光学探针作用于蛋白类物质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:蛋白质是由许多氨基酸组成的生物大分子,是生命的最基本物质之一,并在生命现象和生命过程中起着决定性的作用。其中人血清白蛋白(Human Serum Albumin,简称HSA)是人体内含量最丰富的运输蛋白,是由585个氨基酸残基组成的单肽链蛋白质,分子量约为66500,主要起维持血液的正常渗透压和运送亲水分子的作用,广泛应用于金属离子、药物药理和毒理研究、污染毒物的危害机理及基因变异研究等方面。而胰蛋白酶(Trypsin)是一种动物来源的蛋白水解酶,其单一肽链含有233个氨基酸残基和6对二硫键,分子量为24000,专一作用于精氨酸、赖氨酸的羧基所形成的肽键,广泛应用于医药、食品、工业领域以及蛋白质的序列分析、亲和、吸附、分离等方面。
     寻找一种简单、快速、高灵敏度的测量蛋白质的方法是科学家目前关注的焦点,同时随着测定蛋白质各种形式探针的日益增多,蛋白质与探针之间的相互作用的研究变得尤为重要。研究毒性物质、药物等小分子配体与蛋白质的相互作用机理和作用过程以及发展高选择性、高灵敏度的蛋白质定量分析新方法,在临床医学、生命科学、毒理学及药代动力学上具有重要意义,该领域已成为从事临床医学、化学和生命科学等学科研究的科研工作者共同关注的课题之一。本论文利用吸收光谱技术和共振光散射技术研究了胰蛋白酶-染料体系、辅酶Ⅰ-染料体系和人血清白蛋白-染料体系,探讨了染料与胰蛋白酶、辅酶Ⅰ、人血清白蛋白的作用机理,建立了利用光学探针测定胰蛋白酶、辅酶Ⅰ及人血清白蛋白的新方法。论文共分五个部分。
     一乙基紫和胰蛋白酶的相互作用及其含量测定
     在中性介质中,阳离子碱性染料乙基紫与大分子胰蛋白酶的强烈相互作用,导致了分子间的构象发生变化,从而引起分子光谱最大吸收值的变化。应用光谱法研究了反应体系的酸度及用量、染料乙基紫的用量、反应时间等影响反应因素,确定了反应的最佳实验条件,建立了测定胰蛋白酶的可行、简便、快捷的方法。并推导了染料乙基紫对胰蛋白酶的作用机理。实验的结果表明:运用分光光度法测得的结果更为满意。最佳反应条件为pH=7.0,缓冲溶液用量为2.0 mL,乙基紫的用量为2.0 mL,反应时间约20 min,反应现象比较明显,在胰蛋白酶的含量为2.0~130.0 mg/L的浓度范围内成线性关系。运用测量结果对样品进行分析,并测定回收率。得到的结果较为满意。
     二磷酸盐和胰蛋白酶的相互作用及其含量测定
     在B-R缓冲介质中,邻甲苯胺亚磷酸盐与大分子胰蛋白酶的相互作用,导致了分子间的构象发生变化,从而引起分子光谱最大吸收值的变化。应用光谱法研究了反应体系的酸度及用量、邻甲苯胺亚磷酸盐的用量、反应时间等影响反应因素,确定了反应的最佳实验条件,建立了测定胰蛋白酶的可行、简便、快捷的方法。实验的结果表明:最佳反应条件为pH=10.88,缓冲溶液最佳用量为2.0 mL,邻甲苯胺亚磷酸盐的最佳浓度为100 mg/L,反应时间约20 min左右最为稳定,反应现象比较明显,在胰蛋白酶的含量为15.0 mg/L~240.0 mg/L的浓度范围内成线性关系。运用测量结果对样品进行分析,并测定回收率。用于猪胰脏中胰蛋白酶含量的测定,结果满意。
     三亚甲蓝和胰蛋白酶的相互作用及其含量测定
     本章研究了生物染料亚甲兰在阴离子表面活性剂十二烷基硫酸钠的存在下,与胰蛋白酶相互作用的共振光散射光谱。研究发现在pH为3.78的酸性条件下,亚甲兰与阴离子表面活性剂的共振光散射强度较弱,加入胰蛋白酶后其共振光散射信号大大增强,且与胰蛋白酶的浓度在2.0~14.0 mg/L范围呈良好的线性关系,据此建立了用有机染料为探针测定胰蛋白酶含量的共振光散射新方法。该方法灵敏度高,检出限为0.634 mg/L。
     四乙基紫和辅酶Ⅰ的相互作用及其含量测定
     本章用紫外-可见分光光度法研究了乙基紫(EV)与辅酶Ⅰ(NAD)的相互作用,并对影响体系的因素进行了探究。结果表明,在pH=4.78的条件下,NAD的加入使EV在其最大吸收峰(595 nm)处吸光度增强,比EV溶液自身的吸光度显著增大。用紫外-可见分光光度计测定,在595 nm处EV-NAD溶液的吸光度值与EV溶液的吸光度值之差与NAD的浓度在一定范围内有线性关系,线性响应范围为0.05-80.0 mg/L,检出限为0.0271 mg/L,用于辅酶Ⅰ的测定,结果满意,由此建立起快速测定NAD的实用方法。同时,初步探讨了EV-NAD的结合机理。
     五乙基紫和人血清白蛋白的相互作用及其含量测定
     本章研究了乙基紫(EV)与人血清白蛋白(HSA)的结合反应。在pH=3.78的条件下,HSA的加入使EV在其最大吸收峰(595 nm)处吸光度增强,比EV溶液的吸光度显著增大。用紫外-可见分光光度计测定,在595 nm处EV-HSA溶液的吸光度值与EV溶液的吸光度值之差ΔA与HSA的浓度c在一定范围内有线性关系,线性响应范围为5.0~150.0 mg/L,检出限为0.0971 mg/L,用于人血清白蛋白样品测定结果满意,由此建立起快速测定HSA的实用方法。该法具有简便、快速、干扰少、灵敏度高的特点。同时,初步探讨了EV-HSA结合机理。
Abstract: The protein is the biological macromolecule of which is composed many amino acids, is one of life’s most basic materials, and is playing the decisive role in the biological phenomena and the life process. Human Serum Albumin (HSA) is the most abundant carrier protein in blood circulation. It is Single peptide protein consisting of 585 Amino acid residues, whose molecular weight approximately is 66500. It mainly plays a role of a carrier for diverse substances. What’s more, it is largely responsible for maintaining normal osmolarity in the plasma. It is used in medicine such as shok, edema and hypoproteinemia. It is important to study the interaction of small molecules and metallic ion with the protein because protein-drug binding plays an important role in pharmacology, pharmacodynamics, toxicology and gene mutation. And Trypsin is a kind of proteolytic enzymes from animal. The single peptide contains 233 amino acid residues and 6 pairs of disulfide bond, whose molecular weight approximately is 24000. It affects on peptide linkage which is formed by arginine and lysine of carboxyl. It widely applies in the medicine, food, the industrial field as well as the aspects of the protein sequential analysis, compatible, adsorption, separation and so on.
