反应性膨胀型阻燃剂的制备及阻燃聚丙烯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)具有无毒、易成型加工、耐化学腐蚀性好、综合力学性能优良及性价比高等优点,被广泛应用于化工、建筑、家电、包装、汽车等领域,是第二大品种通用塑料。但是,由于PP极限氧指数(LOI)低,本身易燃,燃烧时发热量大,燃烧速度快,并易产生熔滴,从而限制了其在一些领域的应用,因此,对其阻燃化研究就显得尤为重要。随着人们安全和环保意识的增强,在塑料阻燃领域绿色环保的要求呼声也越来越高。在已开发和应用的阻燃剂中,磷氮类膨胀型阻燃剂由于其无毒、低烟、无腐蚀性气体释放等环保性好的优点,已是阻燃剂研发的热点。但是也存在明显不足,如:与基体树脂相容性差、易吸潮析出、恶化材料的力学性能等问题。如何制备出与PP基体树脂相容性好、添加量少并易均匀分散,制得的阻燃PP既具有优异的阻燃性能、又能基本保持PP力学性能的膨胀型阻燃剂,一直是国内外环保型阻燃PP研发受到高度重视的方向。为此,构思出如下研究思路:
     基于PP是一种非极性结晶性,通常易于结晶的树脂,应研制出一种单分子的反应性膨胀型阻燃剂,分子上键接有可与PP反应的官能团,增强阻燃剂与PP的相容性;集酸源、炭源、气源“三源一体”,P、N、C配比尽量合适,以便于发挥酸源、炭源、气源的协效作用。将研制出的阻燃剂与PP热机械反应性共混制备出阻燃PP,对阻燃PP的组成及结构、阻燃性能、力学性能等进行表征。
     基于以上研究思路,开展了如下研究工作:
     以三氯氧磷、季戊四醇、甲基丙烯酸羟乙酯、三聚氰胺等为主要原料,合成出了键接有能与PP反应的双键官能团,集酸源、炭源、气源“三源一体”的单分子型的反应性膨胀型阻燃剂。通过红外光谱(FTIR)、核磁(1HNMR)、元素分析等对研制出的阻燃剂的化学结构进行了表征;利用热重(TG)、扫描电镜(SEM)、FTIR等对其热稳定性、成炭性及其成炭机理进行了研究。
     将研制出的阻燃剂与PP进行热机械反应性共混,制备出阻燃PP;对阻燃PP的化学结构、织态结构进行了表征;研究了阻燃性能、阻燃机理;研究了力学性能及阻燃剂含量对力学性能的影响;研究了热稳定性、阻燃PP成炭机理及成炭性能;对比研究了反应性膨胀型阻燃剂及非反应性膨胀型阻燃剂阻燃PP中PP的非等温结晶行为、结晶形态、结晶结构及熔融行为。
     为进一步提高研制出的阻燃PP的阻燃性能及优化力学性能,研究了不同协效剂对反应性膨胀型阻燃剂阻燃PP的协效阻燃效果,对协效体系的阻燃性能、力学性能及协效阻燃机理等进行了研究。
     通过以上研究,取得了如下主要结果和结论:
     1.采取两步法合成出的“三源一体”的膨胀型阻燃剂是:3-(甲基丙烯酸乙酯)-9-((4,6-二氨基-1,3,5-三嗪)氨基)-3,9-二氧代-2,4,8,10-四氧杂-3,9-二磷杂螺[5.5]十一烷磷酸酯(EADP),其P、N、C配比为1.00:1.68:2.84,键接有可与PP反应的双键官能团;
     EADP在空气气氛中5%热失重温度为270.5℃,具有适宜阻燃PP成型加工的良好的热稳定性;
     在空气气氛中700℃时残炭率为53.66%,EADP残炭表面完整致密,炭层内形成不同大小的囊泡结构。
     2.制备出的阻燃PP(PP/EADP)由PP、PP与EADP的接枝共聚物、EADP的自聚物、未反应的EADP组成。如EADP含量为30wt%的PP/EADP-30,其中的EADP有29.08%键接在PP大分子上;
     PP/EADP具有优良的阻燃性能:如EADP含量为25wt%的PP/EADP-25,LOI为32.5%,垂直燃烧达到UL-94V-0级;热释放速率峰值(PHRR)、释热总量(THR)、平均有效燃烧热(av-EHC)分别为212.61kW/m2、90.38MJ/m2、39.47MJ/kg,比原料PP的分别降低了65.50%、20.18%、19.51%;同时EADP的加入也降低了阻燃PP的生烟性、烟释放总量;600℃残炭量为11.82%,形成表面致密、内部形成了多孔的膨胀炭层结构;
     PP/EADP燃烧时酸源、炭源、气源“三源”协同发生化学变化,迅速结炭和释放出NH3、H2O等不燃性气体,突显出凝聚相和气相两种阻燃机理的协同作用;
     PP/EADP的耐水性相当好,如PP/EADP-30,在70℃水中浸泡168h后,LOI为31.5%,通过UL-94V-0级测试;
     PP/EADP的热稳定性比较好。如PP/EADP-25,5%热失重温度为286℃,最大热失重速率为5.95%/min,比原料PP的下降了59.05%,完全能满足成型加工对热稳定性的要求;
     PP/EADP呈现出综合优良的力学性能。如PP/EADP-25,与原料PP相比,弯曲强度、弯曲模量、拉伸强度分别提高了18%、38%、8%,悬臂梁缺口冲击强度下降了7%;
     与原料PP相比,PP/EADP中PP的非等温结晶的起始温度、结晶峰温及结晶度明显提高,如PP/EADP-30,结晶起始温度、结晶峰温及结晶度比原料PP的分别提高了7.73℃、9.00℃和9.70%,比一般的非反应性膨胀型阻燃剂制得的阻燃PP(PP/MAPP-30)中PP的还分别提高了4.86℃、4.57℃及1.72%。EADP含量对PP/EADP中PP的非等温结晶行为有明显的影响:综合来看,PP/EADP-25中PP的结晶速率及结晶度最大;
     与原料PP相比,PP/EADP中PP的晶体细化,随着EADP含量增加,细化程度加大。PP/EADP中的PP是α晶型和β晶型共存的结晶结构;
     与原料PP相比,PP/EADP中PP的熔融起始温度、熔融终了温度稍有降低,熔融峰顶温度稍有提高。
     3.几种协效剂相比,加入埃洛石纳米管(HNT)制得的阻燃PP(PP/EADP/HNT=75/24/1)协效阻燃效果最好:与PP/EADP-25相比,LOI由32.5%提高到35.5%;释热速率、释热总量、有效燃烧热、比消光面积及释烟总量等分别有所降低;600℃残炭量由11.82%提高到13.53%,结炭形貌基本相同;垂直燃烧通过UL-94V-0级测试;
     与PP/EADP-25中PP的相比,PP/EADP/HNT(75/24/1)中PP的非等温结晶起始温度、结晶峰温基本相同,结晶度较小;结晶熔融起始温度、熔融峰温较低。
     PP/EADP/HNT(75/24/1)的悬臂梁缺口冲击强度与原料PP的基本相同,弯曲强度、弯曲模量、拉伸强度分别比原料PP的提高了26%、64%、11%,综合力学性能比PP/EADP-25的有所改善。
     几种协效剂制得的协效阻燃PP的阻燃机理与PP/EADP的基本相同:凝聚相与气相阻燃机理协同作用;
     几种协效阻燃PP中的PP均是α晶型和β晶型共存的结晶结构,β晶型的比例比PP/EADP中PP的稍有增加。结晶细化的情况与PP/EADP的基本相同;
     加入弹性体的阻燃PP(PP/E/EADP)与不加弹性体的PP/EADP相比,LOI等燃烧性能稍有降低,静态力学性能稍有降低,悬臂梁缺口冲击强度稍有提高。
Polypropylene (PP) as the second largest common plastic is widely used in manyfields, such as chemical industry, building, household appliances, packaging,automobiles, etc., because of its non-toxicity, easy processing, good chemicalresistance, excellent mechanical properties and low cost advantage. However, it iseasily flammable, generates a lot of heat and produces droplet during burning due toits low limiting oxygen index (LOI) value which is the fatal shortcoming restrictingits wider application. Therefore, it is particularly important to improve the flameretardancy of PP. With the increasing consciousness of safety and environment, theenvironmental protection has been paid more and more attention. Phosphorus-nitrogen intumescent flame retardants (IFRs) have gradually been focused on due toits advantages, such as low smoke, non-toxicity and no corrosive gas release duringburning. However, IFRs have still some shortcomings, such as poor compatibilitywith matrix resins, moisture sensitivity and deterioration of material mechanicalproperties, and so on. How to prepare a kind of IFRs bearing good compatibilitywith PP, showing excellent flame retardancy and maintaining mechanical propertiesof PP, has become an important subject in the research of environmental friendlyflame retardants. The basic design principle is described as following:
     Due to non-polar crystalline resin of PP, we should synthesize the reactiveintumescent flame retardant not only having a functional group reacting with PP toimprove the compability, but also bearing acid source, blowing agent and charforming agent within one single molecule, together with a suitable ratio ofphosphorus, nitrogen and carbon for good synergistic effect of acid source, blowingsource and char forming agent. Then, the flame retardant PP would be achievedthrough reactive blending and its chemical structure, flame retardant properties,mechanical properties would be improved.
