青藏高原大气水汽变化和对辐射影响的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于多源大气水汽资料(地基GPS、探空和数值模式输出),采用多种研究方法以及大气辐射模式,探讨了青藏高原(简称高原,下同)大气水汽多时间尺度变化特征及其对辐射模拟的影响。结果表明:(1)近10多年(1999~2010)拉萨探空(RS)观测的大气水汽总量(PW)比地基GPS观测的结果(GPS_PW)明显偏小,偏小程度随使用不同的探空仪而异,新型探空仪(GTS-1)的探测偏差明显小于旧型探空仪(GZZ-2)的探测偏差。分析发现PW偏差(RS_PW-GPS_PW)具有明显季节变化和日变化特征。太阳辐射加热以及气温日变化和季节变化是造成PW偏差日变化和季节变化的原因。据此提出了PW偏差的订正方法,该方法在实际应用中取得了较好订正效果。(2)近35年(1976~2010年)高原PW和大气平均温度均呈显著增加趋势,大气增温是PW增加的重要因素。在高原夏季风活跃期(4月上旬~10下旬)PW具有4~14天和60~90天的显著变化周期。夏季高原及周边地区的季风区和季风边缘区PW随海拔高度的变化符合幂函数规律。高原PW具有显著日变化特征,该特征随站点海拔高度、地形和局地气候特点的不同而异。(3)基于降水临界理论,建立了PW和降水量之间的关系式。在高原大气增温和增湿的背景下,极端降水发生频率增加。(4)高原地区ECMWF分析资料的PW与GPS_PW基本一致,JRA-25分析资料的PW在夏季略偏小。NCEP和Met-Office分析资料的PW夏季明显偏小,这些大气水汽估算误差对高原长短波辐射模拟均有重要影响。(5)高原大气水汽、臭氧、气溶胶和云对太阳辐射直接影响呈显著季节变化特征。水汽对太阳辐射吸收月平均值约9~95W/m~2,约占太阳总辐射2%~13%。臭氧对太阳辐射吸收月平均值约8~12W/m~2,约占太阳总辐射1.5%~1.8%。气溶胶对太阳辐射直接影响为春夏季较强,秋冬季较弱。高原气溶胶直接辐射强迫年平均值约-13.7~-10.1W/m~2。云对地表短波辐射强迫年平均值约70~140W/m~2,其大小与站点所处区域的气候特征有关。高原大气水汽、臭氧和云对向下长波辐射的影响也呈显著季节变化特征。大气水汽向下发射的长波辐射约10~78W/m~2,约占地表向下长波辐射6.0%~25.0%。臭氧向下发射的长波辐射约1.6~2.0W/m~2,约占地表向下长波辐射0.6%~1.0%。云对向下长波辐射影响的年平均值约20~40W/m~2。近35年高原夏季水汽增加对太阳总辐射、净短波辐射和长波辐射的影响分别为-1.16±0.40、-0.93±0.32和1.28W m-2/10a。年平均水汽增加对太阳总辐射、净短波辐射和长波辐射的影响分别为-0.57±0.18、-0.45±0.14和0.65W m-2/10a。
Based on a variety of different sources of precipitable water vapor (PW) data (ground-basedGPS, radiasonde and numerical weather prediction system analysis), the variations of PW withmultiple time scales and their causes on the Tibetan Plateau (TP) are analyzed using a varietyof different sources of methods. The radiative effects of atmospheric water vapor and otheratmospheric compositions are investigated using radiative models. The results show that (1) theradiosonde (RS) PW is significant dryer than that derived by ground-based GPS (GPS_PW) atLhasa on TP during a period of more than one decade. Different types of radiosonde humiditysensors show different magnitude of the dry bias of PW. The RS_PW dry bias by GZZ-2(goldbeater's skin hygrometer) is more significant than that by GTS-1(carbon hygristor). Thetemporal variation characteristics of the RS_PW dry bias are also investigated. The resultsshow that RS_PW dry bias exhibited pronounced diurnal and annual variations. The solarradiative heating to the humidity sensors may have played an important role in the RS_PW drybias diurnal and annual variability. It can be seen that the diurnal variations of RS_PW dry biasare significant also partly because air temperature is higher at1200UTC than that at0000UTC.The annual variations of RS_PW dry bias are pronounced also partly because air temperature ishigher in summer than that in winter. The calibration methods for the RS_PW dry bias aredeveloped and applied to the GZZ-2and GTS-1sounding PW datasets at Lhasa and Naqu. Thecorrections greatly improve the accuracy of the RS_PW.(2) For long-term changes, the PWand atmospheric mean temperature increased significantly on TP during recent35years (from1976to2010). The increasing trend in PW may be due to the increase in atmospherictemperature during the recent35years. For seasonal changes, PW time series shows variationswith4–14days and60–90days periods during summer monsoon seasons (from early April tolate October). The relationship between PW and sites altitudes can be fitted well using a powerlaw function. For diurnal variation, PW exhibited a pronounced diurnal variation over the TPand its around areas. The characteristics of PW diurnal variation vary with the different sitealtitude, terrain and local climate characteristics.