锡林浩特和霍林郭勒褐煤的超临界醇解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因受本身特性的制约,褐煤迄今未得到有效利用。本课题选用我国内蒙古地区锡林浩特褐煤(XLHTL)和霍林郭勒褐煤(HLGLL)为研究对象,以丙酮作为脱水介质研究了褐煤的脱水;对褐煤进行了分析萃取,研究了褐煤中的小分子组成;在超临界条件下研究了褐煤的醇解及其反应影响因素,并对反应混合物进行了分离和分析;初步探讨了在超临界条件下甲醇自身发生的化学反应和反应机理;选取褐煤相关模型化合物研究了褐煤醇解反应的机理。
     以丙酮为介质,通过萃取可使XLHTL的水分由20.41%降低到3.5%左右,这样的水分完全可以满足褐煤加工利用的要求;同时,丙酮可萃取出XLHTL中部分小分子。依次用二硫化碳(CS2)、正己烷、苯、乙醚、丙酮、甲醇和四氢呋喃(THF)萃取了XLHTL和HLGLL,各级萃取率均较低,GS/MS可检测化合物少。
     在超临界醇-碱体系下,对XLHTL和HLGLL进行醇解,醇解得到的反应混合物用正己烷、乙醚、甲醇和THF进行分级萃取,醇解后产物总收率可达80%以上;用GC/MS分析了反应混合物的组成,检测出的化合物远比褐煤分级萃取物中检测出的多,特别是检测出了大量酚类化合物。研究了反应温度、反应时间、醇煤比、碱煤比和不同种类醇(甲醇、乙醇和异丙醇)等因素对褐煤醇解的影响,结果表明:在醇煤比10/1、碱煤比0.8/1、反应温度300 oC、反应时间2 h条件下,褐煤醇解基本彻底,其收率可达90%以上。相同条件下,研究了神府煤和童亭煤的醇解,二者的收率均低于XLHTL和HLGLL的收率。
     对XLHTL和HLGLL醇解得到的反应混合物进行了族组分的分离,得到了水溶性化合物、烷烃、芳烃和含杂原子化合物等族组分,用GC/MS检测了族组分的组成,分析了褐煤中烷烃、芳烃的组成和杂原子的赋存状态。在XLHTL的反应混合物中得到一个碳酸酯馏分和一个脂肪酸酯纯品。
     制备并表征了固体碱催化剂CaO、K2CO3/γ-Al2O3、K2CO3/γ-Al2O3-NaOH和KF/γ-Al2O3,用其催化褐煤醇解,收率分别为88.2%,64.4%,73.9%和78.3%;并对反应混合物进行了分离和分析,与前述醇-碱体系下反应混合物的组成相似。
     以CaO为催化剂,研究了超临界条件下甲醇自身发生的化学反应,分析了气体和液体产物的组成,初步探讨了反应机理。以二苯醚、苯基苄基醚(BPE)、苯甲醚、乙氧基萘、苯酚、间苯二酚、苯和蒽作为模型化合物,研究了褐煤超临界醇解的机理,结果表明醚键断裂是主要反应,伴随有芳环的烷基化、加氢和甲氧基化等反应。
Because of limitation of their characteristic, lignites have not been effectively utilized. Xilinhaote lignite (XLHTL) and Huolinguole lignite (HLGLL) were chose in this study. The research was an approach to the dehydration of lignite taken the acetone as a dehydrated medium. The alcoholysis reaction under supercritical condition were investigated, and isolated and analyzed the reaction mixture. Based on the above, some related model compounds were chose to react in the same conditions in order to deduce the mechanism of reaction. The reactions of methanol itself in supercritical condition and reaction mechanism were studied preliminarily.
     Lignite can be dehydrated effectively by extraction with acetone. The moisture content of XLHTL can be reduced from 20.4% to 3.5%, which meets to the needs to lignite processing and utilization. Meanwhile, some small fractions are extracted from the lignite with acetone.
     The XLHTL and HLGLL were extracted with carbon disulfide (CS2), n-hexane, benzene, ether, acetone, methanol and tetrahydrofuran (THF) sequentially. The results showed that extract yield of each stage are low which is related to metamorphic grade of lignite since its free small molecules are few whereas the reticular structures of macromolecular were compact. The reaction mixtures from XLHTL and HLGLL over alcoholysis reaction under supercritical condition were extracted with n-hexane, ether, methanol and THF sequentially. The extract yield went up sharply with a total extractability of above 80%. The components of the reaction mixture were analyzed by GC/MS and the detectable compounds were far more than those of extractions of each stage from raw coal, especially, many phenols were detected. The study took some factors which can effected the reaction into consideration, such as reaction temperature, reaction time, the ratio of alcohol and coal, the ratio of alkali and coal and different kinds of higher alcohol. Under the same conditions, the study on Shenfu coal and Tongting coal alcoholysis reaction were carried, the yieds were lower than those of XLHTL and HLGLL.