     Based on the above design principle, this work includes: A reactive intumescentflame retardant with a double bond is synthesized from phosphorus oxychloride, pentaerythritol, hydroxyethyl methacrylate and melamine. Its chemical structure ischaracterized by FTIR,1H-NMR and elementary analysis. The thermal stability andchar morphological structure are investigated by TG, SEM and FTIR. Then, flameretardant PP composites are prepared through reactive blending. The chemicalstructures of flame retardant PP composites are characterized. Flame retardancy,flame retardant mechanism, mechanical properties, thermal behaviors and charformation mechanism are investigated in detail. The non-isothermal crystallization,melting behaviors and crystalline morphology are analyzed.
     In order to further improve the flame retardancy and to optimize the mechanicalproperties of flame retardant PP composites, several synergists are added into flameretardant PP. The synergistic effects, synergistic mechanism and mechanicalproperties are investigated.
     The main research results are listed as following:
     1. A reactive intumescent halogen-free flame retardant bearing acid source,blowing agent and char forming agent within one single molecule,2-((9-((4,6-diamino-1,3,5-triazin-2-yl)amino)-3,9-dioxido-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5] undecan-3-yl)oxy)ethyl methacrylate (EADP), is synthesized through two-stepreaction with a certain ratio of phosphorus, nitrogen and carbon (1.00:1.68:2.84).The temperature at5%weight loss of EADP is270.5oC, indicating enough thermalstability under the molding process of polypropylene. The char yield of EADP ismeasured to be53.66%at700oC. The char takes on a compact surface and a cellularinner structure.
     2. PP/EADP composites are composed of PP, graft copolymer of EADP and PP,EADP homopolymer and unreacted EADP. For example, EADP is reacted in aconversion ratio of29.08%with PP in PP/EADP-30with the addition of30wt%EADP.
     PP/EADP composites show excellent flame retardancy. When the addition ofEADP is25wt%, the LOI value of PP/EADP-25is32.5%, passing the UL-94V-0rating. The peak heat release rate (PHRR), total heat release (THR) and averageeffective heat of combustion (av-EHC) are212.61kW/m2,90.38MJ/m2and39.47MJ/kg, which are decreased about65.50%,20.18%,19.51%compared with those of PP, respectively. Moreover, the addition of EADP decreases the smokeemission. The char yield of PP/EADP-25is measured to be11.82%at600oC. Thechar has a compact surface and a porous inner structure.
     While PP/EADP composites are heated and burned, the acid source, blowingagent and char forming agent react with each other generating a swollen porous charand releasing nonflammable gas such as NH3, H2O, indicating the condensed-phaseand gas-phase flame retardancy synergistic mechanisms for PP/EADP composites.
     PP/EADP composites have outstanding water resistance. For example,PP/EADP-30could still obtain a LOI value of31.5%and a UL-94V-0rating afterbeing soaked in70oC water for168h.
     The temperature at5%weight loss and the maximum weight loss rate ofPP/EADP-25are respectively measured as286oC and5.95%/min, which affordsenough thermal stability to meet the molding process.
     PP/EADP composites show comprehensive excellent mechanical properties.Compared with PP, the flexural strength, flexural modulus and tensile strength ofPP/EADP-25are respectively increased about18%,38%,8%except that the Izodnotched impact strength is decreased about7%.
     The crystallization onset temperature, the crystallization peak temperature and thedegree of crystallization of PP/EADP composites are higher than those of PP. ForPP/EADP-30composite, the crystallization onset temperature, the crystallizationpeak temperature and the degree of crystallinity are respectively increased about7.73oC,9.00oC and9.70%compared with those of PP and about4.86oC,4.57oC and1.72%compared with those of non-reactive intumescent flame retardant PP(PP/MAPP-30). One of them, the rate of crystallization and the degree ofcrystallinity of PP/EADP-25are the biggest.
     Compared with neat PP, the crystal size of PP/EADP composites is obviouslysmall. With the increasing content of EADP, PP crystal size turns smaller. PP inPP/EADP composites exhibits α-form and β-form crystal structures.
     Compared with neat PP, the melting onset temperature and melting endtemperature of PP/EADP composite are slightly decreased and the melting peaktemperature is increased a little.
     3. Halloysite nanotubes (HNT) are the most effective synergistic agent. Comparedwith PP/EADP-25, the LOI value of PP/EADP-HNT(PP/EADP/HNT=75/24/1)composite with1wt%addition of HNT is increased from32.5%to35.5%with theheat release rate, total heat release, effective heat of combustion, specific extinctionarea and total smoke release decreased. The char yield of PP/EADP-HNT isincreased from11.82%to13.53%at600oC, passing the UL-94V-0rating.
