树木提取物的功能性合成及其在木材防腐中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树木提取物用于木材防腐是现代开发新型木材防腐剂重要研究方向,树木提取物中的部分化合物对木材腐朽菌具有不同程度的抑制活性,将其用于木材防腐,与传统防腐剂相比,具有鲜明的优点。
     本研究按照化学药剂的极性大小,选用水、甲醇、丙酮、氯仿和乙醚等5种试剂,对怀槐心材、树皮分别进行了提取,得出实验和分析结果:其心材提取物的总得率为12.59%;树皮提取物的总得率为57.68%。分别对怀槐心材的甲醇提取物、丙酮提取物、怀槐树皮的氯仿提取物、乙醚提取物进行了GC-MS检测分析。在怀槐心材提取物中确定的化学成分有25种,其中含量较多的为苯酚类物质,如苯酚、间苯二酚、邻苯二酚、邻甲氧基苯酚、间甲氧基苯酚等,此外还含有少量烯类、蒽类与菲类化合物;在怀槐树皮提取物中的化学成分有5种,其中多为脂肪酸类与脂类物质,如9-十六碳烯酸甲酯、辛酸等;辛酸在怀槐树皮氯仿提取物中所占比例为3.826%,在乙醚提取物中所占比例为8.260%。
     对提取物的混合物进行了大量的抑菌实验,在此基础上,采用滤纸片法,用9-十六碳烯酸甲酯、苯酚、间苯二酚、角鲨烯类化合物、邻苯二酚、邻甲氧基苯酚、辛酸对白腐菌[采绒革盖菌(Coriolus versicolor)]、褐腐菌[密粘褶菌(Gloeophyllum trabeum)]、软腐菌[球毛壳菌(Chaetomium globosum)]、霉菌[宛氏拟青霉菌(Paecilomyces variot Bainier)]做抑制实验。结果显示:在4%药物浓度下,9-十六烯酸甲酯仅对宛氏拟青霉菌有一定的抑制效果。在2%药物浓度下,9-十六烯酸甲酯、苯酚、角鲨烯、邻甲氧基苯酚对4种木材腐朽菌没有抑制效果;间苯二酚对白腐菌抑制效果较好,对球毛壳菌和宛氏拟青霉菌的抑制效果略差,对褐腐菌没有抑制效果;邻苯二酚对4种菌的抑制效果依次为:褐腐菌>球毛壳菌>宛氏拟青霉菌>白腐菌;对4种菌抑制效果最好的药物为辛酸,其效果依次为:白腐菌>褐腐菌>球毛壳菌>宛氏拟青霉菌。
     为进一步提高辛酸对木材腐朽菌的抑制活性以及作为木材防腐剂的适用性,本研究以辛酸、羟乙基乙二胺、二乙烯三胺、苄基氯和硫酸二甲酯为原料功能性合成了2种咪唑啉和4种咪唑啉系列季铵盐:
     (1)1-羟乙基-2-庚基咪唑啉(1-hydroxyethyl-2-heptylimidazolines,HOI);
     (2)1-氨乙基-2-庚基咪唑啉(1-Aminoethyl-2-heptylimidazoline;EOI);
     (3)1-苄基-1-羟乙基-2-庚基咪唑啉(1-hydroxyethyl-1-benzyl-2-heptylimidazolines,HOIB);
     (4)1-甲基-1-羟乙基-2-庚基咪唑啉(1-hydroxyethyl-1-methyl-2-heptylimidazolines,HOIM);
     (5)1-苄基-1-氨乙基-2-庚基咪唑啉(1-Aminoethyl-1-benzyl-2-heptylimidazoline;EOIB,);
     (6)1-甲基-1-氨乙基-2-庚基咪唑啉(1-Aminoethyl-1-methyl-2-hept),limidazoline;EOIM)。
     经过CA检索,尚未发现与HOIB和EOIB结构相同的化合物。
     采用菌悬浮液法,以浓度梯度的HOIB、HOIM、EOIB、EOIM溶液,混合白腐菌、褐腐菌的孢子溶液,并与碱性季铵铜(ACQ-C)、酸溶性铬酸铜(ACC)、二甲基二癸基氯化铵(DDAC)、十二烷基二甲基苄基氯化铵(1227)、铜唑(CA-B)等木材防腐剂作对比进行实验室培养实验。结果显示:HOIM、HOIB两种季铵盐抑菌效果较差,EOIB、EOIM的抑菌效果比ACQ-C、DDAC、1227、CA-B略差,但优于ACC。
     采用实验室木块防腐实验方法,以大青杨为试材,选用EOIB、EOIM、ACQ-C、DDAC、ACC、CA-B做对比实验。检测了防腐剂的防腐性能、抗流失性能、对环境的急性毒性以及防腐木材的尺寸稳定性、弹性模量和表观颜色等指标。
     实验室木材防腐试验结果显示:
     1、EOIB对白腐菌和褐腐菌,浓度为2%时,可达到Ⅱ级防腐标准,浓度为4%时,均可达到Ⅰ级防腐标准。
     2、EOIM对白腐菌,浓度为2%时,可达到Ⅱ级防腐标准,浓度为4%时,可达到Ⅰ级防腐标准;对褐腐菌,浓度为2%时,可达到Ⅲ级防腐标准,浓度为4%- 6%时,可达到Ⅱ级防腐标准,浓度为8%时,可达到Ⅰ级防腐标准。
     3、CA-B对白腐菌和褐腐菌,浓度为2%时,均可达到Ⅰ级防腐标准。
     4、ACQ-C对白腐菌和褐腐菌,浓度为2%时,均可达到Ⅰ级防腐标准。