     The reaction mixtures were separated by column chromatography so as to get detail information about the components, obtained water-soluble compounds, alkanes, arenes and heteroatomic containing compounds and so on. The separation products were analyzed by GC/MS, The occurrence of alkanes, arenes and heteroatomic containing compounds were discussed . A series of carbonic esters and one pure component which was identified to be an fatty acid ester.
     The solid base catalysts CaO, K2CO3/γ-Al2O3, K2CO3/γ-Al2O3-NaOH and KF/γ-Al2O3 were prepared, characterized and applied in the lignite coal alcoholysis reactions, the yields were 88.2%,64.4%,73.9%和78.3%. The reaction mixture’s component were same as those from methanol-alkali system.
     The reactions of methanol itself over CaO-catalyzed in supercritical condition were studied and analyzed the components of the products to deduce preliminarily the reaction mechanism. Diphenyl ether, benzyl phenyl ether (BPE), anisole, 2-ethoxynaphthalene, phenol, Resorcinol, benzene and anthracene as the model compounds were used to study the mechanism of reaction. The results show that the main reaction form is the fracture of ether linkage followed by hydrogenation, alkylation and methoxylation of aromatic ring.
引文
[1]中国统计年鉴. www.cct.org.cn/cct/content, 2002.
    [2]魏贤勇,宗志敏,秦志宏,陈茺.煤液化化学.北京:科学出版社,2002.
    [3]魏贤勇,宗志敏,秦志宏.分子煤化学的构想及其发展前景.中国工程院化工、冶金与材料工程学部第二届学术会议论文集,1999,北京:623-628.
    [4]袁新华,宗志敏,魏贤勇.从芳香族高分子的研究进展论煤炭发展趋势[J].中国矿业,2000, 9(4):25-28.
    [5]魏贤勇,宗志敏,陈茺.面向21世纪的煤化工[J].华北地质矿产杂志,1996,(1):1-8.
    [6]苗真勇,张鑫,胡卫新.煤炭资源的利用前景[J].煤炭技术,2003,22(11):3-5.
    [7]王大春,童仕唐,张海禄.高质量煤基活性炭炭化料的制备研究进展[J].武汉科技大学学报(自然科学版),2003,26(3):251-253.
    [8]徐振刚,杜铭华.新型煤化工及其在我国的发展[J].煤化工,2003,(6):4-8.
    [9]杜铭华,徐振刚,郭治.新型煤化工发展战略探讨[J].洁净煤技术发展讨论,2003,25(6):24-29.
    [10]朱健崖,郑明东.我国煤化工现状及其发展趋势[J].江西冶金,2004,24(1):26-30.
    [11]向英温,杨光林.煤的综合利用基本知识问答.冶金工业出版社.2002,312-313.
    [12]伍林,宗志敏,魏贤勇.煤焦油分离技术研究[J].煤炭转化,2001,24(2):17-21.
    [13] Song C, Schobert H H. Opportunities for developing specialty chemicals and advanced materials from coals [J]. Fuel Process Technol, 1993, 34 (2): 157-196.
    [14]高晋生,张德祥,万晨.煤焦油加工技术的发展和建议[J].煤化工,1999,1:3-6.
    [15]戴和武,谢可玉.褐煤利用技术.北京:煤炭工业出版社,1999.
    [16]袁红莉,杨金水,王风芹,应娇妍,李宝珍,陈文新.不可再生能源物质褐煤的生物可持续发展问题展望—微生物转化与利用研究[J].世界科技研究与发展,2002,24(3):13-17.
    [17]崔之栋,李嘉珞.煤炭液化.大连:大连理工大学出版社,1993.
    [18]郑平.煤炭腐植酸的生产和应用.化学工业出版社,1991.
    [19]袁红莉,陈文新.褐煤风化过程中微生物群落的演替[J].微生物学报,1998,38(6):411-416.
    [20] Maka A, Srivastava V J, Kllbane J J, Akin C. Biological solubilization of untreated North Dakota lignite by a mixed bacteral and mixed bacteral/fungal culture [J]. Appl Biochem Biotech, 1989, 20/21 (1): 715-729.
    [21] Gupta R K, Deobald L. Depolymerization and chemical modification of lignite coal by pseudomnoas cepacia strain DLC-07 [J]. Appl Biochem Bictech, 1990, 24/25 (1): 899-911.
    [22] Quigley D R, Ward B. Evidence that microbially produced alkaline materials are involved in coal biosolubilization [J]. Appl Biochem Biotech, 1989, 20/21 (1): 753-763.
