基于点模型的服装面料平整度等级客观评级研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
服装面料的平整度等级是一个评价服装或面料外观性能的重要指标。目前,对服装面料平整度等级的评估方式普遍采用标样对照法,是对面料定性化的总体主观视觉印象,评级结果受试样、环境、评级者的状态等影响较大,具有不确定性和不唯一性。
     本文首先概述了服装面料平整度等级客观评级方法的研究现状,列举了计算机图像处理技术和激光扫描技术在面料表面信息的获取和面料平整度等级客观评定中的应用,在比较了三维数据的不同数学表达形式后指出,点模型表达法用密集采样的离散点隐式地表示模型的表面,非常适于具有复杂空间形态的服装面料的三维表达,将有助于再现面料的褶皱形态,为面料平整度等级的客观评定提供依据。因此,为了获取高精度的面料点模型,本文自主研制了一套服装面料三维非接触式坐标测量装置。所建系统既符合人眼的观测习惯,又能最大程度上保持面料原有的褶皱形态,且由于在主动式双目结构光栅投影的基础上,结合了相移法和光学三角测量原理的特点,使用两幅图像相互补偿的方法解决了反光和阴影的问题,减少了相噪声的影响,加快了图像匹配的速度,提高了测量准确性。
     然后,本文以AATCC-124标准模板为研究对象,在对测量数据进行去噪、配准和截取等预处理操作后,利用统计原理建立了模板点模型各数据点沿Z坐标方向上坐标值的四分位差R_d、平均差R_a、标准差R_q、峰度R_k等四个与平整度等级有关的几何评价指标,从数据的离散趋势及其分布形态方面探讨了点模型所代表的实体对象的整体弯曲性能。接着,本文又利用离散微分几何原理对点模型特征点邻域的MLS重构曲面进行分析,得到模板点模型的特征点密度ρ_c、特征点高度Z、特征点曲率H等三个与平整度等级有关的特征点评价指标,进一步探究了点模型所代表的实体对象的局部屈曲特性。结果表明,各项评价指标均与平整度等级之间存在良好的相关性。但是,模板表面的褶皱形态迥异,仅利用其中一个评价指标、或联合考虑多个几何评价指标、或联合考虑多个特征点评价指标,都不能有效预测点模型所代表的实体对象的平整度等级。
     粗糙集理论是一种研究不完整数据、不精确知识的表达、学习和归纳等的一种数学工具,是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则,是一种分类规则挖掘的主流方法之一。基于粗糙集理论的特点,本文首次将粗糙集理论应用到服装面料外观性能的客观评价中,以120个模板点模型的所有评价指标值为输入样本,建立了一个基于粗糙集理论的平整度等级评级模型。基于粗糙集理论的平整度等级评级模型的分类规则具有简单、直观等优点。
     人工神经网络方法通过大量非线性并行处理器简单地模拟人脑中的神经元之间的突触行为,实现分布式记忆和自学习自组织的功能,从而具备很强的识别与分类能力。基于神经网络的特点,本文以120个模板点模型的所有评价指标值为输入样本,建立了基于BP网络的平整度等级评级模型。基于BP网络的平整度等级评级模型输入样本的平整度等级值与BP网络训练集的输出值之间的相关系数为94.84%。因此,基于BP网络的平整度等级评级模型具有容错能力强、可靠性高等优点。
     本文比较了基于粗糙集理论和基于BP网络的两个平整度等级评级模型的优缺点后,探讨了粗糙集理论与神经网络相集成的智能计算方法,并首次将粗糙集和BP网络相结合的技术应用到服装面料外观性能的客观评价中,建立了基于粗糙集-BP网络的平整度等级评级模型。基于粗糙集-BP网络的平整度等级评级模型首先基于粗糙集原理,对于样本的输入信息,通过挖掘数据间的关系,去掉冗余信息,并将已经降低了空间维数的样本信息作为神经网络的输入内容,使用神经网络作为后置的信息识别系统,从而简化了神经网络的结构,缩短了训练时间,避免了神经网络不能区分知识的重要性与冗余程度的缺陷。后续的基于神经网络的数据处理方法又很好地抑制了噪声的干扰,实现了信息的大规模并行处理,并最终从数据中产生平整度等级分类信息。结果表明,基于粗糙集-BP网络的平整度等级评级模型输入样本的平整度等级值与网络训练集的输出值之间的相关系数为97.19%。与基于粗糙集理论和基于BP神经网络的两个平整度等级评级模型相比,基于粗糙集-BP网络的平整度等级评级模型具有容错和抗干扰能力更强、网络训练时间更短、预测精度更高等优点。
     为了验证基于点模型的粗糙集-BP网络平整度等级评级模型的可靠性,本文选用30个颜色不同、纱线支数和组织结构与密度均不相同的常见纯棉服装面料进行平整度等级主客观评价,试样平整度等级主客观评级值的相关系数为93.45%。随后,本文从数据采集设备、试样的颜色和花型、试样的厚度、试样的组织结构、试样表面的褶皱形态和褶皱分布、评价指标的选择和评级模型等九个方面对平整度等级主客观评级值的影响展开讨论,最后得出结论:本文所设计的数据采集装置能准确获取试样的三维坐标数据,本文所建立的平整等级客观评价指标能区分试样表面的褶皱形态,本文所建立的评级模型可靠性强、预测精度高。
     最后,本文以前几章的研究工作为基础,利用虚拟仪器技术,建立了一个基于LabVIEW的服装面料平整度等级虚拟测评系统,在虚拟平台上实现了服装面料三维坐标数据的在线测量和平整度等级的客观评价。该测评系统具有操作简单、数据直观、运行速度快、界面可视化程度高等优点。
For garment or fabric appearance, the cloth smoothness grade is one of the most important performance factors.
     Traditionally, the grade process is manually performed. After repeating home laundering, the fabric sample and appropriate reference standards are put side by side under a standard lighting and viewing area. The judges rate the fabric appearance by comparing the sample with the references. The results are usually affected by the rating surroundings, and the statuses of judges are highly subjective and non-repeatable.