     5、DDAC对白腐菌和褐腐菌,浓度为2%时,均可达到Ⅰ级防腐标准。
     6、ACC对白腐菌,浓度为2%时,可达到Ⅰ级防腐标准;对褐腐菌,浓度为2%- 8%时,可达到Ⅱ级防腐标准,浓度为10%时,可达到Ⅰ级防腐标准。
     各种防腐剂的流失率:ACQ-C,20.43%;CA-B,17.23%;EOIM,10.22%;EOIB,10.05%;DDAC,8.31%;ACC,7.57%。
     对环境的急性毒性试验结果为:
     安全浓度/(mg·L~(-1)):DDAC为2.47,EOIB为2.02,CA-B为0.63,ACC为0.46,ACQ-C为0.01。
     半致死浓度LC_(50)/(mg·L~(-1)):24h,DDAC为10.20,EOIB为7.15,CA-B为3.60,ACC为3.20,ACQ-C为2.59;48h以上,DDAC为9.50,EOIB为7.01,CA-B为3.00,ACC为2.50,ACQ-C为0.66。
     木材经过真空浸注防腐剂药液处理后,其防腐木材的抗弯强度(MPa)从高到低依次为EOIM>空白试样>ACC>CA-B>ACQ-C>DDAC>EOIB;抗弯弹性模量(MPa)从高到低依次为EOIM>ACC>CA-B>ACQ-C>空白试样>EOIB>DDAC。
     防腐木材的尺寸稳定性实验结果显示:
     从全干至气干,线湿胀率从高到低依次为:CA-B>EOIB>空白试样>DDAC>ACC>EOIM>ACQ-C;体积湿胀率从高到低依次为:DDAC>EOIB>EOIM>ACQ-C>空白试样>CA-B>ACC。
     从全干至吸水,线湿胀率从高到低依次为:空白试样>CA-B>EOIB>DDAC>EOIM>ACQ-C>ACC;体积湿胀率从高到低依次为:空白试样>ACC>DDAC>EOIM>CA-B>EOIB>ACQ-C。
     综合大量的实验室试验和科学研究结果表明:(1)部分树木提取物成分对木腐菌具有抑制活性;(2)树木提取物经功能性合成后,可适于做某种环境下的木材防腐剂;(3)以树木提取物作为新型木材防腐剂具有对环境无污染,对人畜无害,师法自然等特点。选择合适的树木提取物成分为原料,进行功能性合成,可作为研究、开发新型木材保护剂的有效途径之一。
It is an important research direction that tree extractives are used as wood preservatives, because some compounds of tree extractives have good resistance to wood preservation fungi. Extractives were prepared from the bark and heartwood of Wild Siris (Maackia amurensis Rupr.et.Maxim) with water, methanol, acetone, chloroform and ether, respectively. The total extractives with all different solvents took up 12.59% (w/w) of the heartwood and 57.68% of the bark. Among the heartwood extractives, 25 compounds were identified by the analysis of GC/MS. Most of them are phenolic compounds, such as phenol, resorcinol, catechol, 2-methoxy-phenol, 3-methoxy-phenol etc. Besides, there are also a small amount of alkene, anthracene, phenanthrene and their derivatives. From the bark extractives of Wild Siris, 5 compounds were identified by the same method. They are fatty acid, fat and their derivatives etc., such as 9-hexadecenoic acid methyl ester and octanoic acid. Octanoic acid took up 3.826% of the chloroform extractive from the bark of Wild Siris, and 8.260% of the ether extractive.