    [23] Cohen M S, Bowers W C, et al. Cell-free solubilization of coal by polyporus versicolor [J]. Appl Environ Microbiol, 1987, 539 (12): 2840-2843.
    [24]谢克昌.煤的结构与反应性的多方位研究[J].煤炭转化,1992,15(1):24-30.
    [25]谢克昌.煤的结构与反应性.北京:科学出版社. 2002.
    [26] Coshell L, Mclver R G, Chang R. X-ray computed tomography of Australian oil shales: non-destructive visualization and density determination [J]. Fuel, 1994, 73 (8): 1317-1321.
    [27]马志茹,张蓬州,丁广良.煤的核磁共振成像研究[J].中国科学(B),1996,26(2):168-173.
    [28]杨起,潘治贵,汤达帧.煤结构的STM和AFM研究[J].科学通报,1994,39(7):633-635.
    [29] Sakbut P D, Berkozechi S, Bimer J. Preliminary oxidation effect on the conversion of coal in the reaction with methanol and sodium hydroxide [J]. Fuel Process Technol, 1988, 18 (2): 287-292.
    [30] Molbey D P, Bell A T. Effect of zinc-chloride on the cleavage of ether etructure present in Coal [J]. Fuel, 1979, 58 (3): 661-665.
    [31] Allen D T, Gavalas C R. Reactions of methylene and ether bridges, Fuel, 1979, 58: 724-729.
    [32] Given P H. The distribution of hydrogen in coal and its relation to coal structure [J]. Fuel, 1960, 39 (1): 147-151.
    [33] Barkowitz N. The chemistry of coal [M]. New York: Elsevier, 1985.
    [34] Cemy J, Pavlilcova H. Chemical changes of coal matter after treatment with ethylenediamine [J]. Fuel Process Technol, 1991, 27 (4): 307-318.
    [35] Stefannove M, Simoneit B R T, Stojanova G, et al. Composition of the extract from a carboniferous bituminous coal [J]. 1. Bulk and molecular constitution. Fuel, 1995, 74 (5): 768-778.
    [36] Larsen J W, Mohammadi M. Structural changes in coals due to pyridine extraction [J]. Energy & Fuels, 1990, 4 (1): 107-110.
    [37]陈茺,高晋生,颜涌捷.环己酮抽提煤的研究[J].燃料化学学报,1997,25(1):60-64.
    [38] Iino M, Takanohashi T, Obsuga H. Extraction of coals with CS2-N-methyl- 2-pyrrolidinone mixed solvent at room temperature: effect of coal rank and synergism of the mixed solvent [J]. Fuel, 1988, 67 (12): 1639-1647.
    [39] Iino M, Takanohashi T, Ohkawe T. Extraction of coal with CS2-NMP mixed solvent at room temperature [J]. Fuel, 1991, 70 (10): 1236-1237.
    [40] Painter P C, Opaprakasit P, Scaroni A. Ionomers and the structure of coal [J]. Energy & Fuels, 2000, 14 (5): 1115-1118.
    [41] Stock L M, Obeng M. Oxidation and carboxylation: A reaction sequance for the study of aromatic structural elements in pocahontas No.3 Coal [J]. Energy & Fuels, 1997, 11 (4): 987-997.
    [42]魏贤勇,宗志敏,秦志宏.分子煤化学的构想及其发展前景.中国工程院化工、冶金与材料工程学部第二届学术会议论文集.北京:清华大学出版社,1999.
    [43] Wei Xianyong, Zong Zhimin, Wu Lin. LC/MS analysis of CS2-NMP soluble fraction from Upper Freeport coal. Prospects for Coal Science in 21st Century. Taiyuan: Shanxi Science and Technology Press, 1999.
    [44]顾永达,相宏伟,肖贤明.伊敏煤田伍牧场矿区煤中多环芳烃分布特征[J].燃料化学学报, 1996,24(4):335-340.
    [45]王旭珍,顾永达,盛国英. GC/MS分析煤抽出物中的含氮杂环化合物[J].现代科学仪器, 2000,2(5):15-17.
    [46]徐秀峰,张蓬洲.用MS/MS研究气煤吡啶抽提残煤热解加氢产物的组成结构[J].煤炭转化, 1995,18(3):76-79.
    [47] Sobkowiak M, Painter P. A comparision of drift and KBr pellet methodologies for the quantitative analysis of functional groups in coal by IR spectroscopy [J]. Energy & Fuels, 1995, 9 (2): 359-363.
    [48]刘颖,张蓬洲,吴奇虎.抚顺烟煤及其抽出物的FTIR光谱结构表征[J].燃料化学学报, 1992,20(1):96-100.
    [49]秦志宏,袁新华,宗志敏,魏贤勇.用XRD、TEM和FTIR研究镜煤在CS2-N-甲基-2-吡咯烷酮混合溶剂中溶解行为[J].燃料化学学报,1998,26(3):275-279.