     Compared with PP/EADP-25, the crystallization onset temperature andcrystallization peak temperature of PP/EADP-HNT composite are the almost sameas those of PP/EADP-25. Besides, the degree of crystallinity, the melting onsettemperature and the melting end temperature of PP/EADP-HNT composite aresmaller than those of PP/EADP-25.
     Compared with neat PP, the flexural strength, flexural modulus and tensilestrength of PP/EADP-25are increased about26%,64%,11%, respectively. The Izodnotched impact strength is the same as that of PP.
     The flame retardant mechanism of synergistic flame retardant PP is similar toPP/EADP composites.
     All the synergistic flame retardant PP composites show the coexistence of α-formand β-form crystal structures while the content of β-form crystal is higher than thatof PP/EADP-25. The crystal size of PP/EADP-HNT composite is close to that ofPP/EADP-25.
     With the addition of elastomers into flame retardant PP, the flame retardantparameters and static mechanical properties are slightly decreased and the Izodnotched impact strength is improved.
引文
[1]梁洁.世界经济形势下全球聚丙烯生产消费现状与预测[J].中外能源,2013,(03):12-20.
    [2] Chen X, Yu J, Guo S. Structure and properties of polypropylene composites filledwith magnesium hydroxide[J]. Journal of Applied Polymer Science,2006,102(5):4943-51.
    [3]邸曼,张明.1993~2002年我国电气火灾的统计分析[J].电气工程应用,2006,(01):34-41.
    [4] Sprague C M, Dolph B L, Theoretical Basis of the Ship Fire Safety EngineeringMethodology.1996, DTIC Document.
    [5] Mouritz A P, Gibson A G. Fire Properties of Polymer Composite Materials[M].Waterloo: Springer,2006.
    [6] Horrocks A R, Price D. Fire Retardant Materials[M]. Boca Raton: CRC Press,2001.
    [7] Bourbigot S, Duquesne S. Fire retardant polymers: recent developments andopportunities[J]. Journal of Materials Chemistry,2007,17(22):2283-2300.
    [8] Zaikov G E, Lomakin S M. Ecological issue of polymer flame retardancy[J]. Journal ofApplied Polymer Science,2002,86(10):2449-2462.
    [9]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.
    [10] Schmitt E. Phosphorus-based flame retardants for thermoplastics[J]. Plastics,Additives and Compounding,2007,9(3):26-30.
    [11] Duquesne S, Samyn F, Bourbigot S, et al. Influence of talc on the fire retardantproperties of highly filled intumescent polypropylene composites[J]. Polymers for AdvancedTechnologies,2008,19(6):620-627.
    [12] Dasari A, Yu Z Z, Cai G P, et al. Recent developments in the fire retardancy ofpolymeric materials[J]. Progress in Polymer Science,2013,38(9):1357-1387.
    [13] Li Q, Zhong H F, Wei P, et al. Thermal degradation behaviors of polypropylene withnovel silicon-containing intumescent flame retardant[J]. Journal of Applied Polymer Science,2005,98(6):2487-2492.
    [14] Kim S. Flame retardancy and smoke suppression of magnesium hydroxide filledpolyethylene[J]. Journal of Polymer Science Part B-Polymer Physics,2003,41(9):936-944.
    [15] Li B, Xu M. Effect of a novel charring–foaming agent on flame retardancy andthermal degradation of intumescent flame retardant polypropylene[J]. Polymer Degradation andStability,2006,91(6):1380-1386.
    [16] Wang J J, Wang L, Xiao A G. Recent Research Progress on the Flame-RetardantMechanism of Halogen-Free Flame Retardant Polypropylene[J]. Polymer-Plastics Technologyand Engineering,2009,48(3):297-302.
    [17]李贵勋,田子娟,代佳丽,等.无卤阻燃聚丙烯研究进展[J].高分子通报,2009,(12):38-42.
    [18] Hornsby P R, Watson C L. A study of the mechanism of flame retardance and smokesuppression in polymers filled with magnesium hydroxide[J]. Polymer Degradation and Stability,1990,30(1):73-87.
    [19] Zhang S, Horrocks A R. A review of flame retardant polypropylene fibres[J]. Progressin Polymer Science,2003,28(11):1517-1538.
    [20] Chen X L, Yu J, Guo S Y, et al. Effects of Magnesium Hydroxide and Its SurfaceModification on Crystallization and Rheological Behaviors of Polypropylene[J]. PolymerComposites,2009,30(7):941-947.
    [21] Chen X L, Yu J, Guo S Y, et al. Surface modification of magnesium hydroxide and itsapplication in flame retardant polypropylene composites[J]. Journal of Materials Science,2009,44(5):1324-1332.
    [22]张志永,冯钠,李书娟,等.表面改性方法对PP/Mg(OH)2无卤阻燃体系性能的影响[J].工程塑料应用,2006,(03):35-38.
    [23]安晶.氢氧化镁填充量对聚丙烯阻燃性能的研究[J].盐城工学院学报(自然科学版),2008,(01):66-68.
    [24]吴惠民,彭超,涂思敏,等.不同表面处理方法对聚丙烯/水镁石无卤阻燃材料性能影响的研究[J].橡塑技术与装备,2008,(11):28-32.
    [25]施燕琴,钟明强,武艳辉.插层改性水滑石及其对聚丙烯力学和阻燃性的影响[J].塑料助剂,2009,(02):37-42.
    [26] Zhu S, Zhang Y, Zhang Y X. Polyolefin composites filled with magnesiumhydroxide[J]. Polymers&Polymer Composites,2002,10(6):447-455.
    [27] Hausmann K, Flaris V. Polymeric coupling agents as property enhancers in highlyfilled polymer systems[J]. Polymers&Polymer Composites,1997,5(2):113-119.
    [28] Wang Z, Qu B, Fan W, et al. Effects of PE-g-DBM as a compatiblizer on mechanicalproperties and crystallization behaviors of magnesium hydroxide-based LLDPE blends[J].Polymer Degradation and Stability,2002,76(1):123-128.
    [29] Liauw C, Lees G, Hurst S, et al. The effect of filler surface modification on themechanical properties of aluminium hydroxide filled polypropylene[J]. Plastics Rubber andComposites Processing and Applications,1995,24(5):249-260.
    [30] Yang J, Zhang Y, Zhang Y. Mechanical properties and microstructure of HDPE/AL(OH)3/silicone oil composite[J]. Journal of Applied Polymer Science,2002,83(9):1896-1903.
    [31] Hippi U, Mattila J, Korhonen M, et al. Compatibilization of polyethylene/aluminumhydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites withfunctionalized polyethylenes[J]. Polymer,2003,44(4):1193-1201.
    [32] Plentz R S, Miotto M, Schneider E E, et al. Effect of a macromolecular coupling agenton the properties of aluminum hydroxide/PP composites[J]. Journal of Applied Polymer Science,2006,101(3):1799-1805.