(3) Based on critical phenomena inatmospheric precipitation, the relationship of PW and hourly precipitation is fitted as a powerlaw function. Extreme precipitation probability may increase with the significant increase ofPW and air temperature on TP.(4) The PW comparison between numerical weather model(NWP) system analysis (ECMWF, NCEP, JRA-25, and Met-office) and GPS data reveals that the PW within ECMWF reanalysis data agrees very well with that derived from ground-basedGPS. The PW within JRA-25reanalysis data is slightly underestimated on summer seasons.However, The PW within NCEP reanalysis and NWP output from Met-office have significantdry bias in summer seasons. The effect of the PW differences on surface radiation budget isevaluated using a radiation model. The results show that radiative flux at the surfacedetermined using the model analysis profiles with the water vapor corrected by PWobservations are closer to the observations compared with those without water vapor correction.The radiative flux differences at the surface with and without water vapor correction are largerthan that caused by doubling the concentration of carbon dioxide in the atmosphere in thisregion.(5) The effects of water vapor, ozone, aerosol and cloud on solar radiation exhibitpronounced seasonal variability. The monthly mean solar radiation absorbed by water vapor isabout9~95W/m~2, namely about2%~13%of the global solar radiation. The monthly meansolar radiation absorbed by ozone is about8~12W/m~2, namely about1.51%~1.78%of theglobal solar radiation. The aerosol direct radiative forcing (ADRF) for solar radiation is peak insummer and lowest in winter. The annual mean ADRF is-13.7~-10.1W/m~2. The annual meanCRF is from70W/m~2to140W/m~2and varies with local climate characteristics. The effects ofwater vapor, ozone, and cloud on longwave radiation also exhibit pronounced seasonalvariability. The monthly mean values of the effect is10~78W/m~2, namely6.0%~25.0%of thedownward longwave flux at the surface. The monthly mean value of the effect is1.6~2.0W/m~2, namely about0.6%~1.0%of the downward longwave flux at the surface. The annualmean cloud radiative forcing (CLRF) is from20W/m~2to40W/m~2and varies with localclimate characteristics. Since the seasonal mean PW on summer and the annual mean PWincrease significantly during the period from1976to2010, the seasonal mean global and netsolar radiation on summer decrease with changing rates of-1.16±0.40and-0.93±0.32W m-2/10a respectively. The seasonal mean downward longwave flux on summer increaseswith a changing rate of1.28W m-2/10a. The annual mean global and net solar radiationdecrease with changing rates of-0.57±0.18and-0.45±0.14W m-2/10a respectively. The annualmean downward longwave flux increases with a changing rate of0.65W m-2/10a.
引文
毕研盟,毛节泰,刘晓阳等.2006.应用地基GPS遥感倾斜路径方向大气水汽总量.地球物理学报,49(2):335–342.
    毕研盟,杨忠东,李元.2011.应用全球定位系统、太阳光度计和探空仪探测大气水汽总量的对比分析.气象学报,69(3):528–533.
    卞建春,严仁嫦,陈洪滨.2011.亚洲夏季风是低层污染物进入平流层的重要途径.大气科学,35(5):897–902.
    蔡英,钱正安,吴统文等.2004.青藏高原及周围地区大气可降水量的分布、变化与各地多变的降水气候.高原气象,23(1):1–10.