    [50]朱素喻,李凡,李香兰.用核磁共振和红外光谱构造煤抽提物的结构模型[J].燃料化学学报,1994,22(4):427-432.
    [51]徐秀峰,张蓬洲,杨保联.用13C-NMR及技术分析气煤加氢产物中沥青烯段分的组成结构[J].燃料化学学报,1995,23(4):410-416.
    [52]陈茺.煤中非共价键行为的研究.华东理工大学博士毕业论文,华东理工大学图书馆. 1997.
    [53] Cerny J. Structural dependence of C-H bond absorptivities and consequences for FTIR analysis of coals [J]. Fuel, 1996, 75 (11): 1301-1306.
    [54]马志茹,张蓬洲,赵秀荣.峰峰肥煤热解加氢产物的高分辨NMR研究[J].燃料化学学报,1996,24(2):155-161.
    [55]秦匡宗,赵丕裕.利用固体13C核磁共振技术研究山东黄县褐煤的化学结构[J].燃料化学学报,1990,18(1):1-7.
    [56] Wilson M A, Vassallo A M. Devolopment in high resolution solid-state 13C-NMR spectroscopy of coals [J]. Org Geochem, 1985, 8: 299-312.
    [57] Patai S. The chemistry of the ether linkage. Interscience, New York, 1967.
    [58] Bently K W, Kirby G W. Elucidation of organic structures by physical and chemical methods. Wiley-Interscience, New York, 1972.
    [59] Makabe M, HiranoY, Ouchi K. Extraction increase of coals treated with alcohol-sodium hydroxide at elevated temperatures [J]. Fuel Process Technol, 1978, 57 (5): 289-292.
    [60] Howard H C. Chemistry of coal utilization. Ed: Lowry H H, John Wiley, New York, 1945.
    [61] Kuznetsov P N, Sharypov V I, Rubaylo A I and Korniyets E D. Study of Kansk-Atchinsk lignite liquefaction in lower aliphatic alcohol using flow periodical function [J]. Fuel, 1988, 67 (12): 1685-1690.
    [62] Kuznetsov P N, Beregovtsova N G, Rubaylo A I, Korniyets E D and Pavlenko N I. Study of Kansk-Atchinsk lignite liquefaction using deuterated alcohol [J]. Fuel, 1991, 70 (5): 559-563.
    [63] Makabe M and Ouchi K. Reaction mechanism of alkali-alcohol treatment of coal [J]. Fuel Process Technol, 1979, 2 (3): 131-141.
    [64] Makabe M and Ouchi K. Solubility increase of coals by treatment with ethanol [J]. Fuel Process Technol, 1981, 5 (2): 129-139.
    [65] Makabe M and Ouchi K. Effect of pressure and temperature on the reaction of coal with alcohol-alkali [J]. Fuel, 1981, 60 (4): 327-329
    [66] Ouchi K, Ozawa H, Makabe M, Itoh H. Dissolution of coal with NaOH-alcohol: Effect of alcohol species [J]. Fuel, 1981, 60 (6): 474-476.
    [67] Anderson L L, Chung K E, Shabtai J S. New approaches in coal chemistry, ACS Symposium Series 169, Am Chem Soc, Washington D C, 1981, 223.
    [68] Sakbut P D. Berkozechi S and Bimer J. Preliminary oxidation effect on the conversion of coal in the reaction with methanol and sodium hydroxide [J]. Fuel Process Technol, 1988, 18 (5): 287-292.
    [69] Tanakom Stulthal. Ph.D. Dissertation, University of Utah, 1987.
    [70] Yuan Zhang. Ph.D. Dissertation, University of Utah, 1991.
    [71] Calkins W H. Coal Flash Pyrolysis 3. An analytical method for polymethylene moieties in Coal [J]. Fuel, 1984, 63 (8): 1125-1129.
    [72] Snape C E, Ladner W R, Bartle K D. Fate of aliphatic groups in low-rank coals duringextraction and pyrolysis processes [J]. Fuel, 1985, 64 (10): 1394-1400.
    [73] Ross D S and Blessing J E. Possible hydride transfer in coal conversion process. ACS Symposium Series 139, Am Chem Soc, Washington D C, 1980.
    [74] Benjamin B M, Raaen V F, Maupin P H, Brown L L and Collins C J. Thermal cleavage of chemical bonds in selected coal-related structures [J]. Fuel, 1978, 57 (5): 269-272.
    [75] Stein S E. A fundamental chemical kinetics approach to coal conversion. ACS Symposium Series 169, Am Chem Soc, Washington D C, 1981.
    [76] Olson E S, Diehl J W and Froehlich H L. Structural feature of low-rank coal important in liquefaction, bioconversion and gasfication [J]. Fuel Process Technol, 1987, 15 (3): 319-324.