     The scientists focus on finding a simple, quick and high sensitive method to determine the protein. There are more and more probes for determination of protein. To study the interaction between protein and probes become very important. Researching the binding mechanism and process of toxic materials and drugs with proteins and investigating novel quantification method of proteins with high selectivity and sensitivity have many importances in clinical medicine, life sciences, toxicology and pharmacokinetics. Thus, it has been an interesting research field of clinical medicine, chemistry and life sciences.
     This thesis studies the Trypsin-dye system and HSA-dye system, discusses the interaction mechanism of dye with Trypsin and HSA and applies to the determination using resonance light scattering technique and absorption spectral technique. The thesis is divided into five chapters.
     1. Investigation on Interaction of Trypsin with Ethyl Violet Dye and its application
     The interaction of Ethyl violet (EV) with Trypsin in pH=7.0 Britton-Robinson buffer solution has been investigated by UV/Vis spectrophotometry technique. The increase in the absorption at 595 nm was proportional to the concentration of Trypsin base on EV, providing a basis for the quantitative determination of Trypsin. The absorbance of each solution at 595 nm was measured and the regression equation wasΔA=0.28412+0.00151c (mg/L). The linear range for the determination of Trypsin was from 2.0 to 130.0 mg/L with correlation coefficient of 0.9991 and the detection limit was 0.0869 mg/L(3σ). This method was simple and efficient than the ordinary methods and had been applied to the direct determination of Trypsin with satisfactory results.
     2. Ya-o-toluidine phosphate of the determination of trypsin research
     B-R in the buffer solution, the sub-o-toluidine bisphosphonates trypsin and macromolecular interaction between the elements led to a change in conformation, which led to the molecular absorption spectra of the largest value. Application spectrometry system of reaction and the amount of acidity, the sub-o-toluidine amount of bisphosphonates, such as reaction time affect the reaction, a reaction to determine the best experimental conditions for the establishment of the determination of trypsin feasible, simple and quick Methods. The experimental results show that: the best conditions for the reaction pH = 10.88, amount to 2.0 mL, sub-o-toluidine bisphosphonates for the amount of 2.0 mL, the reaction time about 20 minutes or so of the most stable, the response is more obvious in the pancreas The protein content of 15.0 ~ 240.0 mg / L of concentration within the framework of a linear relationship. Use measurements of samples for analysis and determination of recovery. More satisfied with the results.
     3. A Study on Interaction of Trypsin with Methylene Blue and its application
     The interaction of Methylene Blue (MB) with Trypsin in pH= 3.78 Britton-Robinson buffer solution (B-R) has been investigated in the presence of sodium dodecyl sulfate (SDS) by UV/Vis spectrophotometry and resonance Rayleigh-scattering (RRS) technique. In acidic medium, SDS and MB can combine to Trypsin to form a macromolecular complex, causing the great enhancement of RRS intensity at 467.2 nm. Moreover, the interaction mechanism was also discussed. It was showed that the anionic surfactant SDS can firstly react with Trypsin via electrostatic attractions, hydrophobic bonds and hydrophilic bonds to form SDS-Trypsin aggregation. Then MB molecules bind to the aggregation by hydrogen bonds to form the SDS-Trypsin-MB complex, which results in the great enhancement of RRS intensity. The intensity of RRS of each solution at 467.2 nm was measured and the regression equation wasΔI=-28.0196+55.41263c (mg/L). The linear range for the determination of Trypsin was from 2.0 to 14.0 mg/L with correlation coefficient of 0.993 5 and the detection limit was 0.634 mg/L(3σ). This method was simple and efficient than the ordinary methods and had been applied to the direct determination of Trypsin with satisfactory results.
     4. Investigation on Interaction of NAD with Ethyl Violet Dye and its application
     The interaction of ethyl violet (EV) withβ-Nicotinamide adenine dinucleotide (NAD) in pH=4.78 Britton-Robinson buffer solution has been investigated by UV/Vis spectrophotometry technique.The increase in the absorption at 595 nm was proportional to the concentration of NAD base on EV,providing a basis for the quantitative determination of NAD.The absorbance of each solution at 595 nm was measured and the regression equation wasΔA=0.01714+0.02225c (mg/L).The linear range for the determination of NAD was from 0.05 to 80.0 mg/L with correlation coefficient of 0.999 0 and the detection limit was 0.0271 mg/L(3σ).This method was simple and efficient than the ordinary methods and had been applied to the direct determination of NAD with satisfactory results.