     Development of vision systems that can be used to evaluate fabric smoothness has also preoccupied many researchers. In this thesis, practicably image processing techniques and laser scanning methods to perform smoothness grading that had been researched and developed in the past decade are described first. Compared with different kinds of mathematical expressions, point-sampled model which contains a large number of three-dimensional coordinate points and indirectly represents model surface is quite suitable for the expression of the irregular fabric surface. The point-sampled model is convenient to re-form the fabric wrinkle modality and can provide reliable items for fabric smoothness objective evaluation. A 3D non-contact measurement system is constructed to obtain these coordinate points. This system utilizes two charge coupled devices (CCD) and a grating projecting unit to sense the 3D topography of the fabric surface. The technique bases of the system are structured lighting, trigonometry and phase-shifting. Two images captured by different CCD compensate each other and reduce the influence of noises. The design of the system assures the fabric original and natural state and is insensitive to fabric colors and patterns.
     Subsequently, taken the AATCC-124 replicas' point-sampled models as study objects, four statistical parameters based on the Z ordinates of the scatter points were established to characterize smoothness appearance. They were inter-quartile range R_d, arithmetic average deviation R_a, root mean square deviation R_q and Kurtosis value R_k. The discussions on the discrete tendency and distributing modality of scatter points well revealed the entity bending performance which was in existence as point-sampled model. Afterward, the principle of discrete differential geometry was applied to the replicas point-sampled models. Each vertex and its neighborhood were grabbled. MLS surface at vertex was constructed. These calculations made the following three geometry parameters decided: vertices densityρ_c, vertices height Z and vertices mean curvature H. The discussions on the significantvertices and their reconstructed surfaces well explained the surface local bending performance. All of the statistical and geometry characterizations are closely correlative to smoothness grades. Actually, no wrinkle modality is similar to each other even though they are on the same standard smoothness replica. So, no single characterization can be used alone to forecast the entity's smoothness grade.
     Rough Set (RS) is one of the soft-computing methods dealing with indefiniteness and incompleteness. It can find the relationship between the data, pick up the useful characters and reduce the information process. In recent years, it has been successfully applied in data mining, knowledge acquisition, algorithm research, decision support systems and pattern recognition. In this thesis, for the first time, RS method was employed in the objective evaluation of fabric smoothness grade. The objective smoothness grading model based on RS theory took all the seven characterizations of 120 replicas' point-sampled models as the inputs. The grading model was expressed as simple and intuitional classification rules.
