花新种质.中国棉花,2000,27(1):7-8
    41.崔百明,祝建波,肖路,王爱英,朱新霞,乐锦华,陈正华.转β-1,3-葡聚耱酶基因和几丁质酶基因棉花.生物技术,2002,12(4):1-2
    42.崔洪志,郭三堆.我国抗虫转基因棉花研究取得重大进展.中国农业科学,1996,29(1):93-95
    43.萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T.分子克隆实验指南,第二版.北京:科学出版社.金冬雁,犁孟枫译.1992,19-34
    
    
    44.黄俊麒.抗虫基因的构建及转基因抗虫棉的研制进展.江苏农业学报,1998,14(2):102
    45.黄骏麒,钱思颖,刘桂玲,翁坚,曾以申,周光宇.外源海岛棉DNA导致陆地棉性状的变异.遗传学报,1981,8(1):56-62
    46.黄骏麟,龚蓁蓁.慈姑蛋白酶抑制剂API基因导入棉花获得转基因植株.江苏农业学报,2001,17(2):65-68
    47.傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册.北京:中国科学技术出版社,1994,35-39
    48.焦改丽,李俊峰,李燕娥,赵俊峡,张换样,刘建卫.利用新的外植体建立棉花高效转化系统的研究.棉花学报,2002,14(1):22-27
    49.焦改丽,郭三堆,李淑君,陈志贤,赵俊侠.棉花遗传转化和植株再生的研究.华北农学报,1997,12(2):82-85
    50.董春海,姚敦义.通过根癌农杆菌将植物生长素合成酶基因导入棉花获得再生植株.自然杂志,1991,14(10):798-799
    51.谢道昕,倪万潮.苏云金芽孢杆菌(Bt)基因杀虫晶体蛋白基因导入棉花获得转基因植株.中国农业科学,1991(4):367-373
    52.简桂良,卢美光,王志兴,贾士荣.抗病转基因棉的选育.见:贾士荣,郭三堆,安道昌主编,转基因棉花.北京:科学出版社,2001,257
    53.路铁刚,孙敬三.根癌农杆菌转化单子叶植物研究概况.生物工程进展,1990,10(3):4-8
    54.缪亚梅,崔世友.我国转基因棉的研究现状及展望.江西棉花,2002,24(3):9-10,12
    55.樊龙江,周雪平.转基因作物安全性—争论与事实.北京:中国农业出版社,2001
    56.戴均贵,朱蔚华.发根培养技术在植物次生代谢物生产中的应用.植物生理学通讯.1999,(35):69-76
    57. Barton K A, Umbeck R Transgenic cotton plants resistant to lepidopercm insects. Proc Belt Prod Conf, 1989:641
    58. Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry J E, Ow D W. Engineering 2, 4-D resistance into cotton. Theor Appl Genet, 1992, 83: 645-649
    59. Benedict J H. Behavior, growth, survival and plant injury by Heliothis virescens(F.) on transgenic Bt cottons. J Econ Entomol, 1992, 85:489-593
    60. Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Human G. Microprojectile bombardmment of plant tissue increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol, 1992, 18:301-313
    61. Birch R G. Plant Transformation: Problems and Strategies for Practical Application. Annu Rev Plant Physiol Ptant Mol Biol, 1997, 48:297-326
    62. Caboni E, Lauri P, Tonelli M, Falasca G, Damiano C. Root induction by Agrobacterium rhizogenes in walnut. Plant Science, 1996, 118:203-208
    63. Carneira M, Vilaine F. Differential expression of the rolA plant oncogene and its effect on tobacco development. Plant J, 1993, 3:785-792
    64. Chichiricco G, Costantino P, Span L. Expression of the rolB oncogene from Agrobacterium thizogenes during zygotic embryogenesis in tobacco. Plant Cell Phydiol, 1992, 33:827-832
    
    
    65. Chilton M D, Drummond M H, Merlo D J, Sciaky D, Montoya A L, Goprdon M R, Nester E W. Stable incorporation of plasmid DNA into higher plant cell: the molecular basis of crown gall tumorigenesis. Cell, 1977, 11: 267-271
    66. Chilton M D, Tepfer D A, Petit A, David C, Casse-Delbart F, Tempe J. Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells. Nature, 1982, 295:432-434
    67. Chlan C A, Lin J, Cary J W, Cleveland T E. A procedure for biolistic transformation an dregeneration of transgenic cotton from meristematic tissue. Plant Mol Biol Rep, 1995, 13(1): 31-37
    68. Cleene De M, De Ley J. The host range of infectious hairy-root. The Bactanical Rev, 1981, 47(2): 147-159
    69. Costantino P, Capone I, Cardarelli M, De Poalis A. Mauro M L, Trovato M. Bacterial plant oncogenes: the rol genes' saga. Genetica, 1994, 94:203-211