     5. Research About Ethyl Violet and Human Serum Albumin
     The interaction of ethyl violet (EV) with human serum albumin (HSA) in pH=3.78 Britton-Robinson buffer solution has been investigated by UV/Vis spectrophotometry technique.The increase in the absorption at 595 nm was proportional to the concentration of HSA base on EV,providing a basis for the quantitative determination of HSA.The absorbance of each solution at 595 nm was measured and the regression equation wasΔA=0.1736+0.0015c(mg/L).The linear range for the determination of HSA was from 5.0 to 150.0 mg/L with correlation coefficient of 0.999 7 and the detection limit was 0.0971 mg/L(3σ).This method was simple and efficient than the ordinary methods and had been applied to the direct determination of HSA with satisfactory results.
引文
[1] Chan Warren C W, Shuming N. Quanturn Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science, 1998, 281: 2016~2018.
    [2]曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用[J].光谱学与光谱分析,2004, 24(10): 1197~1201.
    [3]张华新,颜承农,黄星,刘义,梅平.小分子配体与蛋白质作用的荧光法研究进展[J].化学与生物工程, 2005,9:4~6.
    [4]薛裙,饶美香,李蕾.药物与蛋白质相互作用的研究新进展[J].赣南师范学院学报, 2002,3:46~50.
    [5]俞英,周震涛.蛋白质光谱探针的研究进展[J].光谱学与光谱分析,2005,25:628~632.
    [6] Diluzio N R. Lysozyme activity:an index of macrophage functional statu [J].s. Front. Biol. Lysozyme Apple. Biol. Ther, 1979, 6 (48) : 447~462.
    [7] Bradford M M. A rapid andsensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dyebinding [J]. Anal. Biochem.,1976, 72 : 248~254.
    [8] Fazekas de St S G, Webster R G, Datyner A. Two new staining procedures for quantitative estimation of proteins on electrophoretic strips [J]. Biochim. Biophys. Acta., 1963, 71 : 377~391.
    [9] Tal M, Silberstein A, Nusser E. Why does Coomassie brilliant blue interact differently with different proteins [J]. Biol. Chem., 1980, 260 : 9976~9980.
    [10] Lind K E, Kragh-Hansen U, Moller J V. Protein binding of small molecules. V. Binding of bromphenol blue by chemical modifications of human serum albumin [J]. Biochim. Biophys. Acta., 1974, 371: 451~461.
    [11] Morozova N A, Baryshnikova T A. Determination of protein in urine using biuret method [J]. Clin. Chem., 1991, 37 (1) : 23~25.
    [12]赵丹华,陆万平,张国平,訾言勤.鲁米诺-H2O2体系流动注射-化学发光增强法测定胰蛋白酶[J].北京:淮北煤炭师范学院学报(自然科学版),2007,28(3):31~34.
    [13]石影.有机试剂概论[M].徐州:中国矿业大学出版社,2000,03.
    [14] Guo Z X, Shen H X. Sensitive and simple determination of proteins by resonanceRayleigh scattering with 4-azochromotropic acid phenylfluoronce [J]. Anal. Chim. Acta., 2000, 408 :177~182.
    [15] Wang Y T, Zhao F L, Li K A, Tong S Y, etc.. A novel protein assay with an azo dye using Rayleigh light scattering technique [J]. Anal. Lett., 2000, 33 (2) :221~235.
    [16]李祖碧,曹秋娥,王加林,李崇宁.丽春红G-高碘酸钾催化光度法测量痕量锇[J].分析试验室,2002,21(6):77~79.
    [17]杨传孝,李原芳,黄承志.丽春红G用于人血清样品中总蛋白的共振光散射测定[J].分析化学,2003,31(2):148~152.
    [18] Yao G, Li K A, Tong S Y. Study on the Interaction of Protein with Sulfonazo III by Rayleigh Light Scattering Technique and Its Application [J]. Anal. Chim. Acta., 1999, 398:319~327.
    [19]袁莉,任小娜,马永钧.Pb2+-TTA-偶氮磺Ⅲ高灵敏反应用于测定食品添加剂中的Pb[J],分析试验室,2006,25(11):23~26.
    [20]冯宁川,龚国权.亮黄-曲通X-100体系共振瑞利散射法测定蛋白质[J].分析化学, 2002, 30(4):425~427.
    [21]冯宁川,龚国权.亮黄共振光散射法测定微量蛋白质[J].理化检验,2005,41(2):113~118.
    [22] Liu S P, Yang R and Liu Q, Resonance rayleigh method for the orange G [J]. Anal. Sci., 2001, 17 : 243~247.
    [23]张凯,孙其志,李增文,胡书堂.金橙G螯合形成树脂分离富集地质样品中的微量贵金属[J].分析化学,1997,25(6):659~662.
    [24]孙伟,韩军英,焦奎,陆路德.金橙G为电化学探针检测血清白蛋白[J].化学研究与应用,2005,17(4):556~558.
    [25]孙伟,韩军英,尚智美,焦奎,陆路德.酸性铬蓝K-蛋白质结合反应体系的极谱分析[J].理化检验,2004,40(11):632~634.
    [26]张海丽,叶永康,徐斌.酸性铬蓝K固体石蜡碳糊修饰电极溶出伏安法测定痕量铅[J].分析化学,2000,28(2):194~196.
    [27]杜娟,郭洪博.Zn(Ⅱ)-酸性铬蓝K与牛血清白蛋白相互作用的光谱研究[J].光谱实验室,2009,26(6):1418~1421.
    [28]黄泽南,周琦,邓昌爱,李红波.应用酸性铬蓝K的AN=0双波长补偿系数光度法测定铜(Ⅱ)[J].分析科学学报,2009,25(5):583~586.
    [29]张泽洋,吴婉娥,王天生,赵鹏.溴酸钾-酸性铬蓝K新化学发光体系检测水中亚硝酸根[J].分析试验室,2007,26:118~121.
    [30]杨维平,章竹君,李建中.铝-酸性铬蓝K荧光光度法测定痕量铝的研究[J].分析化学,1994,22(6):602~604.