    曹云昌,方宗义,夏青.2005. GPS遥感的大气可降水量与局地降水关系的初步分析.应用气象学报,16(1):54–59.
    陈洪滨,边建春,吕达仁.2006.上对流层—下对流层交换过程研究的进展与展望.大气科学,30(5):813–820.
    陈敏,仲跻芹,郑祚芳.2008.北京地区一次强降水过程的多种观测资料四维变分同化试验.北京大学学报(自然科学版),44(5):756–764
    陈敏,范水勇,仲跻芹等.2010.全球定位系统的可降水量资料在北京地区快速更新循环系统中的同化试验.气象学报,68(4):450–463.
    楚艳丽,郭英华,张朝林等.2007.地基GPS水汽资料在北京"7·10"暴雨过程研究中的应用.气象,33(12):16–22.
    丁一汇.1994.季风区的水汽收支.见:丁一汇,村上胜人主编.亚洲季风.北京:气象出版社,105–113.
    丁一汇,任国玉,石广玉等.2006.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,21(1):3–8.
    丁金才,袁招洪,杨引明等.2007. GPS/PWV资料三维变分同化改进MM5降水预报连续试验的评估.气象,33(6):11–18.
    丁金才.2009. GPS气象学及其应用.北京:气象出版社,265pp.
    顾均禧,章基嘉,巢纪平等.1994.大气科学词典.北京:气象出版社,980pp.
    黄福均,沈如金.1984.夏季风时期青藏高原地区水汽来源及水汽收支分析.见:青藏高原气象科学实验文集编写组编.青藏高原气象科学实验文集(二).北京:科学出版社,215–224.
    黄荣辉,张振洲,黄刚等.1998.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别.大气科学,22(4):460–469.
    黄毅,毛节泰,黄美华.2004.用GMS-5对东亚地区对流层高层水汽的研究.地球科学进展,19(5):754–760.
    江吉喜,范梅珠.1999.青藏高原夏季TBB场与水汽分布关系的初步研究.高原气象,21(1):20–24.
    李成才,毛节泰,李建国等.1999.全球定位系统遥感水汽总量.科学通报,44(3):333–336.
    李国平,黄丁发.2004. GPS遥感区域大气水汽总量研究回顾与展望.气象科技,32(4):201–205.
    李建东,刘屹岷,孙治安等.2009.辐射和积云对流过程对大气辐射通量的影响.气象学报,67(3):355–369.
    李生辰,李栋梁,赵平等.2009.青藏高原“三江源地区”雨季水汽输送特征.气象学报,67(4):591–598.
    李照荣,陈添宇,陈乾等.2008.2001—2005年西北中东部水汽及其输送特征.冰川冻土,30(4):668–674.
    梁宏,刘晶淼,李世奎.2006.青藏高原大气水汽分布及其变化特征.自然资源学报,21(4):526–534.
    林振耀,吴祥定.1990.青藏高原水汽输送路径的初探.地理研究,9(3):33–40.
    刘国纬.1997.水文循环的大气过程.北京:科学出版社.257pp.
    刘红燕,王迎春,王京丽等.2009.由地基微波辐射计测量得到的北京地区水汽特性的初步分析.大气科学,33(2):394–396.
    陆渝蓉,高国栋.1983.中国大气中的水汽平均输送.高原气象,2(4):34–46.
    陆渝蓉,高国栋.1984.中国水汽气候图集.北京:气象出版社,1–183.
    秦大河,丁一汇,苏纪兰等.2005.中国气候与环境演变(上卷):气候与环境的演变及预测.北京:气象出版社,381–383.
    《青藏高原气象科学实验文集》编辑组.1984.青藏高原气象科学实验文集.科学出版社,391pp.
    权维俊,陈洪滨,肖稳安.2004. MODIS与NCEP大气可降水量资料的比较分析.南京气象学院学报,27(2):169–177.
    任宏利,张培群,李维京等.2006.西北区东部春季降水及其水汽输送的低频振荡特征.高原气象,25(2):285–293.
    盛裴轩,毛节泰,李建国等.2003.大气物理学.北京:北京大学出版社,522pp.
    沈元芳,黄丽萍,徐国强等.2004.长波辐射对大气变化的敏感性和在WRF模式中的应用检验.气象学报,62(2):213–227.