     Artificial neural network (ANN) is also one of the popular computing methods dealing with indefiniteness and incompleteness. It has the essential nonlinear character, parallel processing ability and the ability of self organization and self-learning. The back-propagation (BP) algorithm was implemented in this thesis to train a feed-forward ANN which also took all the seven smoothness characterizations of 120 replicas' point-sampled models as the inputs. The correlative coefficient between input smoothness grades and training grades was 94.84%.
     RS and ANN are both played important roles in intelligent computing methods. They are complementary, so the integration of RS and ANN is feasible. In this thesis, for the first time, an approach of data mining integrated RS and ANN was presented. It fully developed two methods' advantages. RS efficiently processed the reduction of the seven smoothness characterizations, simplified the network's structure, reduced the network's training epochs and improved the judgment accuracy. The correlative coefficient between input smoothness grades and training grades based on RS-BP ANN was high up to 97.19%. Compared with the smoothness grading models which were based on RS or ANN alone, the RS-BP ANN smoothness grading model had the highest tolerance fault, disturbance resistibility, forecast precession and shortest training time.
     Simulation experiments were executed to verify the validity of RS-BP ANN smoothness grading model based on point-sampled model. 30 pieces of 100% cotton garment cloths with different color, printed pattern or structure were chosen. The experimental grades provided by the RS-BP ANN were highly consistent with the subjective results, and the correlative coefficient between objective and subjective evaluation results was 93.45%. Discussions were made about the influences to the objective grading results which include data acquirement, swatches color, pattern, thickness and structure. We came to the conclusion that the RS-BP ANN grading results were more believable and closer to real grades especially in the case of fabrics with color or pattern.
     Finally, based on virtual instrument technique, a fabric smoothness grade system was established. The system performs the functions of data acquirement, transmission, analyzing and fabric smoothness grade assessing. It makes full use of the advantages of LabVIEW and has a friendly interface. It was testified that the virtual system built in this thesis had good performance in running and smoothness grade assessing.
引文
[1]http://www.cottoninc.com/TextileConsumer/TextileConsumerVolume34/
    [2]AATCC 124-2005,Appearance of Fabrics After Repeated Home Laundering.AATCC Technical Manual of the American Association of Textile Chemists and Colorists.Carolina,2005(80):205-208.
    [3]ISO 7768-2002.Textiles-Method for Assessing the Appearance of Durable Press Fabrics after Domestic Washing and Drying[S].2002.
    [4]GB/T 13769-1992,纺织品耐久压烫织物经家庭洗涤和干燥后外观的评定方法[S].北京:中国标准出版社,1992.
    [5]B.K.Behera,R.Mishra.Objective Measurement of Fabric Appearance using Digital Image Processing.J.Textile InSt.,2006,97(2):147-153.
    [6]G.Stylios.Investigation of Seam Pucker in Lightweight Synthetic Fabrics as an Aesthetic Property[J].Textile lnst.,1993,84(5):593-600.
    [7]B.XU and J.A.Reed.Instrumental Evaluation of Fabric Wrinkle Recovery[J].J.Textile Inst.,1995,86(1):129-135.
    [8]B.Xu.An Overview of Application of Image Analysis to Objectively Evaluate Fabric Appearance[J].Textile Chemist and Colorist,1996,28(3):18-23.
    [9]N.Youngjoo and B.Pourdeyhimi.Assessing Wrinkling Using Image Analysis and Replicate Standards[J1.Textile Res.J.,1995,65(3):149-157.
    [10]N.T.Christopher,Sari-Sarraf,H.Zhu,A.,E.F.Hequet and Lee S.Automatic Assessment of Fabric Smoothness[C].45th IEEE Midwest Conf.on Circ.and Syst.,Tulsa,OK,2002.
    [11]J.M.Cardamone.Digital Image Analysis for Fabric Assessment.Textile Res.J.,2002,72(10):906-916.
    [12]N.T.Christopher,H.Sari-Sarraf,Eric F.Hequet,Sunho Lee.Preliminary Validation of a Fabric Smoothness Assessment System[J].Journal of Electronic Imaging,2004,13(3):418-427.
    [13]H.Sari-Sarraf,Eric F.Hequet,N.T.Christopher,Zhu Aijun.Fabric wrinkle evaluation[P],United States Patent Application,20040245485.