    [31] Ma C Q ,Li KA ,Tong S Y. Microdetermination of proteins with the arsenazo-DBN-Al ( III) [J]. Analyst, 1997,122 :161~164.
    [32]杨睿,刘绍璞,龙秀芬.曲利本蓝-蛋白质体系的共振瑞利散射及其分析应用[J].西南师范大学学报,1999,24(2):179~182.
    [33]李树伟,李娜,赵凤林,李克安.用铀试剂Ⅰ共振光散射法测定蛋白质的研究[J].光谱学与光谱分析,2002,22(4):619~622.
    [34]欧红,冉茂光.新铀试剂光度法测定饮用水中微量铜[J].化学研究与应用,2000,12(4):452~454.
    [35]冯宁川,龚国权.钍试剂Ⅱ与蛋白质作用的共振光散射特征及微量蛋白质的光散射测定[J].分析试验室,2002,21(1):58~60.
    [36]寇明泽,王传娥,寇宗燕.钯(Ⅱ)与二溴对甲基偶氮磺显色反应的研究[J].分析试验室,2005,24(7):68~69.
    [37]于京华,欧庆瑜,卢燕,牟艳云.变色酸偶氮磺试剂高灵敏光度法测定痕量铬E[J].分析化学,2004,32(7):980~983.
    [38]钟国秀,黄清华,晏高华.二溴对甲基偶氮磺褪色光度法测定铝合金中微量铬[J].理化检验,2009,45(5):596~602.
    [39]王晓霞,沈含熙,郝永梅.苋菜红-蛋白质体系的共振光散射光谱研究及其分析应用[J].分析化学,2000,28(11):1388~1390.
    [40]张国文,蒋婷,王安萍.甲基紫与苋菜红相互作用的双波长共振光散射比率光谱研究及其分析应用[J].分析试验室,2009,28(2):65~69.
    [41] Liu S P and Liu Q. Resonance rayleig–scattering method for the determination of protein with some monoazo chromotropic acid [J]. Anal. Sci., 2001, 17 : 239~242.
    [42] Li X F, Chen X G, Zhang H Y, Xue C X, Fan Y Q, Hu Z D. Microdetermination of proteins using m-carboxychlorophosphonazo as detection probe by enhanced resonance light scattering spectroscopy Fresenius [J]. Anal. Chem., 2000, 368 : 715~719.
    [43]杨志毅,李祖碧,曹秋娥,郭杰.偶氮胂M-溴酸钾催化动力学测定痕量钒[J].分析试验室,2003,22(5):92~94.
    [44]周之荣,周瑜芬,牛建国,王黎.氧化偶氮胂M褪色光度法测定痕量钛(Ⅳ)[J].分析试验室,2005,24(5):51~54.
    [45]吴兰菊,缪吉根,吴小华,杨安生.铬天青S-Cu(Ⅱ)配合物探针吸光光度法测定蛋白质的研究[J].分析试验室,2008,27(11):71~74.
    [46]全红,白小红,王晓芳.铬天青S-氟罗沙星分光光度法测定粉针剂中氟罗沙星的含量[J].山西医科大学学报,2009,40(1):60~63.
    [47]雷利珑,沈九凤,赵洁海.铬天青S光度法测定硅铁中的铝[J].光谱实验室,2008,25(3):398~400.
    [48]沈春玉.铬天青S分光光度法测定聚乙烯树脂中铝[J].冶金分析,2007,27(8):76~78.
    [49]马春琪,李克安,赵凤林,童沈阳.牛血清白蛋白与铬天青S作用机理的研究[J].化学学报,1999,57:389~395.
    [50]陶慧林,朱仕毅,梁昊东.铌-铬天青S与牛血清白蛋白结合反应及其应用[J].分析试验室,2009,28(10):53~55.
    [51]付勇,杜玉明,张正兴.水中铝含量的铬天青S比色测定法及其质量控制分析[J].实用医学杂志,2005,22(5):437~438.
    [52]蒋治良,潘宏程,袁伟恩.铬天青S-铝(Ⅲ)-聚乙二醇4000体系的共振散射光谱及其应用[J].环境化学,2004,23(5):573~577.
    [53] Ma C Q, Li K A, Tong S Y, Microdetermination of proteins by resonance light scattering spectroscopy with tetraiodo phenol sulfonaphthalein [J]. Fresenius J. Anal. Chem., 1997, 357: 915~920.
    [54] Ma C Q, Li K A, Tong S Y, Microdetermination of proteins by resonance light scattering spectroscopy with bromophenol blue [J]. Anal. Biochem., 1996, 239:86~91.
    [55]张述林,李敏娇,王晓波.溴酚蓝修饰玻碳电极测维生素C中抗坏血酸含量[J].电化学,2008,14(1):100~103.
    [56]罗济文,李家洲,黄志伟,李家贵,陈渊.溴酚蓝修饰玻碳电极的电化学以及[J].化学研究与应用,2004,16(6):831~833.
    [57]陈伟,林新华,黄丽华,罗红斌.聚溴酚蓝修饰电极对多巴胺的电催化作用及伏安测定[J].分析试验室,2005,24(5):4~7.
    [58]张红医,刘保生,王甫丽.光度法研究溴酚蓝与牛血清白蛋白的结合反应[J].光谱学与光谱分析,2003,23(2):342~344.
    [59]丁良,刘保生,左本成.等色染料离子对溴酚蓝-亚甲蓝的吸光性质研究[J].光谱实验室,1999,16(1):47~50.
    [60]杨磊,刘玉,张琳,祖元刚.溴酚蓝离子对萃取分光光度法测定长春花中总生物碱[J].理化检验,2008,44(5):427~432.
    [61]秦宗会,谭蓉,王杨梅,宗志华.溴酚蓝光度法测定马来酸罗格列酮的含量[J].分析试验室,2009,28(10):41~44.
    [62]丁素芳.溴酸钾-溴酚蓝-锰(Ⅱ)催化体系的研究及其在测定抗坏血酸中的应用[J].理化检验,2005,41(9):642~647.