    [33]郭锡坤,周甫方,高文华,等.红磷增效Al(OH)3/Mg(OH)2阻燃的聚丙烯结晶形态[J].功能高分子学报,1996,(04):572-576.
    [34] Chen X, Yu J, He M, et al. Effects of zinc borate and microcapsulated red phosphoruson mechanical properties and flame retardancy of polypropylene/magnesium hydroxidecomposites[J]. Journal of Polymer Research,2009,16(4):357-362.
    [35] Chen X, Yu J, Guo S, et al. Flammability and thermal oxidative degradation kineticsof magnesium hydroxide and expandable graphite flame retarded polypropylene composites[J].Journal of Macromolecular Science, Part A: Pure and Applied Chemistry,2008,45(9):712-720.
    [36] Chen X, Wu H, Luo Z, et al. Synergistic effects of expandable graphite withmagnesium hydroxide on the flame retardancy and thermal properties of polypropylene[J].Polymer Engineering&Science,2007,47(11):1756-1760.
    [37] Cross M S, Cusack P A, Hornsby P R. Effects of tin additives on the flammability andsmoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer[J]. PolymerDegradation and Stability,2003,79(2):309-318.
    [38] Bagheri R, Liauw C M, Allen N S. Factors Effecting the Performance ofMontmorillonite/Magnesium Hydroxide/Poly(propylene) Ternary Composites,1. FlameRetardation and Thermal Stability [J]. Macromolecular Materials and Engineering,2008,293(2):114-122.
    [39] Shen L, Chen Y, Li P. Synergistic catalysis effects of lanthanum oxide inpolypropylene/magnesium hydroxide flame retarded system[J]. Composites Part A: AppliedScience and Manufacturing,2012,43(8):1177-1186.
    [40] Henrist C, Mathieu J P, Vogels C, et al. Morphological study of magnesium hydroxidenanoparticles precipitated in dilute aqueous solution[J]. Journal of Crystal Growth,2003,249(1–2):321-330.
    [41]姚佳良,彭红瑞,张志.聚丙烯/纳米氢氧化镁阻燃复合材料的性能研究[J].青岛科技大学学报(自然科学版),2003,(02):142-144.
    [42] Marosfoi B B, Garas S, Bodzay B, et al. Flame retardancy study on magnesiumhydroxide associated with clays of different morphology in polypropylene matrix[J]. Polymersfor Advanced Technologies,2008,19(6):693-700.
    [43] Chen D H, Zhang H P, Zheng Q K, et al. Polypropylene composites filled bymagnesium hydroxide coprecipitated with foreign ions[J]. Polymers for Advanced Technologies,2008,19(9):1353-1360.
    [44] Ni J, Chen L, Zhao K, et al. Preparation of gel-silica/ammonium polyphosphatecore-shell flame retardant and properties of polyurethane composites[J]. Polymers for AdvancedTechnologies,2011,22(12):1824-1831.
    [45] Zhao W, Li B, Xu M J, et al. Synthesis of a Phenylene Phenyl Phosphine Oligomerand Its Flame Retardancy for Polycarbonate[J]. Journal of Applied Polymer Science,2013,127(4):2855-2866.
    [46] Bai Z, Wang X, Tang G, et al. Structure–property relationships of syntheticorganophosphorus flame retardant oligomers by thermal analysis[J]. Thermochimica Acta,2013,565:17-26.
    [47] Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymermaterials: From fundamentals to nanocomposites[J]. Materials Science and Engineering: R:Reports,2009,63(3):100-125.
    [48] Cai Y B, Wei Q F, Shao D F, et al. Magnesium hydroxide and microencapsulated redphosphorus synergistic flame retardant form stable phase change materials based onHDPE/EVA/OMT nanocomposites/paraffin compounds[J]. Journal of the Energy Institute,2009,82(1):28-36.
    [49] Liang J Z, Chen Y, Jiang X H. Flame-Retardant Properties of PP/Al(OH)3/Mg(OH)2/POE/ZB Nanocomposites[J]. Polymer-Plastics Technology and Engineering,2012,51(5):439-445.
    [50] Liang J Z, Feng J Q, Tsui C P, et al. Extrudate swell behavior of polypropylenecomposites filled with microencapsulated red phosphorus[J]. Journal of Applied PolymerScience,2013,129(6):3497-3501.
    [51]殷锦捷,姜军,屈晓莉. Mg(OH)2/包覆红磷对阻燃聚丙烯性能的影响[J].塑料助剂,2009,(01):43-46.
    [52]黄兆阁,张素珍,黄璞.无卤阻燃聚丙烯性能研究[J].现代塑料加工应用,2008,(01):19-21.
    [53] Tian N, Wen X, Gong J, et al. Synthesis and characterization of a novelorganophosphorus flame retardant and its application in polypropylene[J]. Polymers forAdvanced Technologies,2013,24(7):653-659.
    [54] Zhang S, Li B, Lin M, et al. Effect of a Novel Phosphorus-Containing Compound onthe Flame Retardancy and Thermal Degradation of Intumescent Flame RetardantPolypropylene[J]. Journal of Applied Polymer Science,2011,122(5):3430-3439.
    [55]王会娅,王大为.新型无卤阻燃聚丙烯的制备及性能研究[J].塑料,2008,(06):23-25.
    [56] Paul D R, Mark J E. Fillers for polysiloxane (“silicone”) elastomers[J]. Progress inPolymer Science,2010,35(7):893-901.
    [57] Hamdani S, Longuet C, Perrin D, et al. Flame retardancy of silicone-basedmaterials[J]. Polymer Degradation and Stability,2009,94(4):465-495.
    [58] Li Q, Zhong H, Wei P, et al. Thermal degradation behaviors of polypropylene withnovel silicon-containing intumescent flame retardant[J]. Journal of Applied Polymer Science,2005,98(6):2487-2492.
    [59] Erdem N, Cireli A A, Erdogan U H. Flame Retardancy Behaviors and StructuralProperties of Polypropylene/Nano-SiO2Composite Textile Filaments[J]. Journal of AppliedPolymer Science,2009,111(4):2085-2091.
    [60] Zhou Z Y, Zhang Y, Zeng Z, et al. Properties of POSS-Filled Polypropylene:Comparison of Physical Blending and Reactive Blending[J]. Journal of Applied PolymerScience,2008,110(6):3745-3751.
    [61] Grala M, Bartczak Z, Pracella M. Morphology and mechanical properties ofpolypropylene-POSS hybrid nanocomposites obtained by reactive blending[J]. PolymerComposites,2013,34(6):929-941.
    [62] Fina A, Abbenhuis H C L, Tabuani D, et al. Metal functionalized POSS as fireretardants in polypropylene[J]. Polymer Degradation and Stability,2006,91(10):2275-2281.
    [63] Tang Y, Hu Y, Wang S F, et al. Intumescent flame retardant-montmorillonitesynergism in polypropylene-layered silicate nanocomposites[J]. Polymer International,2003,52(8):1396-1400.
    [64]郑辉,胡珊,严春杰,等.阻燃聚丙烯/蒙脱土纳米复合材料的制备及性能研究[J].化工新型材料,2007,(10):70-71.