    [14]E.F.Hequet,N.Abidi,Christopher N.Turner and H.Sari-Sarraf.Objective Evaluation of Fabric Smoothness[C].2004 BELTWIDE COTTON CONFERENCES,SAN ANTONIO,TX-JANUARY:2455-2462.
    [15]N.Abidi,E.F.Hequet,N.T.Christopher,H.Sari-Sarraf.Objective Eluation of Drable Press Treatment and Fabric Smoothness Rating[J].Textile Res.J.,2005,75(1):19-29.
    [16]J.Fan,J.M.K.MacAlpine,D.Lu.The Use of a 2-D Digital Filter in the Object Evaluation of Seam Pucker on 3-D Surface[J].J.Textile lnst,,1990,90(1):445-455.
    [17]刘富.基于视觉的物体表面质量客观评价方法的研究与应用[J].仪器仪表学报,2002,1.
    [18]曾秀茹.涤纶信真丝双绉工艺理论与绉效应计算机视觉评定[D].上海:中国纺织大学,1996.
    [19]陈健敏,吴兆平,严灏景.分形理论在织物褶皱评定中的应用[J].中国纺织大学学报,1999,25(2):34-37.
    [20]陈健敏,吴兆平,严灏景.用计算机图像处理技术评定织物折皱等级初探[J].上海纺织科技,1998,26(5):57-59.
    [21]汪黎明,陈健敏,杜凤霞.利用图像的统计分析方法评价织物免烫等级[J].青岛大学学报,2002,17(1):41-43.
    [22]汪黎明,陈健敏等.织物折皱纹理灰度共生矩阵分析[J].青岛大学学报,2003,18(4):5-8.
    [23]J.L.Hu,B.J.Xin,H.J.Yan.Measuring and Modeling 3D Wrinkles in Fabrics[J].Textile Res.J.,2002,72(10):863-869.
    [24]杨晓波.基于光度立体视觉的起皱织物表面形态重建研究[J].上海纺织科技,2002,30(2):63-64.
    [25]杨晓波.遗传算法在织物起皱等级评定中的应用[J].东华大学学报,2002,28(2):48-53.
    [26]杨晓波.织物平整度等级的计算机视觉评估[D].上海:东华大学,2003.
    [27]X.B.Yang,X.B.Huang.Evaluating Fabric Wrinkle Degree with a Photometric Stereo Method[J1.Textile Res.J.,2003,73(5):451-454.
    [28]杨晓波.利用减法聚类的自适应模糊神经网络客观评定织物起皱等级[J].计算机应用与软件,2004,21(2):74-76.
    [29]杨晓波.基于模糊C均值聚类的织物平整度等级评定[J].苏州大学学报,2005,25(3):18-21.
    [30]杨晓波,基于多尺度二维小波分析的织物表面折皱研究[J],苏州大学学报(工科版),2004,24(2):18-22
    [31]陈雁,陈伟伟.图像处理技术在服装褶皱评价中的应用[J].纺织学报,2006,27(9):94-96.
    [32]R.B.Ramgulam,J.Amirbayat,I.Porat.Measurement of Fabric Roughness by a Noncontact Method[J].J.Textile Inst.,1993,84(1):99-106.
    [33]J.Amirbayat,M.J.Alagha.Objective Assessment of Wrinkle Recovery by Means of Laser Triangulation[J].J.Textile Inst.,1996,87(2):349.355.
    [34]B.Xu,D.F.Cuminato,N.M.Keyes.Evaluation of Fabric Smoothness Appearance Using A Laser Profilometer[J].Textile Res.,,1998,68(12):900-906.
    [35]Jie Su,B.Xu.Fabric Wrinkle Evaluation Using Laser Triangulation and Neural Network Classifier[J].Optical Engineering,1999,38(10):1688-1693.
    [36]T.J.Kang,D.H.Cho and H.S.Whang.A New Objective Method of Measuring Fabric Wrinkle Using a 3-D Projecting Grid Technique[J].Textile Res.J.,1999,69(4):261-268.
    [37]T.J.Kang and D.H.Cho.Objective Evaluation of Fabric Smoothness Appearance[J].Textile Res.J.,2001,71(5):446-453.
    [38]T.J.Kang,D.H.Cho and S.C.Kim.A new method for the objective evaluation of fabric surface waviness[J].AATCC-Review,2002,2(2):38-41.