    [63] Ma C Q, Li K A, Tong S Y. Microdetermination of proteins by Rayleigh light scattering technique with acid green 25 [J]. Anal. Chim. Acta., 1997, 338 : 255~260.
    [64]金建忠.溴酚红-过氧化氢催化光度法测定痕量锌[J].理化检验,2005,41(9):656~657.
    [65]丁飞,宋卫堂,林娟,潘虹,高黎.锌(Ⅱ)对于甲基百里酚蓝与牛血清白蛋白相互作用的影响[J].化学研究,2009,20(1):57~60.
    [66]马占玲.茜素紫褪色光度法测定食盐中碘[J].理化检验,2009,45(9):803~804.
    [67]徐缓,邓意辉,陈大为,王超.超滤-紫外可见分光光度法测定钙黄绿素囊泡包封率[J].中国新药杂志,2008,17(2):150~152.
    [68]程定玺,杜刚锋.荧光分光光度法测定乐果[J].理化检验,2009,45(7):855~857.
    [69]唐德胜,刘英,童坚.磷钼酸铵-孔雀绿-PVA分光光度法测定钽粉中磷[J].分析试验室,2006,25(9):96~98.
    [70]王洪福,魏成富,何黎明,周建.Rh(Ⅲ)-KIO4-孔雀绿体系催化动力学光度法测定痕量铑[J].分析试验室,2008,27(11):98~101.
    [71]刘保生,王云科,张彦青,傅丽,吕运开.铽-环丙沙星与罗丹明B间稀土敏化荧光能量转移机理研究[J].光谱学与光谱分析,2008,28(1):153~155.
    [72]周享春,颜承农,王特,宁方秀.罗丹明B与牛血清白蛋白的相互作用研究[J].化学研究与应用,2009,21(1):36~41.
    [73]李紫凡,梅岭,向宇,童爱军.一种增色检测铜离子的新型罗丹明B衍生物探针[J].分析化学,2008,36(7):915~919.
    [74]冒薇,李艳,周克勤,周群,郑军伟.纳米银组装结构上罗丹明B的表面增强荧光效应[J].光谱实验室,2009,26(4):885~887.
    [75]张书然,胡蓉,杨琼,杨季冬.亚甲蓝和天青A与AuCl4-离子缔合物的溶剂萃取导数-同步荧光光度法同时测定[J].应用化学,2009,26(7):811~815.
    [76]刘飒,刘绍璞,谢锂纱,胡小莉,宋彦琪.十二烷基苯磺酸钠存在下共振光散射法测定亚甲蓝[J].应用化学,2009,26(8):966~970.
    [77]杨方,范克伟,刘正才,等.液相色谱法检测水产品中亚甲蓝及其代谢物残留[J].分析化学,2009,37(4):517~521.
    [78]陈效兰,霍欢,陈朝艳.天青A-溴酸钾体系催化光度法测定微量甲醛[J].2007,26(3):63~65.
    [79]訾言勤,丁言斌,张东辉,王晴.核糖核酸与天青A作用机理及含量测定[J].分析化学,2005,33(12):1757~1760.
    [80]曹稳根,焦庆才,刘茜.蛋白质三元复合物空间定向作用机理的研究[J].光谱学与光谱分析,2005,25(9):1478~1481.
    [81]胡敏,张镇西,沈国励,刘娅莉.近红外荧光探针天青A检测DNA[J].分析化学,2007,35(6):890~892.
    [82]赵丹华,李淑,訾言勤.中性红分光光度法测定脱氧核糖核酸[J].分析试验室,2007,26(1):62~64.
    [83]孙元喜,周谷珍,周性尧.亚铁氰化钾掺杂聚中性红膜修饰电极的制备及电分析特性[J].分析化学,2000,28(10):1271~1274.
    [84]黄强,刘红英,张翠红,方宾.多璧碳管/聚中性红修饰电极的制备及对鸟嘌呤和腺嘌呤的应用研究[J].分析试验室,2009,28(9):31~34.
    [85]张国荣,王艳玲.新型纳米银-磷酸锆-中性红复合膜修饰电极对过氧化氢电催化还原[J].分析化学,2003,31(12):1421~1424.
    [86]张国荣,刘海燕,王艳玲.聚中性红作电子转移介体的过氧化氢生物传感器[J].分析化学,2002,30(10):1237~1239.
    [87]武秀红,董存智.中性红-8-羟基喹啉-亚硝酸根体系共振散射光谱研究及分析应用[J].分析试验室,2007,26(10):37~40.
    [88]邓世星,杨季冬.荧光法研究牛血清白蛋白与中性红的相互作用[J].分析科学学报,2007,23(2):177~180.
    [89]刘保生,王晶,薛春丽,吕运开.曙红-中性红荧光能量转移抑制法测定肝素[J].分析试验室,2009,28(9):16~19.
    [90]李祖碧,李崇宁,徐其亨,刘云杰.用耐尔蓝和高碘酸盐催化光度法测定痕量铱(Ⅳ).分析化学,1999,27(7):778~781.
    [91]李祖碧,王加林,徐其亨,刘玫.用钨酸盐和耐尔蓝光度法测定痕量碲.分析化学,1998,26(3):283~286.
    [92]李祖碧,曹秋娥,王加林,徐其亨,李立新.耐尔蓝-高碘酸钾催化光度法测定痕量钌[J].分析化学,2000,28(1):31~34.
    [93]黄承志,李原芳,李念兵,罗红群,黄新华.耐尔蓝硫酸盐在核酸分子表面的长距组装及核酸的三波长共振光散射测定[J].分析化学,1999,27(11):1241~1247.
    [94]高峰,朱昌青,王伦.耐尔蓝-十二烷基苯磺酸钠-蛋白质体系的荧光反应及其分析应用[J].分析化学,2003,31(9):1085~1088.