    [65] Huang Y W, Song M L, Ma J J, et al. Synthesis of a phosphorus/silicon hybrid and itssynergistic effect with melamine polyphosphates on flame retardant polypropylene system[J].Journal of Applied Polymer Science,2013,129(1):316-323.
    [66] Song M L, Huang Y W, Cao K, et al. Synthesis of a new silicon-phosphorus hybridflame retardant from waste silicon oil and its application in polypropylene system[J]. AdvancedResearch on Material Science and Environmental Science,2012,534:304-308.
    [67] Zhang Z, Lin B, Zhou N, et al. Flame-retardant olefin block copolymer compositeswith novel halogen-free intumescent flame retardants based on the composition of melaminephosphate and pentaerythritol[J]. Journal of Applied Polymer Science,2014,131(7), in press.
    [68] Bourbigot S, Le Bras M, Duquesne S, et al. Recent advances for intumescentpolymers[J]. Macromolecular Materials and Engineering,2004,289(6):499-511.
    [69] Halpern Y, Mott D M, Niswander R H. Fire retardancy of thermoplastic materials byintumescence[J]. Industrial&Engineering Chemistry Product Research and Development,1984,23(2):233-238.
    [70] Hendrickson L, Connole K B. Review of stabilization of polyolefin insulatedconductors. Part I: Theory and factors affecting stability[J]. Polymer Engineering&Science,1995,35(2):211-217.
    [71]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005.
    [72] Le Bras M, Camino G, Bourbigot S, et al. Fire retardancy of polymers: the use ofintumescence[M]. Cambridge: The Royal Society of Chemistry,1998.
    [73] Wu K, Wang Z Z, Liang H J. Microencapsulation of ammonium polyphosphate:Preparation, characterization, and its flame retardance in polypropylene[J]. Polymer Composites,2008,29(8):854-860.
    [74] Liu Y, Yi J, Cai X. The investigation of intumescent flame-retarded polypropyleneusing poly (hexamethylene terephthalamide) as carbonization agent[J]. Journal of ThermalAnalysis and Calorimetry,2012,107(3):1191-1197.
    [75] Levchik S V, Costa L, Camino G. Effect of the fire-retardant, ammoniumpolyphosphate, on the thermal decomposition of aliphatic polyamides: Part II—polyamide6[J].Polymer Degradation and Stability,1992,36(3):229-237.
    [76] Almeras X, Dabrowski F, Le Bras M, et al. Using polyamide-6as charring agent inintumescent polypropylene formulationsI. Effect of the compatibilising agent on the fireretardancy performance[J]. Polymer Degradation and Stability,2002,77(2):305-313.
    [77] Zhang Y X, Liu Y, Wang Q. Synergistic Effect of Melamine Polyphosphate withMacromolecular Charring Agent Novolac in Wollastonite Filled PA66[J]. Journal of AppliedPolymer Science,2010,116(1):45-49.
    [78] Liu Y, Feng Z Q, Wang Q. The Investigation of Intumescent Flame-RetardantPolypropylene Using a New Macromolecular Charring Agent Polyamide11[J]. PolymerComposites,2009,30(2):221-225.
    [79] Yang B, Liu H, He B B, et al. Effect of novel copolyamide charring agents onflame-retarded polypropylene[J]. Polymer Composites,2013,34(5):634-640.
    [80] Anna P, Marosi G, Bourbigot S, et al. Intumescent flame retardant systems of modifiedrheology[J]. Polymer Degradation and Stability,2002,77(2):243-247.
    [81] Bras M L, Bugajny M, Lefebvre J M, et al. Use of polyurethanes as char-formingagents in polypropylene intumescent formulations[J]. Polymer International,2000,49(10):1115-1124.
    [82] Bugajny M, Le Bras M, Bourbigot S. Thermoplastic Polyurethanes as CarbonizationAgents in Intumescent Blends. Part2: Thermal Behavior of Polypropylene/ThermoplasticPolyurethane/Ammonium Polyphosphate Blends[J]. Journal of Fire Sciences,2000,18(1):7-27.
    [83] Ma Z L, Zhang W Y, Liu X Y. Using PA6as a charring agent in intumescentpolypropylene formulations based on carboxylated polypropylene compatibilizer andnano-montmorillonite synergistic agent[J]. Journal of Applied Polymer Science,2006,101(1):739-746.
    [84] He S, Hu Y, Song L, et al. Fire Safety Assessment of Halogen-free Flame RetardantPolypropylene Based on Cone Calorimeter[J]. Journal of Fire Sciences,2007,25(2):109-118.
    [85] Tang Y, Hu Y, Xiao J, et al. PA-6and EVA alloy/clay nanocomposites as char formingagents in poly (propylene) intumescent formulations[J]. Polymers for Advanced Technologies,2005,16(4):338-343.
    [86] Horacek H, Grabner R. Advantages of flame retardants based on nitrogencompounds[J]. Polymer Degradation and Stability,1996,54(2–3):205-215.
    [87] Yi J S, Liu Y, Pan D D, et al. Synthesis, thermal degradation, and flame retardancy ofa novel charring agent aliphaticuaromatic polyamide for intumescent flame retardantpolypropylene[J]. Journal of Applied Polymer Science,2013,127(2):1061-1068.
    [88] Yi J S, Yin H Q, Cai X F. Effects of common synergistic agents on intumescent flameretardant polypropylene with a novel charring agent[J]. Journal of Thermal Analysis andCalorimetry,2013,111(1):725-734.
    [89] Yang K, Xu M J, Li B. Synthesis of N-ethyl triazine-piperazine copolymer and flameretardancy and water resistance of intumescent flame retardant polypropylene[J]. PolymerDegradation and Stability,2013,98(7):1397-1406.
    [90] Xu Z Z, Huang J Q, Chen M J, et al. Flame retardant mechanism of an efficientflame-retardant polymeric synergist with ammonium polyphosphate for polypropylene[J].Polymer Degradation and Stability,2013,98(10):2011-2020.
    [91] Yang X, Ge N, Hu L, et al. Synthesis of a novel ionic liquid containing phosphorusand its application in intumescent flame retardant polypropylene system[J]. Polymers forAdvanced Technologies,2013,24(6):568-575.
    [92] Nie S, Hu Y, Song L, et al. Synergistic effect between a char forming agent (CFA)and microencapsulated ammonium polyphosphate on the thermal and flame retardant propertiesof polypropylene[J]. Polymers for Advanced Technologies,2008:1077-1083.
    [93] Huang J, Zhang Y, Yang Q, et al. Synthesis and characterization of a novel charringagent and its application in intumescent flame retardant polypropylene system[J]. Journal ofApplied Polymer Science,2012,123(3):1636-1644.
    [94] Peng H Q, Zhou Q, Wang D Y, et al. A novel charring agent containing caged bicyclicphosphate and its application in intumescent flame retardant polypropylene systems[J]. Journalof Industrial and Engineering Chemistry,2008,14(5):589-595.