     In this study, the resistance of 9-hexadecenoic acid methyl ester, phenol, catechol, resorcinol, triacontahexaene, 2-methoxy-l,2-benzenediol, octanoic acid to a white rot fungus (Paecilomyces variot Bainier), a brown rot fungus (Gloeophyllum trabeum), a soft rot fungus (Chaetomium globosum) and a penicillium fungus (Coriolus versicolor) were determined respectively by filter paper disk method on the basis of the mixtures resistance experiments. The results showed that 4% 9-hexadecenoic acid methyl ester is resistant to Penicillium. At 2% of the concentration, 9-Hexadecenoic acid methyl ester, Phenol, Triacontahexaene, 2-Methoxy-1,2-Benzenediol have no resistance to all the tested fungi. The resistance of resorcinol is high to the white rot fungus, low to the brown rot fungus and the penicillium fungus, and no effect to the brown rot fungus. Catechol is resistant to all of the 4 fungi. Its bioactivity to the fungi in turn is: to the brown rot fungus greater than the soft rot fungus, greater than the penicillium fungus, and greater than the white rot fungus. Octanoic acid has the best resistance to all the tested fungi and its bioactivity to the fungi in turn is: to the white rot fungus better than the brown rot fungus, better than the soft rot fungus, and better than the penicillium fungus. In order to improve the resistance of octanoic acid to wood decay fungi and the its applicability as a wood preservative, 6 imidazolines derivatives include 4 quaternary ammonium salt(OIQ) were synthesized:
     (1) (1-hydroxyethyl-2-heptylimidazolines, HOI);
     (2) (1-Aminoethyl-2-heptylimidazoline, EOI);
     (3) (1-hydroxyethyl-1- benzyl -2-heptylimidazolines, HOIB);
     (4) (1-hydroxyethyl-1- methyl -2-heptylimidazolines, HOIM);
     (5) (1-Aminoethyl-1- benzyl -2-heptylimidazoline, EOIB);
     (6) (1-Aminoethyl-1- methyl -2-heptylimidazoline, EOIM ).
     In Chemistry Abstract (CA), the same structure compounds with HOIB or EOIB have notbeen found.
     Then, the cultivation experiments were done by the suspension method of white rot fungusspore and brown rot fungus spore with HOIM, HOIB, EOIM, EOIB, ACQ-C, DDAC, ACC,BAC(1227) and CA-B separately. The results display that the resistance of HOIM and HOIB towhite and brown rot fungi is not good. The resistance of EOIM and EOIB to the white andbrown rot fungi is not as good as that of ACQ-C, DDAC, 1227 and CA-B, but better than thatofACC.
     By the method of wood block preservation in laboratory, we finished the wood block [(UssuriPoplar), (Populus ussuriiensis Kom.)] preservation experiments with EOIM, EOIB, ACQ-C,DDAC, ACC and CA-B to the white rot fungus and brown rot fungus.The wood decay resistance, leachability, toxicity to the environment, dimensional stability,modulus of elasticity, and color was determined. The results were as follows:
     1. To the white and brown rot fungi, the wood treated with 2% EOIB could meet the demand of DegreeⅡof preservation, and the wood treated with 4% EOIB could be ranked DegreeⅠ.