    [77] Wiser W H, Hill G R and Kertamus N J. Kinetic study of pyrolysis of high volatile bituminous coal [J]. Industrial and engineering Chemistry Process Design and Development, 1967, 6 (1): 133-138.
    [78] Gorin E. Fundamental of coal liquefaction in chemistry of coal utiliazation second supplementary volume. Ed: John Wiley, New York, 1981.
    [79] Whiteburst D D, Mitchell T O, Farcasiu M. Coal liquefaction. Academic Press, New York, 1980.
    [80] Reggel L, Wender I, Raymond R. Catalytic dehydrogenation of elucidating the structure of coal [J]. Fuel, 1980, 59 (10): 694-698.
    [81] Deno N C, Greigger B A, Stroud S O. New method for elucidating the structure of coal [J]. Fuel, 1978, 57 (8): 455-459.
    [82] Deno N C, Greigger B A, Jones A D, Minard R D. Chemical structure of wyodak coal [J]. Fuel, 1980, 59 (10): 699-700.
    [83]李凡,张永法,谢克昌.平朔气煤显微组分的结构特征[J].太原理工大学学报,1992,23(4):54-61.
    [84] Durfee S L and Voorhees K J. Pyroysis-Mass spectroscopic prediction of liquefaction reactivity with coal properties [J]. Am Chem Soc, Div Fuel Chem, Prepr, 1992, 28 (5): 1-5.
    [85] Senftle J T, Kuehn D, Davis A, Brozoski B, Rhoads C and Painter P C. Characterization of vitrinite concentrates: 3. Correlation of FTIR measurements to thermoplastic and liquefaction behavior [J]. Fuel, 1984, 63 (2): 245-250.
    [86] Szladow A J and Given P H. The role of oxygen functional groups in the mechanisms of coal liquefaction[J].. Am Chem Soc, Div Fuel Chem, Prepr, 1978, 23 (4):161-164.
    [87] Shan Y T. Reaction engineering in direct coal. Addison-Wesley Publ Co, Reading, Mass, 399
    [88] Chaffee A L, Perry G J, Johns R B. Coal structure. Am Chem Soc Adv Chem Series, #192.Washington D C, 1981.
    [89] Molbey D P, Bell A T. Effects of zinc chloride on the cleavage of ether structures present in coal [J]. Fuel, 1979, 58 (9): 661-666.
    [90] Allen D T, Gavalas C R. Reactions of methylene and ether bridges [J]. Fuel, 1984, 63 (5): 586-592.
    [91] Speight J G. The Chemistry and technology of coal. Marcel Dekker inco, New York and Basel, 1982.
    [92] Wiser W H. Proceedings of the conference-scientific problems relevant to coal utilization. Conference proceedings D O E Symposium Series, W Virginia University, Morgantown, W V, 1977.
    [93] Liotta R. Selective Alkylation of acidic hydroxyl groups in Coal [J]. Fuel, 1979, 58 (10): 724-728.
    [94] Youtcheff J S, Given P H. Dependence of coal liquefaction behavior on coal characteristics. 8. Aspects of the phenomenology of the liquefaction of some coal [J]. Fuel, 1982, 61 (10): 980-987.
    [95] Huang C B, Stock L M. On the sulphur compounds in coal liquefaction [J]. Am Chem Soc Prepr Div Fuel Chem, 1982, 27 (3/4): 28-34.
    [96] Choudary B M, Kantam M L, Santhi P L. New and ecofriendly options for the production of speciality and fine chemicals [J]. Catal Today, 2000, 57 (1/2): 17-32.
    [97]解革,朱建华,淳远.微波法研制CaO/NaY强碱性沸石催化新材料[J].催化学报,2001,22(5):445-448.
    [98] Brune1 D. Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals [J]. Microporous and Mesoporous Material, 1999, 27 (2/3): 329-344.
    [99]魏彤,王谋华,魏伟.固体碱催化剂[J].化学通报,2002,65(9):594-600.
    [100]薛常海,王日杰,张继炎.碱土金属氧化物催化氧化异丙苯反应研究[J].石油学报,2002, 18(3):30-35.
    [101] Kloestra K R, Van M L, Bekkum H V. Binarycaesium-lanthanum oxide supported on MCM-41:A new stable heterogeneous basic catalyst [J]. J Chem Soc Faraday Trans, 1997, 93 (6): 1211-1220.
    [102] Bal R, Tope B B, Sivasanker S. Vapour phase O-methylation of dihydroxy benzenes with methanol over cesium-loaded silica, a solid base [J]. J Mol Catal A: Chenfical, 2002, 181 (1/2): 161-171.