    [39]T.J.Kang,S.C.Kim,In Hwan Sul.Fabric Surface Roughness Evaluation Using Wavelet-Fractal Method[J].Textile Res.J.,2005,75(11):751-760.
    [40]Z.Su,J.Hart,M.Yang and M.Matsudaira.Objective Evaluation Method for Appearance of Fabric Wrinkling by the CCD Laser Light Measuring System[J].SEN-I GAKKAISHI,2003,59(10):401-406.
    [41]J.Han,M.Yang and M.Matsudaira.Objective Evaluation for Wrinkle Appearance of Fabrics by Image Processing and Slit Beam Projecting Technique[J].J.Textile Eng.,2003,49(1):1-6.
    [42]吕东风,范金土.三维服装表面接缝等级的客观评价[J].中国纺织大学学报,1999,25(4):83-87.
    [43]J.Fan,F.Liu.Objective Evaluation of Garment Seams Using 3D Laser Scanning Technology[J].Textile Res.J.,2000,70(11):1025-1030.
    [44]J.Fan,C.L.P.Hui,D.Lu,MacAlpine J.M.K..Towards the Objective Evaluation of Garment Appearance[J].International Journal of Clothing Science and Technology,1999,11(2):151-159.
    [45]刘富,范金土,田彦涛等.用激光扫描系统获取服装接缝的褶皱信号[J].光电工程,2000,27(4):21-24.
    [46]刘富.服装表面皱褶信号的检测及客观评价方法的研究[D].吉林:吉林大学,2001.
    [47]刘富,卢辉道,王桂琴等.基于神经网络自动测量服装接缝皱褶学习方法[J].吉林大学学报,2006,24(2):177-180.
    [1]吴立德.计算机视觉[M].上海:复旦.大学出版社,1993.
    [2]张远鹏.计算机图象处理技术基础[M].北京:北京大学出版社,1996.
    [3]肖自美.图像信息理论与压缩编码技术[M].广东:中山大学出版社,2000.
    [4]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2003.
    [5]刘利刚,曲面造型中几何逼近与几何插值的算法研究[D],浙江:浙江大学,2001
    [6]王青.流形上参数曲面的理论与方法[D].浙江:浙江大学,2003.
    [7]张浩.空间结构曲面造型算法及程序实现[D].浙江:浙江大学,2005.
    [8]Tamy Boubekeur,Patrick Reuter,Christophe Schlick.Local Reconstruction and Visualization of Point-Based Surfaces Using Subdivision Surfaces[J].Computer Graphics & Geometry,2006,8(1):22-40.
    [9]李梓清.细分曲面造型及应用[D].北京:中国科学院计算技术研究所,2001.
    [10]Fausto Bernardini,Chandrajit L.Bajaj,Jindong Chen and Daniel R.Schikore.A Triangulation-Based Object Reconstruction Method[C].Proc.13th ACM Symp.Computational Geometry,1997:481-484.
    [11]M.Levoy and T.Whitted.The Use of Points as Display Primitive[R].Technical Report.CS Department,University of North Carolina at Chapel Hill,1985.
    [12]M.Gross,Hanspeter Pfiste,Matthias Zwicker,et al.Point-Based Computer Graphics.Eurographics 2002,Tutorial T6.
    [13]S.Rusinkiewicz,O.Hall-Holt,and M.Levoy.Real-Time 3d Model Acquisition[C].ACM Transactions on Graphics,2002,21(3):438-446.
    [14]W.T.Reeves.Particle System-a Technique for Modeling a Class of Fuzzy Objects[C].In Proceedings of ACM SIGGRAPH,1983:359-376.
    [15]M.Levoy,K.Pulli,B.Curless,et al.The Digital Michelangelo Project:3d Scanning of Large Statues[C].Proceedings of ACMSIGGRAPH,2000:131-144.
    [16]S.Rusinkiewicz and M.Levoy.Q Splat:A Multiresolution Point Rendering System for Large Meshes[C].Proc.of SIGGRAPH2000 Conference,2000:343-352.
    [17]M.Zwicker,H.Pfister,et al.Surface Splatting[C].Proc.of SIGGRSPH2001 Conference,Los Angeles,Califomia,2001:371-378.