     2. To the white rot fungus, the wood treated with 2% EOIM could meet the demand of DegreeⅡof preservation, and the wood treated with 4% EOIM reached Degree I . To the brown fungus, the wood treated with 2% EOIM could meet the demand of DegreeⅢof preservation, and the wood treated with 4%-6% EOIM reached DegreeⅡ, and the wood treated with 8% EOIM reached DegreeⅠ.
     3. To the white and brown rot fungi, the wood treated with 2% CA-B could meet the demands of DegreeⅠof preservation.
     4. To the white and brown rot fungi, the wood treated with 2% ACQ-C could meet the demands of DegreeⅠof preservation.
     5. To the white and brown rot fungi, the wood treated with 2% DDAC could meet the demands of DegreeⅠof preservation.
     6. To the white rot fungus, the wood treated with 2% ACC could meet the demands of Degree I of preservation. To the brown rot fungus, the wood treated with 2%-8% ACC could meet the demands of DegreeⅡof preservation and the wood treated with 10% could reach DegreeⅠ.
     The leachability was 20.43% for ACQ-C, 17.23% for CA-B, 10.22% for EOIM, 10.05% for EOIB, 8.31% for DDAC and 7.57% for ACC.
     The safety concentration (mg·L~(-1)) is 2.47 for DDAC, 2.02 for EOIB, 0.625 for CA-B, 0.46 forACC and 0.01 for ACQ-C.
     The half lethal concentration [LC_(50) /(mg·L~(-1))] is 10.20(the time of operation at less than 24h)and 9.50(the time of operation above 48h ) for DDAC, 7.15 (less than 24h) and 7.01 (above48h ) for EOIB, 3.60(less than 24h) and 3.00(above 48h ) for CA-B, 3.20 (less than 24h) and2.50 (above 48h) for ACC, 2.59(less than 24h) and 0.66(above 48h ) for ACQ-C.
     The wood samples were impregnated with preservatives by vacuum and pressure method.Their bending strength and elastic modulus of bending was tested. According to the results, theorder of bending strength from high to low is EOIM, Control, ACC, CA-B, ACQ-C, DDACand EOIB and the elastic modulus of bending from high to low is EOIM, ACC, CA-B, ACQ-C,Control, EOIB and DDAC.
     The results of the treated wood dimensional stability are as follows:From oven-dry to air-dry, the line expansivity of the treated wood from high to low is CA-B,EOIB, Control, DDAC, ACC, EOIM and ACQ-C. The volume expansivity of the treatedwood from high to low is DDAC, EOIB, EOIM, ACQ-C, Control, CA-B, ACC.
     From oven-dry to sopping water, the line expansivity of the treated wood from high to low isControl, CA-B, EOIB, DDAC, EOIM, ACQ-C and ACC. The volume expansivity of thetreated wood from high to low is Control, ACC, DDAC, EOIM, CA-B, EOIB and ACQ-C.
     As the results from a mass of experiments and the research, some compounds of treeextractives have resistant ability to wood decay fungi. After functional synthesis, thecompounds of tree extractives are feasible to be used as wood preservatives in someenvironment. As a new type wood preservative, the tree extractives have the characters of nopollution to environment, innocuity to human and domestic animal. The compounds imitatenature. It is an effective approach to develope the new type wood preservetives by using themethod of functional synthesis compounds of tree extractives.