    [103] Ono Y. Solid base catalysts for the synthesis of fine chemicals [J]. J Catal, 2003, 216 (1/2): 406-415.
    [104] Tanabe K, Holderich W F. Industrial application of so1id acid-base catalysts [J]. Appl Cata1, A: General, 1999, 181 (2): 399-434.
    [105] Borawekar S V, Doskocil E J, Davis R J. Microcalorimetric study of CO2 and NH3 adsorption on Rb and Sr-modified catalyst supports [J], Langmuir, 1998, 14 (7): 1734-1738.
    [106] Zhu J H, Wang Y, Chun Y. Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY [J]. J Chem Soc Faraday Trans, 1998, 94 (8): 1163-1169.
    [107] Tanabe K, Holderich W F. Industrial application of so1id acid base catalysts [J]. Appl Cata A: General, 1999, 181 (2): 399-434.
    [108] Fu Y, Baba T, Ono Y. Vapor-phase reactions of catechol with dimethyl carbonate Part II: selective synthesis of guaiacol over alumina loaded with alkali hydmxide [J]. Appl Catal A: General, 1998, 166 (2): 425-430.
    [109] Handa H, Baba T, Ono Y. H-D exchange between methane and deuteriated potassium amide supported on alumina [J]. J Chem Soc Faranday Tram, 1998, 94 (3): 451-454.
    [110]董林,陈懿.一些离子化合物在CeO和Al2O3载体上的分散[J].催化学报,1995,16(2):85-86.
    [111] Hatton H. Solid Base Catalysts: Generation of basic sites and application to organic synthesis [J]. Appl Cata A: General, 2001, 222 (1/2): 247-259.
    [112] Pines H. Eschinazi H E. Studies in the Terpene Series XXIV. 1. Sodium-catalyzed double bonds migration and dehydrogenation of d-limonene, l-phellandrene and of 2,4(8)-and 3,8 (9)-p-menthadiene [J]. J Am Chem Soc, 1955, 77 (23): 6314-6321.
    [113]中钢集团鞍山热能研究院.南澳能源开发有限公司褐煤低温干馏改质项目设计方案. 2007.
    [114]戴和武,谢可玉编著.褐煤利用技术.北京:煤炭工业出版社,1998.
    [115] Nakagawa H, Namba A, B?hlmann M, Miura K. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst [J]. Fuel, 2004, 83 (6): 719-725.
    [116] Mae K, Shindo H, Miura K. A new two-step oxidative degradation method for producing valuable chemicals from low rank coals under mild conditions [J]. Energy & Fuels, 2001, 15 (3): 611-617.
    [117] Durie R A. The science of Victorian brown coal: structure, properties and consequences for utilization. Butterworth-Heinemann: Oxford, 1991.
    [118] Bergins C. Mechanical thermal dewatering of lignite. Part 2: A rheological model for consolidation and creep process [J]. Fuel, 2004, 83 (3): 267-276.
    [119] Zeng C, Clayton S, Wu H, Hayashi J, Li C Z. Effects of dewatering on the pyrolysis and gasification reactivity of Victorian brown coal [J]. Energy & Fuels, 2007, 21 (2): 399-404.
    [120] Li B M, Zong Z M, Zhou Y Y, Cao J P, Liu G F, Wei X Y. GC/MS analysis of organic compounds in hot water-extractable fraction from Shenfu coal. Proceedings of the 9th Japan-China Symposium on Coal and C1 Chemistry, Chengdu, Sichuan, China, 2006.
    [121] Yang Y, Lu Y, Xiang H, Xu Y, Li Y. Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling [J]. Polymer Degradation and Stability, 2002, 75 (1):185-191.
    [122] Zhang C M, Xu L, Zhang H H, Yang J L, Du J, Liu Z Y. Determination of solid products from the de-polymerization of poly (trimethylene terephthalate) in supercritical methanol [J]. Journal of Chromatography A, 2004, 1055 (1/2): 115-121.
    [123] Priyanto U, Sakanishi K, Okumac O, Mochida I. Liquefaction of Tanito Harum coal with bottom recycle using FeNi and FeMoNi catalysts supported on carbon nano-particles [J]. Fuel Process Technol, 2002, 79 (1): 51-62.
    [124] Giray E S, Sonmez O. Supercritical extraction of scrap tire with different solvents and the effect of tire oil on the supercritical extraction of coal [J]. Fuel Process Technol, 2004, 85 (4): 251-265.
    [125] Wiser W H. Scientific problem of coal utilization. Department of Energy, Technical Information Center, USA, 1978, 219-236.
    [126] Takanohashi T, Nakamura K, Terao Y, Iino M. Computer simulation of solvent swelling of coal molecules: Effect of different solvents [J]. Energy & Fuels, 2000, 14 (2): 393-399.