    [18]S.Rusinkiewicz and M.Levoy.Streaming Q Splat:A Viewer for Networked Visualization of Large,Dense Models[C].In Proceedings of the ACMSIGGRAPH Symposium on Interactive 3D Graphics,2001:63-68.
    [19]C.Dachsbacher,C.Vogelgsang,and M.Stamminger.Sequential Point Trees[C].In Proceedings of ACM SIGGRAPH,2003:657-662.
    [20]Ren L,Pfister H,M Zwicker.Object Space Ewa Surface Splatting:A Hardware Accelerated Approach to High Quality Point Rendering[C].Proc.of the Eurographics 2002 Conference,Saarbrucken,Germany,2002:461-470.
    [21]B.Mario,Leif K.High Quality Point based Rendering on Modem GPUs[C].Proc.of the Pacific Graphics 2003 Conference,Alberta,Canada,2003:335-2442.
    [22]G.Guennebaud and M.Paulin.Efficient Screen Space Approach for Hardware Accelerated Surfel Rendering[C].In Proceedings of Vision,Modeling and Visualization,2003:1-10.
    [23]M.Alexa,C.Dachsbacher,M.Gross,M.Pauly,J.V.Baar,and M.Zwicker.Point-Based Computer Graphics[C].ACM SIGGRAPH,2004.
    [24]孟放.大型三维点云数据的交互绘制研究[D].北京:北京大学,2005.
    [25]R.Mencl,H.Muller.Interpolation and Approximation of Surfaces from Three-Dimensional Scatted Data Points[C].State of the Art Reports for Eurographics,1998:51-67.
    [26]M.Alexa,J.Behr,D.Cohen-Or,S.Fleishman,D.Levin and C.T.Silva.Point Set Surfaces[C].IEEE Visualization 2001,2001:21-28.
    [1]陈家璧,苏显渝主编.光学信息技术原理及应用[M].北京:高等教育出版社,2002.
    [2]J.Schwider.Digital Wave-Front Measuring Interferometry:Some Systematic Eror Sources[J].Applied Optics,1983,22:3421-3432.
    [3]樊强,姜涛等.光学三维测量中结构光栅投影系统的开发[J].光电工程,2005,32:66-69.
    [4]马颂德,张正友.计算机视觉--计算理论与算法基础[M].北京:科学出版社,1998.
    [5]Roger.Y.Tasi.A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses[C].IEEE Journal of Robotics and Automation,1987,3(14):323-344.
    [6]陈明舟.主动光栅投影双目视觉传感器的研究[D].天津:天津大学,2002.
    [7]Z.ZHANG,R.DERICHE,O.FAUGERAS,et al.A Robust Technique for Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry[J].Artificial Intelligence J.,1995,78(1):87-119.
    [8]叶海加,陈罡,邢渊.双目CCD结构光三维测量系统中的立体匹配[J].光学精密工程,2004,1(12):71-75.
    [9]章毓晋.图像理解与计算机视觉[M].北京:清华大学出版社,2000.
    [10]高文,陈熙霖.计算机视觉--算法与系统原理[M].北京:清华大学出版社,1999.
    [1]胡国飞.三维数字表面去噪光顺技术研究[D].浙江:浙江大学,2005.
    [2]章毓晋.图像理解与计算机视觉[M].北京:清华大学出版社,2000,10.
    [3]林洪,漆莉莉等.统计学[M].北京:经济管理出版社,1998.
    [4]王涛,曲昭仲.统计学原理[M].北京:中国财政经济出版社,1998.
    [5]卢小广.统计学教程[M].北京:清华大学出版社,2006.
    [6]张三元,查红彬,鲍虎军,叶修梓.数字几何处理及其应用的最新进展[J].计算机辅助设计与图形学学报,2005,17(16):1129-1138.
    [7]Alexander I.Bobenko,Yuri B.Suris.Discrete Differential Geometry Consistency as Integrability[M].Berlin,2005.
    [8]M.Desbrun,E.Grinspun,P.Schroder.Discrete Differential Geometry:An Applied Introduction[C].SIGGRSPH Course Notes,2005.
    [9]N.Amenta and Y.Kil.Defining Point-Set Surfaces[C].Proceedings of SIGGRAPH2004,2004:264-270.