    [95]詹心琪,林国发.耐尔蓝-溴酸钾体系褪色光度法测定痕量甲醛[J].分析化学,2002,30(11):1403~1405.
    [96]刘佳铭,姜玉颖,叶丹.过氧化氢氧化硫酸耐尔蓝催化褪色光度法测定痕量硅[J].分析化学,2004,32(7):982.
    [97]严明,李战雄.染料中性蓝BNL对黑索金热分解的影响[J].印染助剂,2008,25(12):11~13.
    [98]罗鹏,谢国明,宋方洲,邓世雄,徐华健.麦尔多拉蓝作为电子介体的一次性血清酒精生物传感器[J].分析化学,2007,35(12):1801~1804.
    [99]盛丽,朱金林,韩小茜,苏碧泉.碱性藏花红T荧光猝灭法测定痕量过氧化氢[J].光谱实验室,2008,25(6):1075~1077.
    [100] Morozova N A, Baryshnikova T A. Determination of protein in urine using biuret method [J]. Clin. Chem., 1991, 37 (1) : 23~25.
    [101]胡卓逸,孙承瑜,等.蛋白质定量方法的进展[J].生物化学与生物物理进展,1990,17(1):23~26.
    [102] Bradford M M. A rapid andsensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dyebinding [J]. Anal.Biochem.,1976, 72 : 248~254.
    [103] Compton S T, Jones C G. Mechanism of dye response and interference in the Bradford protein assay [J]. Anal. Biochem., 1985, 151 (2) :369~374.
    [104] Congdon R W, Muth G W, Splittgerber A G. The binding interaction of Coomassieblue with proteins [J]. Anal. Biochem., 1993, 213 : 407~413.
    [105] Wei Y J, Li K A, Tong S Y. A linear regression method for the study of the Coomassiebrilliantblue protein assay [J] .Talanta, 1997, 44 : 923~930.
    [106] Perry B W, Doumas B T. Effect of heparinonalbumin determination by use of bromcresol green and brom-cresolpurple [J]. Clin. Chem., 1979, 25 : 1495~1498.
    [107]魏永巨,李克安,童沈阳.溴甲酚绿与血清白蛋白的结合反应[J].分析化学, 1996, 24(4): 387~391.
    [108] Flores R. A rapid and reproducible assay for quantive estimation of proteins using bromphenol blue [J]. Anal. Biochem., 1978, 88 : 605~611.
    [109] Wei Y J, Li K A, Tong S Y. The interaction of Bromophenol blue with proteins in acidic solution [J]. Talanta, 1996, 43 : 1~10.
    [110] Wei Y J, Li K A, Tong S Y. A spectral study of interaction of Thymol blue with protein in acidic solution [J] .Anal. Chim. Acta., 1997, 341:97~104.
    [111] Pinnell A E ,Northam B E. New automated dye-binding method for serum albumin determination with bromcresol purple [J]. Clin. Chem, 1978, 24(1):80~86.
    [112]胡庆红,刘绍璞,罗红群.变色酸2B分光光度法测定蛋白质[J].西南师范大学学学报(自然科学版),2001,26(5):594~598.
    [113]迟燕华,李娜,庄稼,等.以锌试剂显色法测定蛋白质的研究[J].高等学校化学学报, 1998,19(6): 867~881.
    [114]魏永巨,李克安,童沈阳.牛血清白蛋白与甲基橙结合反应的研究[J].高等学校化学学报, 1996,17(11):1687~1692.
    [115] Racusen D. Stoichiometry of the Amido black reaction with proteins [J]. Anal. Biochem., 1973, 52 : 96~101.
    [116]李娜,童沈阳.蛋白质-四氯苯醌荷移反应的分光光度研究[J].分析科学学报,1993,9:18~21.
    [117]周旭光,封丽,周万斌,赵桂芝,杨静,张娜.四氯苯醌与磺胺类药物荷移反应的研究[J].分析化学,1999,27(2):244.
    [118]刘希东,兰觉明.伊红Y分光光度法测定血清白蛋白[J].分析科学学报,2002,18(4):324~326.
    [119]程国平,徐建勤.醇溶性伊红Y染液配制与染色方法[J].临床与实验病理学杂志,2008,24(4):494~495.
    [120]杨武,郭昊,张文皓,等.Pr掺杂TiO2光催化剂的制备及其对酸性品红降解反应的催化性能[J].光谱学与光谱分析,2008,28(4):922~925.
    [121]付芝,金莲,张力,包玉敏.酸性品红褪色光度法测定痕量铁(Ⅲ)[J].光谱实验室,2006,23(5):972~974.
    [122]刘志成,申湘忠,李家其.酸性品红褪色光度法直接测定食盐中的碘[J].光谱实验室,2005,22(6):1333~1336.
    [123]俞英,程晓伟.牛血清白蛋白与酸性品红的结合反应[J].分析化学,2000,28(5):583~586.
    [124]孙伟,焦奎,刘晓云.电化学研究蛋白质和茜素红S的相互作用[J].分析化学,2002,30(3):312~314.
    [125]于巧玲,李建平.负载茜素红S的纳米磁性碳粉修饰电极测定牛白蛋白[J].分析化学,2006,34(2):247~250.
    [126]陈贤光,邹小勇,梁起,欧阳良琪,陈国荣,李泽之,钱莹.茜素红S催化动力学光度法测定痕量铁(Ⅲ)及反应机理探讨[J].分析化学,2006,34(3):371~374.
    [127]陈贤光,邹小勇,梁起,欧阳良琪,陈国荣,李泽之,钱莹.茜素红S催化动力学光度法测定痕量铜(Ⅱ)及机理探究[J].分析试验室,2006,25(5):40~44.
    [128]庄稼,迟燕华,李克安,等.茜素红S与蛋白质的反应机理研究[J].化学学报, 1998, 56(8): 827~832.