    [127] Boudou J P, Bimer J, Salbut P D, Kuznetsov P N. Effects of LiAlH4 reduction and/or O-methylation on lignite conversion under CH3OH-NaOH solubilization and pyrolysis conditions [J]. Energy & Fuels, 1996, 10 (1): 243-249.
    [128] Mae K, Maki T, Araki J, Miura K. Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature [J]. Energy & Fuels, 1997, 11 (4): 825-831.
    [129]袁红莉,蔡亚岐,周希贵,陈文新.降解褐煤菌种选育及降解产物研究[J].应用与环境生物学报,1999,5(增刊):21-24.
    [130]孟庆函,李善祥,李保庆.低阶煤两段化学降解产物的组成性质[J].燃料化学学报,2000,28(4):306-309.
    [131] Sato Y, Kushiyama S, Kondo Y, Takagi H, Maruyama K, Yoshizawa N. Property of upgraded solid product from low rank coal by thermal reaction with solvent [J]. Fuel Process Technol, 2007, 88 (4): 333-341.
    [132] Masaki K, Yoshida T, Li C, Takanohashi T, Saito I. The effects of pretreatment and the addition of polar compounds on the production of "Hyper Coal" from subbituminous coals [J]. Energy & Fuels, 2004, 18 (4): 995-1000.
    [133]熊友辉.高水分褐煤燃烧发电的集成干燥技术[J].锅炉技术,2006,37(增):46-49.
    [134] Bongers G D, Jackson, W R. Pressurised steam drying of Australian low-rank coals: Part 2. Shrinkage and physical properties of steam dried coals, preparation of dried coals with very high porosity [J]. Fuel process technol, 2000, 64 (1/3): 13-23.
    [135] Strauss K. Method and device for reducing the water content of water-containing brown coal. Patent EP 0784660 B1, WO96 /10064, 1996.
    [136] Christian B. Mechanical/thermal dewatering of lignite. Part2: Archeological model for consolidation and creep process [J]. Fuel, 2004, 83 (3): 267~276.
    [137]任祥军.低阶煤的干燥进展[J].煤炭加工与综合利用,1996,(4):85-87.
    [138]刘旭光,李保庆.褐煤的热处理改质研究[J].煤炭转化,2000, 23(1):39-42.
    [139]王晓华,熊玉春,顾晓华,宗志敏,魏贤勇.几种烟煤CS2萃取物的GC/MS分析[J].燃料化学学报,2002,30(1):72-79.
    [140]吴鹏,周国江.不同溶剂对七台河煤萃取效果的影响[J].黑龙江科技学院学报,2005,15(1):10-12.
    [141] Wei X Y; Shen J L, Takanohashi T, Iino M. Effect of extractable substances on coal dissolution: Use of a carbon disulfide-N-methyl-2-pyrrolidinone mixed solvent as an extraction solvent for dissolution reaction products [J]. Energy & Fuels, 1989, 3 (5): 575-579.
    [142]秦志宏,宗志敏,刘建周,马红梅,杨美健,魏贤勇.煤岩组分在二硫化碳-N-甲基-2-吡咯烷酮混合溶剂中的可溶性[J].燃料化学学报,1997,25(6):549-553.
    [143]秦志宏,袁新华,宗志敏,王超,于冰,魏贤勇.用XRD、TEM和FTIR研究镜煤在CS2-N-甲基-2-吡咯烷酮混合溶剂中的溶解行为[J].燃料化学学报,1998,26 (3):275-279.
    [144]秦志宏,袁新华,尹学琼,宗志敏,魏贤勇.岩相对煤在CS2-NMP混合溶剂中溶解性的影响[J].中国矿业大学学报,199,27(4):344-348.
    [145] Shui H, Wang Z, Gao J. Examination of the role of CS2 in the CS2/NMP mixed solvents to coal extraction [J]. Fuel Process Technol, 2006, 87 (3): 185-190.
    [146] Shui H, Wang Z, Wang G. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent [J]. Fuel, 2006, 85 (12-13): 1798-1802.
    [147] Wang Z, Shui H, Zhang D, Gao J. A Comparison of FeS, FeS + S and solid superacid catalytic properties for coal hydro-liquefaction [J]. Fuel, 2007, 86 (5-6): 835-842.
    [148] Zong Z M, Peng Y L, Qin Z H, Liu J Z, Wu L, Wang X H, Liu Z G, Zhou S L, Wei X Y.Reaction of N-Methyl-2-pyrrolidinone with Carbon Disulfide [J]. Energy & Fuels, 2000, 14 (3): 734-735.
    [149] Zong Z M, Peng Y L, Liu Z G, Zhou S L, Wu L, Wang X H, Wei X Y, Lee C W. Convenient synthesis of N-methylpyrrolidine-2-thione and some thioamides [J]. Korean J. Chem. Eng. 2003, 20 (2): 235-238.