引文
[1]李坚.木材保护学[M].北京.科学出版社,2006
    [2]李坚等.木材科学[M].北京.高等教育出版社.2002
    [3]王恺,管宁.我国木材资源战略转移的技术支撑[J].木材工业,2002,16(1):3-5
    [4]金重为.世界木材防护工业的进展[J].林产工业,2001,28(5):39-42
    [5]曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-125
    [6]李玉栋.我国木材防腐工业的状况、问题与对策[J].木材工业,2004,18(1):20-23
    [7]蒋明亮,费本华:木材防腐的现状及研究开发方向[J].世界林业研究.2002,15(3):45-47
    [8]陈人望,金重为,施振华.我国木材防护工业现状和发展建议[J].林产工业,2003,30(4):3-5
    [9]李玉栋.木材防腐——延长木材使用寿命的有效措施[J].人造板通讯,2001(11):3-5
    [10]宋桢,尤纪雪.硼化物抗流失性能的改善[J].林产工业,1997,24(4):12-147
    [11]高峰,郭锦棠,王博,刘意鸥.木材防腐剂氨溶烷基铜铵的制备和防腐性能研究[J].化工进展.2005,24(5):532-536
    [12]覃道春.铜唑类防腐剂在竹材防腐中的应用基础研究.博士论文.北京.中国林业科学研究院.2004.8
    [13]W. D. Ellis. Pyrolysis, leach resistance, hygroscopicity, and decay resistance of wood treated with organophosphorus esters in combination with isophorone diisocyanate[J]. Wood and fiber science, 1998,25(3):236-241
    [14]Haruhiko Yamaguchi. Silicic acid boric acid complexes as ecologically friendly wood preservatives[J]. Forest Products Journal. Madison: Jan. 2005. Vol. 55, Iss. 1; 88-92
    [15]T.P. Schultz, H. Militz, M. H. freeman, B. Goodell, D. D. Nicholas. Development of Commercial Wood Preservatives. Efficacy, Environment, and Health Issues. American of Cellulose and Renewable Materials.2008, 3-8
    [16]D. D. Nicholas. Wood Preservation in the90's and Beyond. Madison WI,1995:169-1736
    [17]D. D. Nicholas, T. P. Schultz. Biocides That Have Potential as Wood Preservation Overview Wood Preservation Beyond'90s. Madison WI,1995:169-1736
    [18]T.P. Schultz, D. D. Nicholas. Utilizing synergism to develop new wood preservatives. Wood preservation in the '90s and beyond. In: proceeding from the conference sponsored by the Foest Products Society, Savannah, GA. Sept. 26-28, 199
    [19]B. Goodell, D. D. Nicholas. T .P. Schultz, A Brief Overview of Non-Arsenical Wood Preservative Systems. Wood Deterioration & Preservation: Adevances in Our Changing World. Chap 26.ACS
    [20]任世学.季铵盐类木材防腐剂的应用研究.硕士论文.哈尔滨.东北林业大学.S782.33.2001.5,1-30
    [21]郭祥峰,贾丽华.阳离子表面活性剂及应用[M].北京化学工业出版社.2002,134-148
    [22]贾丽华,郭祥峰,陈华群,陆铭.壬基酚为原料合成双季铵盐[J].精细化工.2001,18(1):576-578
    [23]谢亚杰,刘深,王伟.表面活性剂制备技术与分析测试[M].北京.化学工业出版社.2006,84-104
    [24]张平.以油脂为基料的织物柔软剂的现状[J].日用化学品科学.2000,5(23):33-39
    [25]周绍萁.阳离子型柔软剂的合成、性能及应用[J].印染助剂,2002,3(19):1-5
    [26]黄春华,俞斌.新型杀菌剂长链烷基铵[J].精细化1,2002,8(19):51-53
    [27]张高勇,李秋小.中国油脂基表面活性剂的研究与开发[J].日用化学品科学,2001,1(24):1-5
    [28]常致成.脂肪酸甲酯制备表面活性剂的最新进展[J].化工科技.2000,8(1):60-64
    [29]胡扬根,丁明武.咪唑啉酮类杀菌剂的研究进展[J].华中师范大学学报(自然科学版)2005,39(4):490-493
    [30]石顺存,王学业,易平贵,周秀林,陈安国.咪唑啉季胺盐互变异构体稳定性研究[J].石油学报(石油加工)2003,19(6):52-57
    [31]周永红,宋湛谦,何文深,谢晖.水溶性松香基咪唑啉的合成及缓蚀性能[J].林产化学与工业.2003,23(4):7-10
    [32]陈云峰,黄年玉,丁明武.2-烷硫基-4-芳基亚甲基-5-氢-1-苯氨基-1H-咪唑啉-5-酮的合成与杀菌活性[J].有机化学.2004,24(11):1413-1416
    [33]王兆辉,王大喜.咪唑啉化合物生成机理的量子化学研究[J].石油学报(石油加工)1999,15(6):57-62
    [34]李树安,张珍明.红外光谱法测定烷基咪唑啉含量[J].日用化学工业.1991,202(4):38-40