    [95] Feng C M, Zhang Y, Liu S W, et al. Synthesis of Novel Triazine Charring Agent andIts Effect in Intumescent Flame-Retardant Polypropylene[J]. Journal of Applied PolymerScience,2012,123(6):3208-3216.
    [96]周健,王辛龙,张志业,等. APP-I的表面改性及聚丙烯/APP-I的阻燃性能的研究[J].塑料工业,2013,(01):37-40.
    [97]李洪恩,马志领,王磊,等. KH-560在聚丙烯/KD膨胀型阻燃剂复合体系中的偶联作用[J].塑料工业,2008,(07):56-58.
    [98] Zhou J, Yang L, Wang X, et al. Microencapsulation of APP-I and influence ofmicroencapsulated APP-I on microstructure and flame retardancy of PP/APP-I/PERcomposites[J]. Journal of Applied Polymer Science,2013,129(1):36-46.
    [99] Wu K, Song L, Wang Z Z, et al. Preparation and characterization of double shellmicroencapsulated ammonium polyphosphate and its flame retardance in polypropylene[J].Journal of Polymer Research,2009,16(3):283-294.
    [100] Wang Z Z, Wu K, Hu Y. Study on Flame Retardance of Co-MicroencapsulatedAmmonium Polyphosphate and Dipentaerythritol in Polypropylene[J]. Polymer Engineering andScience,2008,48(12):2426-2431.
    [101] Lv P, Wang Z Z, Hu Y, et al. Study on effect of polydimethylsiloxane in intumescentflame retardant polypropylene[J]. Journal of Polymer Research,2009,16(2):81-89.
    [102] Zheng Z, Sun H, Li W, et al. Co-microencapsulation of ammonium polyphosphateand aluminum hydroxide in halogen-free and intumescent flame retarding polypropylene[J].Polymer Composites,2013,35(4):715–729.
    [103] Ming Z, Peng D, Baojun Q, et al. A new method to prepare flame retardant polymercomposites[J]. Journal of Materials Processing Technology,2008:342-7.
    [104] Zhou R, Lai X, Li H, et al. Enhancement of Wollastonite on Flame Retardancy andMechanical Properties of PP/IFR Composite[J]. Polymer Composites,2014,35(1):158-166.
    [105] Yi J, Yin H, Cai X. Effects of common synergistic agents on intumescent flameretardant polypropylene with a novel charring agent[J]. Journal of Thermal Analysis andCalorimetry,2013,111(1):725-734.
    [106] Sheng Y, Chen Y, Bai Y. Catalytically synergistic effects of novel LaMnO3composite metal oxide in intumescent flame-retardant polypropylene system[J]. PolymerComposites,2014.
    [107] Yang D D, Hu Y, Song L, et al. Catalyzing carbonization function of alpha-ZrP basedintumescent fire retardant polypropylene nanocomposites[J]. Polymer Degradation and Stability,2008,93(11):2014-2018.
    [108] Nie S, Hu Y, Song L, et al. Study on a novel and efficient flame retardantsynergist–nanoporous nickel phosphates VSB-1with intumescent flame retardants inpolypropylene[J]. Polymers for Advanced Technologies,2008,19(6):489-495.
    [109] Chen X, Ding Y, Tang T. Synergistic effect of nickel formate on the thermal andflame-retardant properties of polypropylene[J]. Polymer International,2005,54(6):904-8.
    [110] Faghihi J, Morshedian J, Ahmadi S. Effect of Fillers on the Fire Retardant Propertiesof Intumescent Polypropylene Compounds[J]. Polymers&polymer composites,2008,16(5):315-322.
    [111] Almeras X, Le Bras M, Hornsby P, et al. Effect of fillers on the fire retardancy ofintumescent polypropylene compounds[J]. Polymer Degradation and Stability,2003,82(2):325-331.
    [112] Demir H, Arkis E, Balkose D, et al. Synergistic effect of natural zeolites on flameretardant additives[J]. Polymer Degradation and Stability,2005,89(3):478-483.
    [113] Wei P, Li H X, Jiang P K, et al. An investigation on the flammability of halogen-freefire retardant PP-APP-EG systems[J]. Journal of Fire Sciences,2004,22(5):367-377.
    [114]杨美珠,张力.无卤阻燃聚丙烯的制备及性能研究[J].广东化工,2008,(12):33-35.
    [115] R tz R, Sweeting O J. Some Chemical Reactions of3,9-Dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5] undecane3,9-Dioxide[J]. Journal of Organic Chemistry,1963,28(6):1608-1612.
    [116] Chen Y H, Liu Y A, Wang Q, et al. Performance of intumescent flame retardantmaster batch synthesized through twin-screw reactively extruding technology: effect ofcomponent ratio[J]. Polymer Degradation and Stability,2003,81(2):215-224.
    [117] Wang Q, Chen Y H, Liu Y, et al. Performance of an intumescent-flame-retardantmaster batch synthesized by twin-screw reactive extrusion: effect of the polypropylene carrierresin[J]. Polymer International,2004,53(4):439-448.
    [118] Liu Y, Wang Q. Catalytic action of phospho-tungstic acid in the synthesis ofmelamine salts of pentaerythritol phosphate and their synergistic effects in flame retardedpolypropylene[J]. Polymer Degradation and Stability,2006,91(10):2513-2519.
    [119]李昕,欧育湘,张蕴宏.三(1-氧代-1-磷杂-2,6,7-三氧杂双环[2.2.2]辛烷-4-亚甲基)磷酸酯的合成、晶体结构及热性能[J].高等学校化学学报,2002,(04):695-699.
    [120] Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent:Facile synthesis, reaction to fire in PP and synergy with zinc borate[J]. Polymer Degradation andStability,2008,93(1):68-76.
    [121] Song P, Fang Z, Tong L, et al. Effects of metal chelates on a novel oligomericintumescent flame retardant system for polypropylene[J]. Journal of Analytical and AppliedPyrolysis,2008,82(2):286-291.
    [122] Song P A, Fang Z P, Tong L F, et al. Synthesis of a Novel Oligomeric IntumescentFlame Retardant and its Application in Polypropylene[J]. Polymer Engineering and Science,2009,49(7):1326-1331.
    [123] Song P A, Shen Y, Du B X, et al. Effects of Reactive Compatibilization on theMorphological, Thermal, Mechanical, and Rheological Properties of Intumescent Flame-Retardant Polypropylene[J]. Acs Applied Materials&Interfaces,2009,1(2):452-459.
    [124] Song P A, Liu H, Shen Y, et al. Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation andflammability of polypropylene nanocomposites[J]. Journal of Materials Chemistry,2009,19(9):1305-1313.
    [125] Xiang H W, Sun C Y, Jiang D W, et al. Flame Retardation and Thermal Degradationof Intumescent Flame-Retarded Polypropylene Composites Containing Spirophosphoryldicyandiamide and Ammonium Polyphosphate[J]. Journal of Vinyl&Additive Technology,2010,16(2):161-169.