    沈钟平,张华.2009.影响地面太阳辐射及其谱分布的因子分析.气象学报,30(10):1209–1215.
    师春香,谢正辉,钱辉等.2011.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化.中国科学:地球科学,41(3):375–385.
    石娟,沈桐立,王盘兴.2009.遗传算法同化GPS可降水量资料的研究与应用.气象科学,29(5):584–590.
    施晓辉,徐祥德,程兴宏.2009.2008年雪灾过程高原上游关键区水汽输送机制及其前兆性“强信号”特征.气象学报,67(3):478–487.
    施小英,施晓辉.2008.夏季青藏高原东南部水汽收支气候特征及其影响.应用气象学报,19(1):41–46.
    宋淑丽,朱文耀,丁金才等.2004.上海GPS综合应用网对可降水汽量的实时监测及其改进数值预报初始场的试验.地球物理学报,47(4):631–648.
    陶诗言,陈联寿,徐祥德等.1999.第二次青藏高原大气科学试验理论研究进展(一).气象出版社,348pp.
    万云霞,张万诚,肖子牛.2008.中国西南纵向岭谷地区可降水量的变化特征.自然资源学报,23(4):657–664.
    王炳忠,莫月琴,杨云.2008.现代气象辐射测量技术.北京:气象出版社,177pp.
    王宝鉴,黄玉霞,陶健红等.2006.西北地区大气水汽的区域分布特征及其变化.冰川冻土,28(1):15–21.
    王鹏祥,王宝鉴,黄玉霞等.2006.青藏高原近43年夏季水汽分布及演变特征.高原气象,25(1):60–65.
    王守荣,朱川海,程磊等.2003.全球水循环与水资源.北京:气象出版社,195pp.
    徐淑英.1958.我国的水汽输送和水分平衡.气象学报,29(1):33–43.
    徐淑英,殷延珍.1987.1979年夏季季风活动时期水汽输送的变化.见:青藏高原气象科学实验文集编写组编.青藏高原气象科学实验文集(三).北京:科学出版社,73–85.
    徐祥德,陶诗言,王继志等.2002.青藏高原—季风水汽输送“大三角扇形”影响域特征与中国区域洪涝异常的关系.气象学报,60(3):257–266.
    徐祥德,陈联寿,王秀荣等.2003.长江流域梅雨带水汽输送源—汇结构.科学通报,48(21):2288–2294.
    杨金虎,王鹏祥,白虎志等.2008.中国西北空中可降水量的年内非均匀性特征.干旱区地理,31(2):182–188.
    杨逸畴,高登义,李渤生.1987.雅鲁藏布江下游河谷水汽通道初探.中国科学B辑,8:893–902.
    俞亚勋,王宝灵,董安祥.2000.西北地区大气水分和水汽平均输送特征.见:谢金南主编.中国西北干旱气候变化与预测研究(一).北京:气象出版社,219–227.
    袁招洪,丁金才,陈敏.2005. GPS观测资料应用于中尺度数值预报模式的初步研究.气象学报,62(2):200–212.
    袁招洪. GPS可降水量资料应用于MM5模式的变分同化试验.气象学报,2005,63(4):391–404
    翟盘茂,周琴芳.1997.中国大气水分气候变化研究.应用气象学报,8(3):342–351.
    占瑞芬,李建平.2008.青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征.大气科学,32(2):242–260.
    张朝林,陈敏,Kuo Ying-Hwa等.2005.“00.7”北京特大暴雨模拟中气象资料同化作用的评估.气象学报,63(6):922–932.
    张华,石广玉,刘毅.2005.两种逐线积分模式大气吸收的比较研究.大气科学,29(4):581–593.
    张人禾.1999. El Nino盛期印度夏季风水汽输送在我国华北地区夏季降水异常中的作用.高原气象,18(4):567–574.
    张胜军,徐祥德,邹晓蕾等.2006. GPS水汽观测数据在高原周边地区的四维同化试验.北京:中国气象学会2006年年会论文集.
    赵瑞霞,吴国雄,张宏.2008.夏季风期间长江流域的水汽输送状态及其年代际变化.地球物理学报,51(6):1670–1681.