    [35]吴宇峰,周坤坪,梁劲翌.咪唑啉季铵盐水溶性缓蚀剂NH1的合成及其性能研究[J].精细石油化工.2001,(5):39-42
    [36]史真,杨卫国.季铵盐型表面活性剂的合成及物化性能测定[J].高等化学学报1994,15(7):1013-1016
    [37]马广存,魏丰华,黄向东,李赛玉,程延丽,李连发.烷基咪唑啉阳离子表面活性剂的催化合成研究[J].山东科学.1997,10(3):34-38
    [38]李广仁,冯伯成,李高宁,殷树梅.咪唑啉型表面活性剂的合成与应用[J].山东师大学报(自然科学版).1996,11(2):47-50
    [39]金燕,陈志峰.气相色谱-质谱法分析烷基季铵盐阳离子表面活性剂[J].化学世界.1999.(5):266-269
    [40]潘春跃.合成化学[M].北京.化学工业出版社.2005,208-217
    [41]钟振声,杨兆禧,匡科.阳离子咪唑啉表面活性剂的合成[J].精细化工.2000,17(12):690-692
    [42]吴迪,蔡伟民.壳聚糖季铵盐的抑菌机理研究[J].哈尔滨工业大学学报.2005,37(7): 1014-1018
    [43]M.W.Schoeman,J.F.Webber,D.J.Dickinson.The development of ideas in biological control applied to forest products[J].International Biodeterioraton & Biodegradation.1999,(43):109~123
    [44]J.A.M.Jessie.Mechanisms of Wood Decay and Biological Control-An Introduction.International Biodeterioration & Biodegradation[J].1997,39(2):99~100
    [45]J.L.Ricard,W.B.Bollen.Inhibition of Poria carbonica by Scytalidium sp.,an imperfect fungus isolated from Douglas fir poles[J].Can.J.Bot.1968.46,643~647
    [46]J.L.Ricard.Biological control of Fomes annosus in Norway spruce(Picea abies)with immunizing commensals.Studia Forestalia Suecica[J].1970.84,1~50
    [47]J.L.Ricard.Biological control of decay in Douglas-fir poles seven years perspective[J].Eur.J.For.Path.1975,5:175~177
    [48]P.I.Morris,D.J.Dickinson.Laboratory studies on antagonistic properties of Scytalidium species to basidiomycetes with regard to biological control.Research Group on Wood Preservation Documents,1981,No.IRGWP 1130
    [49]A.Bruce,B.King.Biological control of wood decay by Lentinus lepideus(Fr.)produced by Scytalidium and Trichoderma residues.Mat.u.Org.1983.18,171-181
    [50]A.Bruce,B.King.Biological control of decay in creosote treated distribution poles I.Establishment of immunizing commensal fungi in poles.Mat.u.Org.1986a.21,1~14.
    [51]A.Bruce,B.King.Biological control of decay in creosote treated distribution poles Ⅱ.Control of decay by immunizing commensal fungi.Mat.u.Org.1986b.21,165~179
    [52]T.E.Stasz,G.E.,Harman,N.F.Weeden.Protoplast fusion in two biocontrol strains of Trichoderma harzianum,Mycologia.1988.80,141~150
    [53]T.E.Stasz,G.E.Harman,M.L.Gullino.Limited vegetative compatibility following intra-and interspecific protoplast fusion in Trichoderma.Experimental.Mycology 1989,(13):364~371
    [54]H.M.Barnes,R.J.Murphy.Wood Preservation the Classics and the New Age.Forest Prod J,1995,45(9):16~26
    [55]G.M.Walker,A.H.McLeod,V.J.Hodgson.Interactions between killer yeasts and pathogenic fungi.FEMS Microbiology Letters.1995,(127):213~222
    [56]A.Bruce,U.Srinivasan,H.J.Staines,T.L.Highley.Chitinase and Laminarinase Production in Liquid Culture by Trichoderma spp.and their Role in Biocontrol of Wood Decay Fungi.International Biodeterioration & Biodegradation,1995,337~353