    [126] Xiang H W, Sun C Y, Jiang D W, et al. A Novel Halogen-Free Intumescent FlameRetardant Containing Phosphorus and Nitrogen and Its Application in Polypropylene Systems[J].Journal of Vinyl&Additive Technology,2010,16(4):261-271.
    [127] Zuo J, Su Y, Liu S, et al. Preparation and properties of FR-PP with phosphorus-containing intumescent flame retardant[J]. Journal of Polymer Research,2011,18(5):1125-1129.
    [128] Zhang Q, Xing H, Sun C, et al. The Mechanical Properties and ThermalPerformances of Polypropylene with a Novel Intumescent Flame Retardant[J]. Journal ofApplied Polymer Science,2010,115(4):2170-2177.
    [129] Li Q, Jiang P, Wei P. Thermal Degradation Behavior of Poly (propylene) with aNovel Silicon-Containing Intumescent Flame Retardant[J]. Macromolecular Materials andEngineering,2005,290(9):912-919.
    [130] Li Q, Jiang P, Wei P. Synthesis, characteristic, and application of new flame retardantcontaining phosphorus, nitrogen, and silicon[J]. Polymer Engineering and Science,2006,46(3):344-50.
    [131]任元林,程博闻,张金树.新型膨胀型阻燃剂阻燃聚丙烯的应用研究[J].高分子材料科学与工程,2008,(01):116-119.
    [132] Shaver L A. Determination of Phosphates by the Gravimetric QuimociacTechnique[J]. Journal of Chemical Education,2008,85(8):1097-1098.
    [133] Wang L S, Liu Y, Wang R. Solubilities of Some Phosphaspirocyclic Compounds inSelected Solvents[J]. Journal of Chemical&Engineering Data,2006,51(5):1686-1689.
    [134] Ma H Y, Tong L F, Xu Z B, et al. A novel intumescent flame retardant: Synthesis andapplication in ABS copolymer[J]. Polymer Degradation and Stability,2007,92(4):720-726.
    [135] Yan L, Zheng Y B, Liang X B, et al. Copolymerization of1-Oxo-2,6,7-trioxa-1-phorsphabicyclo [2,2,2] oct-4-yl Methyl Acrylate and (10-Oxo-10-Hydro-9-Oxa-10-phosphaphenanthrene-10-yl) Methyl Acrylate with Styrene and Their Thermal DegradationCharacteristics[J]. Journal of Applied Polymer Science,2010,115(2):1032-1038.
    [136] Xing W Y, Song L, Lv P, et al. Preparation, flame retardancy and thermal behavior ofa novel UV-curable coating containing phosphorus and nitrogen[J]. Materials Chemistry andPhysics,2010,123(2-3):481-486.
    [137] Yu B, Zeng G, Liu Y. Acrylic acid and its esters Series infrared bands of the C=Cdouble split[J]. Acta Physica Sinica,1966,22(1):62-70.
    [138] Hu X P, Li W Y, Wang Y Z. Synthesis and characterization of a novel nitrogen-containing flame retardant[J]. Journal of Applied Polymer Science,2004,94(4):1556-1561.
    [139] Chen L J, Tai Q L, Song L, et al. Thermal properties and flame retardancy of anether-type UV-cured polyurethane coating[J]. Express Polymer Letters,2010,4(9):539-550.
    [140] Yu Y M, Fu S Y, Song P A, et al. Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene[J]. PolymerDegradation and Stability,2012,97(4):541-546.
    [141] Zhang Y J, Lu Y B, Guo F, et al. Preparation of microencapsulated ammoniumpolyphosphate with montmorillonite-melamine formaldehyde resin and its flame retardancy inEVM[J]. Polymers for Advanced Technologies,2012,23(2):166-170.
    [142] Bugajny M, Bourbigot S, Le Bras M, et al. The origin and nature of flame retardancein ethylene-vinyl acetate copolymers containing hostaflam AP750[J]. Polymer International,1999,48(4):264-270.
    [143] Chen G H, Yang B, Wang Y Z. A novel flame retardant of spirocyclic pentaerythritolbisphosphorate for epoxy resins[J]. Journal of Applied Polymer Science,2006,102(5):4978-4982.
    [144] Guan J P, Chen G Q. Graft copolymerization modification of silk fabric with anorganophosphorus flame retardant[J]. Fire and Materials,2010,34(5):261-270.
    [145] Zhi Y J, Yong Y, Ru Y Z, et al. Synthesis and thermal stability of a novelphosphorus-nitrogen containing intumescent flame retardant[J]. Chinese Chemical Letters,2008,19(3):277-278.
    [146] anak T, Serhatl E. Synthesis of fluorinated urethane acrylate based UV-curablecoatings[J]. Progress in Organic Coatings,2013,76(2–3):388-399.
    [147] Wang Z, Lv P, Hu Y, et al. Thermal degradation study of intumescent flameretardants by TG and FTIR: Melamine phosphate and its mixture with pentaerythritol[J]. Journalof Analytical and Applied Pyrolysis,2009,86(1):207-214.
    [148] Wu K, Song L, Hu Y, et al. Synthesis and characterization of a functional polyhedraloligomeric silsesquioxane and its flame retardancy in epoxy resin[J]. Progress in OrganicCoatings,2009,65(4):490-497.
    [149] Balabanovich A I. Thermal decomposition study of intumescent additives:Pentaerythritol phosphate and its blend with melamine phosphate[J]. Thermochimica Acta,2005,435(2):188-196.
    [150] Cai Y B, Hu Y, Song L, et al. Catalyzing carbonization function of ferric chloridebased on acrylonitrile–butadiene–styrene copolymer/organophilic montmorillonitenanocomposites [J]. Polymer Degradation and Stability,2007,92(3):490-496.
    [151]向海旺.新型磷氮阻燃剂SPDC的合成及应用[D].[硕士论文].哈尔滨:东北林业大学,2010.
    [152] Song P A, Cao Z H, Cai Y Z, et al. Fabrication of exfoliated graphene-basedpolypropylene nanocomposites with enhanced mechanical and thermal properties[J]. Polymer,2011,52(18):4001-10.
    [153] Ma Y, Zheng X, Si F, et al. Synthesis of Poly (Dodecyl Methacrylate)s withUltrahigh Molecular Weight[J]. Journal of Qingdao University (Natural Science Edition),2004,(04):12-17.
    [154]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010.
    [155] Yang Z, Qian R. IR spectrum1157and973cm-1absorption band of polypropylene[J]. Polymer Communications,1965,(01):69-73.
    [156]张美珍.聚合物研究方法[M].北京市:中国轻工业出版社,2000.
    [157] Babrauskas V, Peacock R D. Heat release rate: The single most important variable infire hazard[J]. Fire Safety Journal,1992,18(3):255-272.
    [158] Zhang H, Farris R J, Westmoreland P R. Low Flammability and ThermalDecomposition Behavior of Poly (3,3‘-dihydroxybiphenylisophthalamide) and Its Derivatives[J].Macromolecules,2003,36(11):3944-3954.