    70. Cousins Y L, Lyon B R, Llewellyn D J. Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. A ust J Plant Physiol, 1991, 18: 481-494
    71. Damiano C, Archilletti T, Caboni E, Lauri P, Falasca G, Mariotti D, Ferraiolo G. Agrobacterium-mediated transformation of almond: in vitro rooting through localised infection of A. rhizogenes w.t.. Acta Horticulturae, 1995, 392:161-169
    72. Daniell H. Genetic engineering of cotton to increase fiber strength water absorption and dye binding. Procedings bell wide Cotton: Conference, 1998, 595-598
    73. El-Hiatemy, El-Shihy D M, Sharaf A N. Transfer of deta-endotoxin gene into cotton protoplasts. Bulletin of Faculty of Agiculture University of Caino, 1990, 4(3): 717-728
    74. Estruch J J, Chriqui D, Grossmann K, Schell J, Schmülling T. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J, 1991b, 10(10): 2889-2895
    75. Estruch J J, Schell J, Spena A. The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J, 1991a, 10(1): 3125-3128
    76. Filippini F, Lo Schiavo F, Terzi M, Constantino P. Trovato M. The plant oncogene rolB alters binding of auxin to plant membranes. Plant Cell Physiol, 1994, 35:767-771
    77. Finer J J, McMullen Michael D. Transformation of Cotton (Gossypium hirsutum L.) via particable Bornbardment. Plant Cell Reports, 1990, 8:586-589
    78. Firoozabady E, Deboer D L, Merlo D J, Halk E L, Amerson L N, Rashka K E, Murray E E. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol, 1987, 10: 105-116
    79. Frugis G, Caretto S, Santini L, Mariotti D. Agrobacterium rhizogenes rol genes induce productivity-related phenotypical modifications in creeping-rooted' alfafa types, Plant Cell Rep, 1995, 14:488-492
    80. Gould J H, Banister S, Hasegawa O, Fahima M, Smith R H. Regeneration of Gossypium hirsutum and G. barbadense from shoot-apex tissues for transformation. Plant Cell Rep, 1991, 10:35-38
    81. Gould J H, Devey M, Ulian E C, Hasegawa O. Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot-apex. Plant Physiol, 1991, 95: 426-434
    82. Gould J H, Banister S, Fahima M, Hasegawa O, Smith R H. Regeneration of Gossypium hirsutum and G. barbadense from the shoot apex transformation. Plant Cell Rep, 1991, 10:12-16
    83. Gould J H, Magallanes-Cedeno M. Adaptation of Shoot Apex Agrobacterium Inoculation &
    
    Culture to Cotton Transformation. Plant Mol Biol Rep, 1998, 16(3): 284-289
    84. Hussey G, Johnson R D, Warren S. Transformation of meristematic cells in the shoot-apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma, 1989, 148: 101-105
    85. James C. Global review of commercialized transgenic crops: 1999. ISAAA Brief, No.12. International Service for the Acquisition of Agri-biotech Applications (ISAAA): Ithaca, NY, 1999
    86. James C. Global review of commercialized transgenic crops: 2000. ISAAA Briefs, No. 23. International Service for the Acquisition of Agri-biotech Applications (ISAAA): Ithaca, NY, 2001
    87. John M E, Crow L J. Gene express in cotton fiber: cloning of the mRNAs. Proc Nail Acad Sci. USA, 1992:5769-5773
    88. John M E, Keller G. Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA, 1996, 93:12768-12773
    89. John M E, Stewart J Mc. Genes for jeans: biotechnological advances in cotton. Trends Biotechnol, 1990, 10:165-170