    [57]E.J.B.Tucker,A.Bruce,H.J.Staines.Application of Modified International Wood Preservative Chemical Testing Standards for Assesment of Biocontrol Treatments[J].International Biodeterioration & Biodegradation,1997,39(2~3):189~197
    [58]Jessie A. Micales. Mechanisms of Wood Decay and Biological Control-An Introduction[J]. Internatronul Biorleteriorutwn & Biodegradation. 1997, 39 (2-3):99-100
    [59]B. O. Ejechi, D. E. Akpomedaye. The hurdle effect of ureolytic Proteus sp. activity and Trichoderma Viride culture filtrate on growth and wood deteriorating activities of four fungi[J]. International Biodeterioration & Biodegradation. 1998, (41) 153-155
    [60]Y. Hiratsuka, P. Chakravarty. Role of Phialemonium curvatum as a potential biological control agent against a blue stain fungus on aspen[J].Eur. J. For. Path. 1999 ,(29): 305-310
    [61]G. Nicolotti, P. Gonthier, G. C. Varese. Effectiveness of some biocontrol and chemical treatments against Heterobasidion annosum on Norway spruce stumps[J]. Eur. J. For. Path. 1999 (29): 339-346
    [62]H. L. Brown. A. Bruce. Assessment of the biocontrol potential of a Trichoderma viride isolate Part I: Establishment of field and fungal cellar trials[J]. International Biodeterioration & Biodegradation. 1999, (44): 219-223
    [63]C. Payne, A. Bruce. The Yeast Debaryomyces hansenii as a Short-Term Biological Control Agent against Fungal Spoilage of Sawn Pinus sylvestris Timber[J]. Biological Control. 2001,(22):22-28
    [64]G. Roy, G. Laflamme, G. Bussieres, M. Dessureault. Field tests on biological control of Heterobasidion annosum by Phaeotheca dimorphospora in comparison with Phlebiopsis gigantean For. Path. 2003, (33): 127-140
    [65]Changlu Wang, J.E. Powell. Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera: Rhinotermitidae)[J].Biological Control. 2004, (30): 523-529
    [66]A.I. Melent, P. Helisto, L. Yu. Kuz'mina, N. F. Galimzyanova, G. E. Aktuganov, T. Korpela. Use of antagonistic bacilli for biocontrol of fungi degrading fresh wood[J]. Applied Biochemistry and Microbiology. 2006,42(l):62-66
    [67]Dian-Qing Yang, Hui Wan, Xiang-Ming Wang, Zhi-Ming Liu. Use of fungal metabolites to protect wood-based panels against mould infection[J]. BioControl. 2007, (52):427-436
    [68]Dian-Qing Yang, Xiang-Ming Wang, Hui Wan. Biological protection of hardwood logs destined for panel manufacturing using Gliocladium roseum against biodegradation[J]. BioControl. 2007, (52):559-571
    [69]Yang, Dian-Qing. Integrated method for protecting logs and green lumber from sapstain and mold using alkaline solution and biocontrol agent. US6083537
    [70]金重为,施振华.木材生物败坏及防治药剂的新发展[J].人造板通讯.2003(11):3-5
    [71]方桂珍,任世学,金钟玲.木材防腐剂的研究进展[J].东北林业大学学报2001,9(5):88-90
    [72]Goswami, Abramson, Buff, D.D.Nicholas. International Research Group on Wood Preservation, IRG/WP 0030251.& pp.