    [159] Xing W, Hu Y, Song L, et al. Thermal degradation and combustion of a novel UVcurable coating containing phosphorus[J]. Polymer Degradation and Stability,2009,94(7):1176-1182.
    [160]卢林刚,徐晓楠,王大为,等.新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J].复合材料学报,2013,(01):83-89.
    [161] Li B, Sun C Y, Zhang X C. An Investigation of Flammability of Intumescent FlameRetardant Polyethylene Containing Starch by Using Cone Calorimeter[J]. Chemical Journal ofChinese Universities,1999,20(1):146-149.
    [162] Bertelli G, Camino G, Marchetti E, et al. Parameters affecting fire retardanteffectiveness in intumescent systems[J]. Polymer degradation and stability,1989,25(2):277-292.
    [163] Enescu D, Frache A, Lavaselli M, et al. Novel phosphorous–nitrogen intumescentflame retardant system. Its effects on flame retardancy and thermal properties of polypropylene[J]. Polymer Degradation and Stability,2013,98(1):297-305.
    [164] Sakata Y, Uddin M A, Muto A. Degradation of polyethylene and polypropylene intofuel oil by using solid acid and non-acid catalysts[J]. Journal of Analytical and Applied Pyrolysis,1999,51(1–2):135-155.
    [165] Bockhorn H, Hornung A, Hornung U, et al. Kinetic study on the thermal degradationof polypropylene and polyethylene[J]. Journal of Analytical and Applied Pyrolysis,1999,48(2):93-109.
    [166] Zhang F, Zhang J, Sun D. Study on Thermal Decomposition of IntumescentFire-Retardant Polypropylene by TG/Fourier Transform Infrared[J]. Journal of ThermoplasticComposite Materials,2009,22(6):681-701.
    [167] Lv P, Wang Z Z, Hu K L, et al. Flammability and thermal degradation of flameretarded polypropylene composites containing melamine phosphate and pentaerythritolderivatives[J]. Polymer Degradation and Stability,2005,90(3):523-534.
    [168] Weil E D, Zhu W, Patel N, et al. A systems approach to flame retardancy andcomments on modes of action[J]. Polymer Degradation and Stability,1996,54(2–3):125-136.
    [169] Wang X, Hu Y, Song L, et al. Flame retardancy and thermal degradation mechanismof epoxy resin composites based on a DOPO substituted organophosphorus oligomer[J].Polymer,2010,51(11):2435-2445.
    [170] Zhou S, Wang Z, Gui Z, et al. Flame retardation and thermal degradation offlame-retarded polypropylene composites containing melamine phosphate and pentaerythritolphosphate[J]. Fire and Materials,2008,32(5):307-319.
    [171]王经武.塑料改性技术[M].北京:化学工业出版社,2004.
    [172] Liu S P, Ying J R, Zhou X P, et al. Dispersion, thermal and mechanical properties ofpolypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA[J].Composites Science and Technology,2009,69(11–12):1873-1879.
    [173] Gupta A K, Purwar S N. Crystallization of PP in PP/SEBS blends and its correlationwith tensile properties[J]. Journal of Applied Polymer Science,1984,29(5):1595-1609.
    [174]张瑞云,马德柱,罗筱烈. DSC法快速评定阻燃剂对聚丙烯结晶及力学性能的影响[J].高分子材料科学与工程,1991,(02):55-59.
    [175]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990.
    [176] Lu M F, Zhang S J, Yu D S. Study on poly(propylene)/ammonium polyphosphatecomposites modified by ethylene-1-octene copolymer grafted with glycidyl methacrylate[J].Journal of Applied Polymer Science,2004,93(1):412-419.
    [177] Wunderlich B. Thermal analysis[M]. Salt Lake City: Academic Press,1990.
    [178]张力,杨美珠,石光,等.无卤阻燃聚丙烯材料的非等温结晶行为[J].高分子材料科学与工程,2010,(07):78-81.
    [179] Papageorgiou D G, Papageorgiou G Z, Bikiaris D N, et al. Crystallization andmelting of propylene–ethylene random copolymers. Homogeneous nucleation and β-nucleatingagents[J]. European Polymer Journal,2013,49(6):1577-1590.
    [180]莫志深,张宏放.晶态聚合物结构和X射线衍射[M].北京:科学出版社,2003.
    [181] Zhang Z, Tao Y, Yang Z, et al. Preparation and characteristics of nano-CaCO3supported β-nucleating agent of polypropylene[J]. European Polymer Journal,2008,44(7):1955-1961.
    [182] Vuillequez A, Lebrun M, Ion R M, et al. Effect of Phosphorus-Nitrogen IntumescentFlame Retardant on Structure and Properties of Poly(propylene)[J]. Macromolecular Symposia,2010,290:146-155.
    [183] Grein C, Plummer C J G, Kausch H H, et al. Influence of β nucleation on themechanical properties of isotactic polypropylene and rubber modified isotactic polypropylene[J].Polymer,2002,43(11):3279-3293.
    [184] Wunderlich B. Macromolecular Physics[M]. New York: Academic Press,1973.
    [185] Hu J M. Effects of DSC Testing Conditions on the Crystallization Behavior of βCrystalline Form PP[J]. Techno-economics In Petrochemicals,2011,(02):31-33.
    [186]褚艳红,郭欢欢,郑丽娜,等. PET/HMFNC-MB复合材料的非等温结晶及熔融行为[J].塑料工业,2008,(S1):155-157.
    [187] Li G X, Wang W J, Cao S K, et al. Reactive, intumescent, halogen-free flameretardant for polypropylene[J]. Journal of Applied Polymer Science,2014,131(7):3314-3323.
    [188] Schartel B, Braun U, Schwarz U, et al. Fire retardancy of polypropylene/flaxblends[J]. Polymer,2003,44(20):6241-6250.
    [189] Wu J, Hu Y, Song L, et al. Synergistic Effect of Lanthanum Oxide on IntumescentFlame-Retardant Polypropylene-based Formulations[J]. Journal of Fire Sciences,2008,26(5):399-414.
    [190] Pasbakhsh P, Ismail H, Fauzi M N A, et al. EPDM/modified halloysitenanocomposites[J]. Applied Clay Science,2010,48(3):405-413.
    [191] Bourbigot S, Bras M L, Dabrowski F, et al. PA-6clay nanocomposite hybrid as charforming agent in intumescent formulations[J]. Fire and Materials,2000,24(4):201-208.
    [192] Lecouvet B, Sclavons M, Bailly C, et al. A comprehensive study of the synergisticflame retardant mechanisms of halloysite in intumescent polypropylene[J]. Polymer Degradationand Stability,2013,98(11):2268-2281.
    [193]刘喜山,谷晓昱,姜鹏,等.埃洛石纳米管对膨胀阻燃聚丙烯阻燃性能的影响[J].中国塑料,2013,(02):86-89.
    [194] Bhattacharyya A R, Sreekumar T V, Liu T, et al. Crystallization and orientationstudies in polypropylene/single wall carbon nanotube composite[J]. Polymer,2003,44(8):2373-2377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700