    90. Keller G, Spatola L, McCable D, Martinell B. Swain W, John M E. Transgenic cotton resistant to herbicide bialaphos. Transgen Res, 1997, 6:385-392
    91. Lyon B R, Consins Y L, Llewellyn D J, Demmis E S. Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgenic Research, 1993, 2:162-169
    92. MacRae S, Van Staden J. Agrobacterium rhizogenes-mediated transformation to improve rooting ability of eucalypts. Tree Physiology, 1993, 12:411-418
    93. Mariotti D, Fontana G S, Santini L, Costantino P. Evaluation of under field conditions of the morphological alterations (hairy root phenotype) induced on Nicotiana tabacum by different Ri plasmid T-DNA genes. J Genet Breed, 1989.43: 157-164.
    94. Marrone P. Genetic engineering: A classy delivery system. Cotton Int, 1991(1): 84-85
    95. Mazur B J, Falco C. The development of herbicide-resistant crops. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40:441-470
    96. McAfee B J, White E E, Pelcher L E. Lapp M S. Root induction in pine (Pinus) and Larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell, Tissue and Organ Culture, 1993, 34:53-62
    97. McCabe D E, Martinell B J. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology, 1993, 11: 596-598.
    98. McCall C. Cotton gene transferation through shoot apex culture. In Vitro, 1989, 25(3): 57
    99. Michael T, Spena A. The plant oncogene rolA、B and C from Agrobacterium rhizogenes. Effects on morphology, development and hormone metabolism. Methods Mol Bol, 1995, 44:207-222
    100. Moldenhauer D, Furst B, Bietirich B. Cardenolides in digitalis lanata cells transformed with Ti-plasmids. Planta Meu, 1990, 56(5): 435-438
    101. Murray M G, Pitas J W. Plant DNA from alcfollowing Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol. 1996, 32:1135-1148
    102. Parr A J, Peerless A C J, Harnill J D, Walton N J, Robins R J, Rhodes M J C. Alkaloid Production by transformed root cultures of Catharanthus roseus. Plant Cell Rep, 1988, 7:309-312
    103. Perlak F J, Deaton R W, Armstrong T A, Fucks R L, Sims S R, Greenplate J T, Fischhoff D A. Insect resistanct cotton plants. Bio/Technology, 1990, 8:939-943
    
    
    104. Potrykus L. Gene transfers to plants: Assessment of published approches and results. Annu Rev Plant Physiol Ptant Mol Biol, 1991, 42:205-225
    105. Proter J R. Host range and implication of plant infection by Agrobacterium tumefaciens. Crit Rev Plant Sci, 1991, 10:387-421
    106. Rajasekaran K, Grula J W, Hudspeth R L, Pofelis S, Anderson D M. Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed, 1996, 2:307-319
    107. Rajasekaran K, Hudspeth R L, Cary J W, Anderson D M, Cleveland T E. High-frequency stable transformation of cotton (Gossypiura hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep, 2000, 19:539-545
    108. Rashid, Yokoi H S, Toriyama K, Hinata K. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Reports, 1996, 15:727-730
    109. Revenkova E V, Kraey A S, Skryabin K G. Transformant of cotton by supervirulent, Agrobacterium tumefacients strain A281. Mol Biol (Moscow), 1990, 24(4): 1017-1023