    [129]迟燕华,戴世琨,庄稼,王小川,黄奕刚.5-鸟苷酸与茜素红S的反应及其在分析化学中的作用[J].分析化学,2005,33(6):798~801.
    [130]郑洪,李东辉,吴敏,等.合成的近红外花菁染料测定痕量血清蛋白质[J].高等学校化学学报,1999,20(4):555~557.
    [131]张红医,刘保生,张红蕾,赵勇.酸性品红共振光散射法测定蛋白质[J].光谱学与光谱分析,2002,22(6):1054~1056.
    [132] Ma C Q ,Li KA ,Tong S Y, Rayleigh light-scattering spectroscopy: application tothe determination of proteins using bromopyrogallol red [J]. Bull. Soc. Jpn., 1997, 70 :129~133.
    [133]陈国珍,黄贤智,郑朱梓,等.荧光分析法(第二版)[M].北京:科学出版社,1990,10.
    [134]孙伟,丁雅勤,滕文荟,焦奎.吖啶橙与肝素钠相互作用的分光光度法研究[J].光谱学与光谱分析,2007,27(1):116~119.
    [135]冯喜增,白春礼,林璋,等.吖啶橙与牛血清白蛋白的相互结合反应[J].分析化学,1998, 26(2):291~297.
    [136]刘保生,高静,杨更亮.吖啶橙-罗丹明6G荧光共振能量转移及其罗丹明6G荧光猝灭法测定蛋白质[J].分析化学,2005,33(4):546~548.
    [137]侯明,李海云,殷辉安.汞(Ⅱ)-吖啶橙-十二烷基苯磺酸钠荧光体系的研究及应用[J].分析试验室,2005,24(8):15~18.
    [138]欧阳运富,王永生,薛金花,王英.吖啶橙-罗丹明6G共振能量转移荧光猝灭法测定尿中1-羟基芘[J].分析试验室,2007,26(11):53~56.
    [139]程定玺,赵亚鹏.吖啶橙-十二烷基苯磺酸钠-有机磷农药体系的荧光反应及分析应用[J].分析试验室,2009,28(11):53~56
    [140] Li D H, Yang H H, Zhu Q Z , Xu J G. Fluorimetric Determination of Albumin and Globulin in Human Serum Using Tetra-Substituted Sulphonated Aluminum Phthalo-cyanine [J]. Anal. Chim. Acta. 1999, 401:185~189.
    [141] Saito Y. A sensitive spectrofluorometric determination of human serum albumin with chromeazurol S [J]. Anal.Chim. Acta., 1985, 178 (2) :337~339.
    [142] Ma C Q, Li K A, Tong SY. Determination of proteins by fluorescence quenching of crythrosinB [J]. Anal. Chim. Acta., 1996, 233 :151~155.
    [143] Ci Y X, Chen L. Fluorimetric determination of human serum albumin with eriochromecyanine R [J] . Analyst, 1988 ,113 (4) :679~681.
    [1] Osborne S E, Ellington A D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry[J]. J. Chem. Rev., 1997, 97, 349~370.
    [2] Tuite E, Kelly J M. The Interaction of Methylene Blue, Azure B, and Thionine with DNA: Formation of Complexes with Polynucleotides and Mononucleotides as Model Systems[J]. Biopolymers., 1995, 35, 419~433.
    [3] Gao F, Zhou J Q, Wang L, Tang L J . Studies on the Interaction of Phenosafranine with DNA by Spectroscopy[J]. Chin. J. Anhui Normal University (Natural Science)., 2006, 29, 143~147.
    [4] Schneedorf J M, Santoro M M, Lovrien R E, Mares G M . A time-dependent, two-step binding mode of the nitro dye flavianic acid to trypsin in acid media[J]. J. Med. Biol. Res., 2001, 34, 1047~1054.
    [5] Gao H W, Yang J X, Jiang J, Yu L Q . Langmuir aggregation of chromophore in biomacromolecule and its application:interaction of picramine CA(PCA) with proteins[J]. J. Supramol. Chem., 2002, 14, 315~321.
    [6] PrentùP . A contribution to the theory of biological staining based on the principles for structural organization of biological macromolecules[J]. J. Biotech. Histochem., 2001, 76, 137~161.
    [7] Letuta S N, Ketsle G A, Levshin LV, Nikiyan AN, Davydova OK . A study of the interaction of rhodamine 6G with DNA by spectrophotometry and probe microscopy[J]. J. Opt. Spectrosc., 2002, 93, 844~847.
    [8] Pesavento M, Profumo A . Interaction of Serum Albumin with a Sulphonated Azo Dye in Acid Solution[J]. J. Talanta., 1991, 38, 1099~1106.
    [9]李江华,胡涌刚,庞志涛.流动注射化学发光分析法测定人血清中白蛋白的研究[J].分析科学学报,2002,22(4):414~417.
    [10]莫小曼,黄春保,刘巧玲.反相流动注射化学发光法测定牛血红蛋白的研究及应用[J].分析科学学报,2004,20(5):528~530.
    [11] Wei Y J, Li K A, Tong S Y . The interaction of bromophenol blue with proteins in acidic solution[J]. J. Talanta., 1996, 43, 1~10.
    [12]卢臻,宋功武.曙红Y与牛血清蛋白作用的荧光光谱研究及分析应用[J ].分析测试学报,2000,19(5):48~49.
    [13] Lee S H, Suh J K, Li M. Determination of Bovine Serum Albumin by Its Enhancement Effect of Nile Blue Fluorescence [J]. Bull. Korean Chem. Soc., 2003,24(1):45~48.
    [14] Sun W, Han J Y, Yong R, Jiao K. Voltammetric Studies on the Interaction of Orange G with Proteins. Analytical Applications [J]. J. Braz. Chem. Soc., 2006, 17: 510~517.
    [15] Huang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light-scattering technique with alpha, beta, gamma, delta-tetrakis[4-(trimethylammoniumyl)phenyl]porphine[J]. J. Anal. Chem., 1996, 68, 2259~2263.