    [150] Rtias D S, Sakanishi K, Okuma O, Korai Y, Mochida I. Detailed characterization of heteroatom-containing molecules in light distillates derived from Tanito Harum coal and its hydrotreated oil [J]. Fuel, 2002, 81 (17): 2241–2248.
    [151] Taga R, Tang N, Hattori T, Tamura K, Sakai S, Toriba A, Kizu R, Hayakawa K. Direct-acting mutagenicity of extracts of coal burning-derived particulates and contribution of nitropolycyclic aromatic hydrocarbons [J]. Mutation Research, 2005, 581 (1): 91–95.
    [152] Islas C A, Suelves I, Li W, Morgan T J, Herod A A, Kandiyoti R. The unusual properties of high mass materials from coal-derived liquids [J]. Fuel, 2003, 82: 1813–1823.
    [153]金保升,周宏仓,仲兆平,肖睿,党小剑.三种不同中国煤中多环芳烃的分布特征研究[J].锅炉技术,2004,35(1):1-4.
    [154]金保升,周宏仓,仲兆平,肖睿,黄亚继.煤气化多环芳烃初步研究[J].东南大学学报(自然科学版),2005,35(1):100-104.
    [155] Callén M, Hall S, Mastral A M, Garcia T. PAH presence in oils and tars from coal–tyre coprocessing [J]. Fuel Process Technol, 2000, 62 (1): 53–63.
    [156] Mastral A M, Callén S, García T, Navarro M V. Aromatization of oils from coal-tyre cothermolysis II PAH content study as a function of the process variables [J]. Fuel Process Technol, 2000, 68 (1): 45–55.
    [157]张志红.煤溶剂抽提物的选择性富集及分析[D].太原理工大学,2004.
    [158]候读杰,张林晔.实用油气地球化学[M].石油工业出版社. 2003.
    [159]朱华平,吴宗斌,陈元雄,张平,段世杰,刘晓华,毛宗强.固体超强碱氧化钙催化制备生物柴油及其精制工艺[J].催化学报,2006,27(5):391-396.
    [160] Zhu J H, Googman E M, Smith D K, et al. Promotion effect of KF on the basic properties of ZrO [J]. Chinese Chem. Letter, 1995, 6 (9): 811-814.
    [161]徐莹,常杰,张琦,王铁军,王晨光.固体碱催化剂上生物柴油催化酯化改质[J].石油化工,2006, 35(7):615-618.
    [162] Weinstock L M, Stevenson J M, Tomellini S A, et al. Characterization of the actual catalytic agent in potassium fluoride on acvitated alumina system [J]. Tetrahedron Lett, 1986, 27 (33): 3845-3848.
    [163] Ando T , Brown S J, Clark J H, et al. Alumina-supported fluoride reagents for alkylation ofphenols and alcohols [J]. J Chem Soc Perkin Tran, 1986, 8: 1133-1139.
    [164]田丹碧,韦长梅,史宛芗,王锦堂. KF/Al2O3在Michael加成反应中的应用及其机理[J].南京工业大学学报,2004,26(2):92-98.
    [165] Shabta J W, Zmiercza K, Esteban C. 3rd Biomass conference of the Americas, Montread, Elservier, 1977, 12: 1037-1045.
    [166] Wolfgang G, Glasser P. Lignin: properties and Materials. 3rd Chemical Congress of North America, Toronto, Ont. (USA), American Chemical Society, Washington D C, 1989.
    [167] Charence D C. Hydrocarbons from Methanol [J]. Catal rev, 1983, 25 (1):1-118
    [168] Wender I. Chemicals from Methanol [J]. Catal Rev Sci Eng, 1984, 26 (3/ 4): 303-321.
    [169] Wu H C, Haroid H K. Methanol production and use. Publisher: Marcel Dekker, 1994.
    [170] Herman P, Wayne M S. Base-catalyzed reactions of hydrocarbons and related compounds. Academic Press, New York, 1977.
    [171] George A, Olah W. Hydrocarbon Chemistry. 2nd Edition. Publisher: Wiley, 2003.
    [172]张永发.神府煤的结构及其在甲醇碱催化剂(BCⅡ)体系中的解聚反应性[D].太原理工大学,1999.
    [173]魏贤勇,宗志敏,秦志宏,刘建周,李红旗.面向21世纪的煤液化基础研究和工艺开发[J].煤炭转化,1998,21(1):21-24.
    [174]凌开成,申竣.模型化合物在煤液化研究中的应用[J].煤炭转化,1997,20(1):28-31.
    [175] Shinn J H. From coal to single-stage and two-stage products: a reaction model of coal structure [J]. Fuel, 1984, 63 (9): 1187-1196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700