    [73] American Wood Preserver's AssociationStandard. AWPA Book of Standards 2007,112-117
    [74] American Wood Preserver's AssociationStandard. AWPA Book of Standards 2007,118-120
    [75]谭仁祥.植物成分分析[M].北京.科学出版社.2004,5
    [76]凌智群,张晓辉,谢笔钧,曾繁典.原花青素的药理学研究进展[J].中国药理学通报.2002,18(1):9-12
    [77]崔介君,孙培龙,马新.原花青素的研究进展[J].食品科技2003,(2):92-95
    [78]洪青标,周晓农,韩英等.赤桉提取物杀灭钉螺效果的观察[J].中国血吸虫病防治杂志.2001,13(1):17-20
    [79]杜木英,吴雪琴,侯大军,杨燕君,秦文.三种植物提取液的抑菌作用研究[J].四川食品与发酵,2003,(3):5-8
    [80]肖丽平,李临生,李利东.抗菌防腐剂(Ⅲ)天然抗菌防腐剂[J].日用化学工业,2002,32(2):78-81
    [81]杜荣茂.天然食品防腐剂[J].中国食品添加剂,2003,(2):68-74
    [82]Ducjohier,H. Anion pores from magainins and related defensive peptides[J]. Toxicology, 1994,(87):175-188
    [83]Helander,I.M, Mattila,Sandholm,T.M. Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria[J]. Trends Food Sci. Technol., 1997, (8):146-150
    [84]周焱,刘暑艳,邹丽芳.几种野生植物提取物抑菌作用研究[J].中国野生植物资源2004 23,(2):30-32
    [85]黄文哲,段金廒,李正亮.怀槐的化学成分研究Ⅰ[J].中国药科大学学报.2000,31(1):8-10
    [86]王良信.怀槐化学成分及其生物活性.国外医药[J].植物药分册,1996,11(1):19-20
    [87]于平儒,邵红军,冯俊涛等.62种植物样品对菌丝活性的测定[J].西北农林科技大学学报(自然科学版)200 1,29(6):65-69
    [88]于文喜,吴红霞,张广臣等.我国北方主要树种心材天然耐腐性评价[J].林业科技.1993,18(6):22-24
    [89]李(?),于文喜,郭廷翘.山槐心材提取物中有效抗菌成份的研究[J].东北林业大学学报1995,23(3):45-48
    [90]于文喜,朱洪坤,彭晓伟等.几种天然耐腐材在腐朽过程中化学成分的变化[J].林业科技.1994,19(3):19-22
    [91]T.C.Scheffer, E.B.Cowling. Natural Resistance of Wood to microbial Deterioration. [J].Annual Review of Phytopathology. 1966, (4) 147-168
    [92]Haslam.E. Tannins Polyphenols and Molecular Conplexion[J]. 林产化学与工业,1992,12(1):1-236
    [93]D.P. Kamdem. Fungal decay resistance of aspen blocks treated with heart wood extracts[J]. Forest Prod. J. 44(1):30-32.1994
    [94]R. W. Philp, A. Bruce & A. G. Munro. The Effect of Water Soluble Scats Pine (Pirns sylvestris L.)and Sitka Spruce [Picea sitchensis (Bong.) Cam]Heartwood and Sapwood Extracts on the Growth of Selected Trichoderma Species[J]. International Biodeterioration & Biodegradation (1995) 35S367
    [95]于文喜,康迎坤,靳春波等.暴马丁香心材提取物中有效抗菌成分的研究[J].林业科技.1996.21(6):23-24
    [96]T. P. Schultz, D.l D. Nicholas. Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives[J].Phytochemistry.2000, 54(1):47-52
    [97]E. 0. Onuorah. The wood preservative potentials of heartwood extracts of Milicia excelsa and Erythrophleum suaveolens [J].Bioresource Technology. 2000, 75(2): 171-173
    [98]F. S. Nakayama, S. H. Vinyard, P. Chow, D. S. Bajwa, J. A. Youngquist, J. H. Muehl and A. M. Krzysik.Guayule as a wood preservative[J]. Industrial Crops and Products. 2001,14(2): 105-111
    [99]F. S. Nakayama.Guayule future development. Industrial Crops and Products. [J]. 2005, 22(1):3-13
    [100] Eugene Onyekwe Onuorah. Relative efficacy of heartwood extracts and proprietory wood preservatives as wood protectants[J]. Journal of Forestry Research. 2002,13(3): 183-190
    [101] Xiao-Jiang Hao.Progress on the Researches in Kunming Institute of Botany about Chemical Components of Plants. Asian Symposium on Medicinal Plants, Spices and Other Natural Products Ⅺ, 2003,11
    [102] M. Morard, C. Vaca-Garcia, M. Stevens, J. Van Acker, O. Pignolet, E. Borredon.Durability improvement of wood by treatment with Methyl Alkenoate Succinic Anhydrides (M-ASA) of vegetable origin. International Biodeterioration & Biodegradation. Available online 19 Oct. 2006.
    [103] Fu-Lan Hsu, Hui-Ting Chang,Shang-Tzen Chang.Evaluation of antifungal properties of octyl gallate and its synergy with cinnamaldehyde[J]. Bioresource Technology. 2007,98(4): 734-738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700