    [16] Huang C Z, Li Y F, Feng P, Li M. Determination of proteins by their enhancement of resonance light scattering by fuchsine acid[J].Fresenius J. Anal. Chem., 2001, 371, 1034~1036.
    [17]张爱梅,臧运波.偶氮洋红G-SDS体系共振光散射法测定蛋白质[J].分析测试学报,2005,24(2):51~53.
    [18] Ma C Q, Li K A, Tong S Y. Microdetermination of proteins by resonance light scattering spectroscopy with bromophenol blue [J]. Anal. Biochem., 1996, 239 (1): 86~91.
    [19] Wei Y J, Li K A, Tong S Y . Elastic light-scattering of protein-chrome azurol S complex and its preliminary analytical application[J]. J. Acta. Chim, Sinica., 1998, 56, 290~297.
    [1]张东裔,唐建国,张龙翔.胰蛋白酶活性的定量测定方法[J].生物化学与生物物理进展,1996,23(6):551~553.
    [2]李薇,邓兆勇.采用生色底物测定尿激酶效价的方法探讨[J].药物分析杂志,1996,16(6):363~366.
    [3]李湛君,徐康森.胰岛素的效价测定[J].药物分析杂志,1998,18(4):278~280.
    [4]袁玉,郭宾,谢青季,姚守拙等.乙基紫分光光度法测定牛血清白蛋白[J].湖南师范大学自然科学学报[J].2002,25(1):55~58.
    [5]杨利国,魏平华等.酶免疫测定技术[M]南京:南京大学出版社,1998
    [6]柯惟中,余多慰,冯玉英.牛血清白蛋白水溶液的紫外吸收光谱和激光拉曼光谱分析[J].光谱学与光谱学分析,1993,13(5):55~58.
    [7]魏永巨,李克安,童沈阳.牛血清白蛋白与甲基橙结合反应的研究[J].高等学校化学学报,1996,17(11):1687~1692.
    [1]刘湘新,唐小武,刘进辉,苏建民,何湘蓉,陈小军.胰酶的制备与生物活性测定[J].中兽医医药杂志,2006,(6):35~37
    [2]张东裔,唐建国,张龙翔.胰蛋白酶活性的定量测定方法[J].生物化学与生物物理进展,1996,23(6):551~553
    [3]刘晨,陈小明.灿烂甲酚蓝共振光谱散射法测定脱氧核糖核酸[J].分析化学,2001,29(6):685
    [4]杨传孝,李原芳,黄承志.丽春红G用于人血清样品中总蛋白的共振光散射测定[J].分析化学, 2003,31(2) :148
    [5]李珊,刘忠芳,刘绍璞,胰蛋白酶与DNA相互作用的共振瑞利散射光谱及其分析应用研究[J].高等学校化学学报,2006,27(3):432~437
    [6]罗宗铭,张火昆,崔英德,等.蛋白质与酸性染料相互作用的分光光度研究[J].光谱学与光谱分析,2001 ,21(2):251
    [7]刘绍璞,龙秀芬,胡小莉,等.核酸某些碱性三苯甲烷染料体系的RRS及其分析应用[J].西南师范大学学报(自然科学版) , 2001 , 26(2) : 164~169.
    [8] Ma C Q , Li K A , Tong S Y. Micromensuration of Proteins by Resonance Light Scattering Spect roscopy with Bromophenol Blue [J] . Analytical Biochemistry , 1996 ,239 :86
    [1]王镜岩,朱圣庚,徐长法.生物化学[M].北京:北京高等教育出版社,2002:444.
    [2] Huang M H,Jiang H Q,Zhai J F,et al. A Simple Route to Incorporate Redox Mediator into Carbon Nanotubes/Nafin Composite Film and Its Application to Determine NADH at Low Potential[J].Talanta,2007,74(1):132~139.
    [3]袁军华,陈艳玲,王修中,等.烟酰胺辅酶在聚甲苯胺蓝膜修饰的玻碳电极上的电催化氧化[J].西南大学学报(自然科学版),2006:35~41.
    [4]许丹科,陈红渊,等.高效毛细管电泳-电化学检测烟酰胺腺嘌呤二核苷酸[J].分析化学,1997,25(4):456~459.
    [5]马丽娟,李保新,秦伟,等.流动注射化学发光法测定还原性辅酶Ⅰ[J].陕西师范大学学报(自然科学版),1998,26(4):74~76.
    [6]欧志敏,吴坚平,杨立荣.酵母细胞中辅酶含量的分光光度测定法[J].郑州轻工业学院学报(自然科学版),2005,20(2):20~22.
    [7]陈亚红,蔡汝秀.痕量还原性辅酶Ⅰ的抑制荧光测定[J].分析化学,2004,32(6):719~723.
    [8]郑洁,李启忠,赵一兵.Tb3+-钛铁试剂络合物荧光猝灭法测定含磷酸基辅酶[J].分析科学学报,2007,23(2):181~184.
    [1]袁玉,郭宾,谢青季,等.乙基紫分光光度法测定牛血清白蛋白[J].湖南师范大学自然科学学报,2002,25(1):55~58.
    [2] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binging[J].Anal Biochem,1976,72:248.
    [3] Zurawski V R,Foster J F.The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin[J]. Biochemistry.1974,13:3465.
    [4]梁宏,宋仲容,周永洽,等.血清白蛋白的构象研究IV.pH诱导HSA构象变化的光谱研究[J].光谱学与光谱分析,1994,14(6):39~42.
    [5]陈飒,刘绍璞,罗红群.乙基紫-阴离子表面活性剂体系的共振瑞利散射光谱及其分析应用[J].分析化学.2004,32(1):19~24.
    [6]潘祖亭,马勇,王巍.荧光光谱法研究克仑特罗与蛋白质的结合作用[J].分析试验室,2004,23(1):5~8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700