    110. Rugini E, Pellgrineschi A, Mencuccini M, Mariotti M. Increase of rooting ability in the woody species kiwi (Actenidia deliciosa A.Chev.) by transformation with Agrobacterium thizogenes rol genes. Plant Cell Rep, 1991,10:291-295
    111. Schmulling T, Schell J, Spena A. Single genes fron Agrobacterium rhizogenes influence plant development. EMBO J, 1988, 7:2621-2629
    112. Scorza R, Zimmernan T W, Cordts T W, Footen K J. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium thizogenes. J Amer Soc Hort Sci, 1994: 1091-1098
    113. Sinkar V, Pythoud F, White F F, Nester E W, Gordon M P. RolA locus of the Ri plasmid directs developmental abnormalities in transgenic plants. Genes Dev, 1988, 2:688-697
    114. Smith R H, Zapata C, Park S H, Wilson T, El-Zik K, Thaxton P. Transformation of Texas cultivars. Proc Beltwide Cotton Prod Conf, 1997:457-468
    115. Souq F, Auger R, Coutos-Thevenot P, Boulay M P. Rol C-induced morphogenetic Changes in rose plants. In: Vassarotti A, Kalbe-Bournonvillev L, Baselga de Elorz and De Taxis du Pot PH(Eds). Biotechnology Research for Innovation, Development and Grow thin Europe. Vol. Ⅱ: Final report. Luxembourg, 1995:733
    116. Srivastava D K, Kolganova T A, Mett V A. Genetic transformation of Gossypium birstum L. cv. 108-F. Acta Horticulturac, 1991, 229:263-264
    117. Sunikumar G, Rathore K S. Transgenic cotton: factors influencing Agrobacterium- mediated transformation and regeneration. Mol Breed, 2001, 8:35-52
    118. Sutter E G, Luza J. Developmental anatomy of roots induced by Agrobacterium rhizogenes in Malus pumila 'M26' shoots grown in vitro. International Journal of Plant Science, 1993, 154: 59-67
    119. Thomas J C, Adams D G, Keppenne V D, Wasmann C C, Brown JK, Kanost MR, Bohnert HJ. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep, 1995, 14: 758-762
    120. Ulian E C, Smith R H, Gould J H, McKnight T D. Transformation of plants via the shoot apex. In Vitro Cell Dev Biol, 1988, 24:951-954
    121. Umbeck P, Johnson G, Barton K A, Swain W F. Genetically transformed cotton (Gossypium
    
    hirsutum L.) plants. Bio/Technology, 1987, 5:263-266
    122. Umbeck P, Swain W, Yang N S. Inheritance and expression of genes for kanamycin and chloramphenicol resistance in transgenic cotton plants. Crop Sci, 1989, 29:196-201
    123. Van Alvorst A C, Bino R J, Van Dijk A J, Lamers A M J, Lindhout W H, Van der Mark F, Dons HJM. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci, 1992, 83:77-85
    124. Van der Salm, TPM, Van der Toorn, CJG, Hanischten cate CH, Dons, HJM. Introduction rol genes transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol Breed, 1997, 3:39-47
    125. Wang W, Zhu Z, Deng C Y. Obtaining of resistant cotton by transforming mediated Agrobacterium. New Frontiers in Cotton Research, Word Cotton Rearch Conference-2. A-thens, Greece, 1998, 119
    126. Wilson F D, Flint H M, Deaton W R. Cotton lines containing a Bacillusthruingiensis toxin to pink bollworm(Lepidoptera: Gelechiidae)and other insects. J Econ Entomol, 1992, 85: 1516-1521
    127. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu J, Schell J. Ti plasmid vector for the introduction of DNA into plant cell without alternation of their normal regeneration capacity. EMBO J, 1983, 2:2143-2150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700