    赵平,蒋品平,周秀骥等.2009.春季东亚海—陆热力差异对我国东部西南季风降水影响数值试验.科学通报,54(16),2372–2378.
    郑新江,许建民,李献洲.1997.夏季青藏高原水汽输送特征.高原气象,16(3):274–281.
    郑斯中,杨德卿.1962.中国大陆上空的水汽含量.地理学报,28(2):124–136.
    周良明,刘玉光.2004.利用地物光谱仪数据研究水汽对太阳辐射的吸收.海洋技术,23(4):109–112.
    朱男男,沈桐立,朱伟军.2008.一次降水过程的GPS可降水量资料同化试验.南京气象学院报,31(1):26–31.
    邹进上,刘惠兰.1981.我国平均水汽含量分布的基本特点及其控制因子.地理学报,36(4):377–391.
    周晓霞,丁一汇,王盘兴.2008.夏季亚洲季风区的水汽输送及其对中国降水的影响.气象学报,66(1):59–69.
    周秀骥,李维亮,陈隆勋等.2004.青藏高原地区大气臭氧变化的研究.气象学报,62(5):513–527.
    Anup K. P., P. S. Ramesh.2009. Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-Ⅱ Reanalysis-2,and AERONET Sun photometer derived integrated precipitable water vapor using ground-based GPSreceivers over India. J. Geophys. Res.,114, D05107, doi:10.1029/2008JD011230.
    Allen M. R., Ingram W. J.2002. Constraints on future changes in climate and the hydrological cycle. Nature,419:224–232.
    Baelen J. V., J. P. Aubagnac, A. Dabas.2005. Comparison of Near–Real Time Estimates of Integrated WaterVapor Derived with GPS, Radiosondes, and Microwave Radiometer. J. Atmos. Oceanic Technol.,22(2):201–210
    Bevis M, S Businger, T A Herring et al.1992. GPS meteorology: remote sensing of atmospheric water vaporusing the Global Positioning System. J. Geophys. Res.,97, D14,15787–15801.
    Bian J. C., Chen H. B., Holger V., et al.2011. Intercomparison of humidity and temperature sensors: GTS1,Vaisala RS80, and CFH. Adv. Atmos. Sci.,28(1):139–146.
    Bock O., M. N. Bouin,E. Doerflinger,et al.2008. West African Monsoon observed with ground-based GPSreceivers during African Monsoon Multidisciplinary Analysis (AMMA). J. Geophys. Res.,113, D21105,doi:10.1029/2008JD010327,1085-1101.
    Cady-Pereira K. E., M. W. Shephard, D. D. Turner,et al.2008. Improved Daytime Column-IntegratedPrecipitable Water Vapor from Vaisala Radiosonde Humidity Sensors. J. Atmos. Oceanic Technol.,25(6):873–883.
    Christian H., R. L. Jones.2000. Absorption of solar radiation by water vapor in clear and cloudy skies:Implications for anomalous absorption. J. Geophys. Res.,105(D7):9421–9428.
    Christian R., R. Philipona, J. Morland, et al.2007. Observed relationship between surface specific humidity,integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res.,112,D03302, doi:10.1029/2006JD007850.
    Clough, S A, M. J.Iacono.1992. Line-by-line calculation of atmospheric fluxes and cooling rates.Application to water vapor. J. Geophys. Res.,97(D14):15761–15785.
    Cucurull L., F. Vandenberghe, D. Barker.2004. Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the14December2001storm event over thewestern Mediterranean sea. Mon. Wea. Rev.,132:749–763.
    Dai A., G. A. Meehl, W. M. Washington, et al.2001. Ensemble simulation of twenty-first century climatechanges: Business-as usual versus CO2stabilization. Bull. Am. Meteorol. Soc.,82(11):2377–2388.
    Dai A., J. Wang, R. H. Ware, et al.2002. Diurnal variation in water vapor over North America and itsimplications for sampling errors in radiosonde humidity. J. Geophys. Res.,107,4090, doi:10.1029/2001JD000642.
    Falvet M., Beaven J.2002. The Impact of GPS Precipitable Water Assimilation on Mesoscale ModelRetrievals of Orographic Rainfall during SALPEX’96. Mon. Wea. Rev.,130:2874–2888.