    [10]M.Alexa,J.Behr,D.Cohen-Or,S.Fleishman,and C.Silva.Computing and Rendering Point Set Surfaces[C].IEEE Transactions on Visualization and Computer Graphics,2003,9(1):3-15.
    [11]M.Pauly,M.Gross,L.Kobbelt.Shape Modeling with Point-Sampled Geometry[C].ACM Trans.on Graphics(Proc.of the SIGGRAPH),2003,22(3):641-650.
    [12]S.Fleishman,D.Cohen-Or,M.Alexa,C.Silva.Progressive Point Set Surfaces[C].ACM Transactions on Graphics,2003,22(4):997-1011.
    [13]M.Pauly,R.Keiser,L.Kobbelt,M.Gross.Shape Modeling with Point-Sampled Geometry[C].ACM Transactions on Graphics,2003,22(3):641-650.
    [14]朱长青编著.数值计算方法及其应用[M].北京:科学出版社,2006.
    [15]D.Levin,The Approximation Power of Moving Least-Squares[J].Mathematics of Computation,1998,67(224):1517-1531.
    [16]曾清红,卢德唐.基于移动最小二乘法的曲线曲面拟合[J].工程图学学报,2004,25(1):84-89.
    [17]Tamal K.Dey and Jian Sun.An Adaptive MLS Surface for Reconstruction with Guarantees[C].Eurographics Symposium on Geometry Processing,2005.
    [18]佐佐木重夫.微分几何学[M]。上海:上海科学技术出版社,1978.
    [19]苏步青,胡和生等.微分几何学[M].上海:上海科学技术出版社,1994.
    [20]Manfredo P.do Carmo著.曲线与曲面的微分几何机械工业版社[M].北京:机械工业出版社,2005.
    [21]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [22]Paul J.Besl,Ramesh C.Jain.Segmentation through Variable-Order Surface Fitting[J].IEEE Transactions Pattern Analysis Machine Intelligence,1988,10(2):167-192.
    [1]L.A.Zadeh.Fuzzy Logic,Neural Networks and Soft Computing.CACM.1994,37(3):77-84.
    [2]Pal S.K.,Mitra S.Neuro-Fuzzy Pattern Recognition Methods in Soft Computing[M].A Wiley Interscience Publication.John Wiley and Sons,Inc.1999
    [3]D.Dumitrescu.Fzzy Sets and Their Application to Clustering and Training[M].CRC Press.New York,2000.
    [4]Mehmed Kantardzic.数据挖掘——概念、模型、方法和算法[M].北京:清华大学出版社,2003.
    [5]曾黄麟.智能计算——关于粗集理论、模糊逻辑、神经网络的理论及其应用[M].重庆:重庆大学出版社,2004.
    [6]Pawlak Z.Rough Sets[J].International Journal of Computer and Information Science,1982,11(5):341-356.
    [7]Pawlak Z.Rough Sets:Theoretical Aspects of Reasoning about Data[M].Kluwer Academic Publishers.Poland,1992.
    [8]Ziarko W.Variable Precision Rough Set Model[J].Journal of Computer and System Science,1993,46(1):39-59.
    [9]曾黄麟.粗集理论及其应用[M],重庆:重庆大学出版社,1996,9:1-86.
    [10]K.Cios,W.Pedryca,R.Swiniarski.Data Mining Methods for Knowledge Discovery[M].Kluwer Academic Publishers.Poland,1998.
    [11]王国胤.Rough集理论与知识获取[M].陕西:西安交大出版社,2001,5.
    [12]Wojciech Ziarko,Yiyu Yao.Rough Sets and Current Trends in Computing[M].Springer.Berlin,2001:561-569.
    [13]胡寿松,何亚群.粗糙决策理论与应用[M].北京:北京航空航天大学出版社,2005,10:1-56.
    [14]何亚群.基于粗糙集的智能决策理论[D].江苏:南京航空航天大学,2004,6:4-36.
    [15]张文修,吴志伟.粗糙集理论介绍和研究综述[J].模糊系统与数学,2000,14(4):1-12.
    [16]张文修,吴伟志等.粗糙集理论与方法[M].北京:科学出版社,2001,7:1-40,123-131.
    [17]H.S.Nguyen,Skowron A.Quantization of Real Value Attributes-Rough Set and Boolean Reasoning Approach[C].Proceedings of the Second Joint Conference on Information Sciences.Olivia Kwong,1995,34-37.
    [18]H.S.Nguyen.Discretization on Problem for Rough Sets Methods[C].Proceedings of the 1th Int.Conf.on Rough Sets and Current Trends in Computing.Poland,1998:545-552.
    [19]Jelonek Jacek,Krawiec Krzysztof,Slowinski Roman.Rough Set Reduction of Attributes and Their Domains for Neural Networks[J].International Journal of Computational,1995,11(2):339-347.
    [20]Zhi Hua Zhou.Rule Extraction:Using Neural Networks or for Neural Networks?[J].Journal of Computer Science and Technology,2004,19(2):249-253.
    [21]张文修,梁怡.遗传算法的数学基础[M].陕西:西安交通大学出版社,2005,5.
    [22]Simon Haykin.神经网络的综合基础(第二版)[M].北京:清华大学出版社,2001.
    [23]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003,8:1-17.
    [24]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:1-6.
    [25]Swiniarski R.W.,Hargis L.Rough Sets as a Front End of Neural-Networks Texture Classifiers[J].Eurocomputing,2001,36:85-102.
    [26]Yahia M.E.,Mahmod R.,Sulaiman N.,et al.Rough Neural Expert Systems[J1.Expert Systems with Application,2000,18:87-99.
    [27]赵卫东,陈国华.粗集与神经网络的集成技术研究[J].系统工程与电子技术,2002,24(10):103-108.
    [28]曾黄麟.粗集理论与人工神经网络[C].神经网络理论与应用研究'96.四川:西南交大出版社,1996:56-61.
    [1]蔡陛霞主编.织物结构与设计[M].北京:中国纺织出版社,2004.
    [2]AATCC 124-2005,Appearance of Fabrics After Repeated Home Laundering.AATCC Technical Manual of the American Association of Textile Chemists and Colorists.Carolina,2005(80):205-208.
    [3]王金秋编著.色彩构成[M].上海:学林出版社,2006.
    [1]Marcin A.Stegawski,Rolf Schaumann.A New Virtual-Instrumentation-based Experimenting Environment for Undergraduate Laboratories with Application in Research and Manufacturing[J].IEEE Transactions on Instrumentation and Measurement,1998,47(6):1503-1506.
    [2]http://zone.ni.com/devzone/concepted.nsf/webmain
    [3]H.Goldberg.What is Virtual Instrumentation[J].IEEE Instrumentations on Instrumentation & Measurement,2000,3(4):10-13.
    [4]袁媛,李绍稳,汪伟伟等.基于LabVIEW的虚拟仪器技术研究与应用[J].农业网络信息,2005(4):6-10.
    [5]National Instruments Corporation.LabVIEW User Manual[M],2003.
    [6]National Instruments Corporation.Virtual Instrument White Book[M],2003.
    [7]W.Guichu.Virtual Instruments and Their Application in Experiments[J].Proc.of ICEMI,1086-1092.
    [8]Kang Jitao,Gan Yadong,Quan Qingquan.The Method of Developing Virtual Instrument Platform[J].Automobile Decentralized Systems,2002(1):64-67.
    [9]Halit Eren,Chun Che Fung.A Virtual Instrumentation of Electric Drive System for Automation and Testing[C].Instrumentation and Measurement Technology Conference,2000,3(3):1500-1505.
    [10]沈正.基于Modem的电压监测系统软件平台设计与实现[J].江苏理工大学学报(自然科学版),2001,22(5):79-83.
    [11]熊云,毛立民,顾洪波,过玉清.基于LabVIEW的纱线动态张力检测系统[J].北京纺织,2002,23(5):40-43.
    [12]冯毅力,梁建军,李汝勤.基于虚拟仪器技术的纱线强伸度测试仪[J].东华大学学报,2003,29(4):91-94.
    [13]张锦华,杨宏军.基于虚拟仪器的织机振动测试系统的研究[J].四川纺织科技,2004,2:4-6.
    [14]雷振山.LabVIEW 7 Express实用技术教程[M].北京:中国铁道出版社,2004.
    [15]邓炎,王磊等.LabVIEW 7.1测试技术与仪器应用[M].北京:机械工业出版社,2004.
    [16]杨乐平,李海涛,赵勇等.LabVIEW高级程序设计[M].北京:清华大学出版社,2004.
    [17]刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700