    Guerova G., E. Brockmann, F. Schubiger, et al.2005. An Integrated Assessment of Measured and ModeledIntegrated Water Vapor in Switzerland for the Period2001–03. J. Appl. Meteorol.,44(7):1033–1044.
    Gutman S. I., S. R. Sahm, S. G. Benjamin, et al.2004. Rapid retrieval and assimilation of ground based GPSprecipitable water observations at the NOAA forecast systems laboratory: Impact on weather forecasts, J.Meteorol. Soc. Japan,82(1B),351—360.
    Held I. M., B. J. Soden,2000. Water vapor feedback and global warming. Annu. Rev. Energy Environ.,25:441–475, doi:10.1146/annurev.Energy.25.1.441.
    Held I. M., Soden B. J.2006. Robust responses of the hydrological cycle to global warming. J. Climate,19:5686–5689.
    Holloway C. E., J. D. Neelin.2009. Moisture vertical structure, column water vapor, and tropical deepconvection. J. Atmos. Sci.,66:1665–1683.
    Holloway C. E., J. D. Neelin.2010. Temporal relations of column water vapor and tropical precipitation. J.Atmos. Sci.,67:1091–1105.
    IPCC.2001. Climate Change2001: The scientific basis. New York: Cambridge Univ. Press,94pp.
    IPCC.2007. Climate Change2007: The scientific basis. New York: Cambridge Univ. Press.996pp.
    Kwon H. T., T. Iwabuchi, G. H. Lim.2007. Comparison of precipitable water derived from ground-basedGPS measurements with radiosonde observations over the Korean Peninsula. J.Meteorol. Soc. Japan,85(6):733–746.
    Kuo Y. H., Y. R. Guo, E. D. R. Westwater.1993. Assimilation of precipitable water measurements into amesoscale numerical model. Mon. Wea. Rev.,121:1215–1238.
    Kuwagata T., A. Numaguti, N. Endo.2001. Diurnal Variation of Water Vapor over the Central TibetanPlateau during Summer. J. Meteor. Soc. Japan,79(1):401–418.
    Liou Y. A., Y. T. Teng, T. V. Hove, et al.2001. Comparison of precipitable water observations in the neartropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol.,40:5–15.
    Liu L. P., J. M. Feng, R. Z. Chu, et al.2002. The diurnal variation of precipitation in monsoon season in theTibetan Plateau. Adv. Atmos. Sci.,19(2):365–378.
    Liu J., Sun Z., Liang H., et al.2005. Precipitable water vapor on the Tibetan Plateau estimated by GPS,water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on theradiation budget. J. Geophys. Res,110(10), D17106,doi:10,1029/2004JD005715.
    Liu J., Liang H., Sun Z. et al.2006. Validation of the MODIS Precipitable Water Vapor Product UsingMeasurements from GPS on the Tibetan Plateau, J. Geophys. Res.,111, D14103,doi:10.1029/2005JD007028.
    Liu Y. M., Q. Bao, A. M. Duan, et al.2007. Recent progress in the impact of the Tibetan Plateau on climatein China. Adv. Atmos. Sci.,24(6):1060–1076.
    Luiz F. S., Luiz A. T., Machado, et al.2005. Analysis of Relative Humidity Sensors at the WMO RadiosondeIntercomparison Experiment in Brazil. J. Atmos. Oceanic Technol.,22(6):664–678.
    Luo Y. L., R. H. Zhang, W. M. Qian, et al.2011. Inter-comparison of deep convection over the TibetanPlateau-Asian Monsoon Region and subtropical North America in boreal summer usingCloudsat/CALIPSO data. J. Climate,24:2164–2177.
    Macpherson S. R., G. Deblonde, J. M. Aparicio et al.2008. Impact of NOAA ground-based GPSobservations on the Canadian regional analysis and forecast system. Mon. Wea. Rev.,136:2727–2745.
    Manuel S. F., D. M. Pondeca, X. Zou.2001. A case study of the variational assimilation of GPS zenith delayobservations into a mesoscale model. J. Appl. Meteorol.,40:1559–1576.
    Nakamura H., H. Keko, Y. Shoji.2004. Aerological Observatory, and Meteorological Instruments Center,Dry biases of humidity measurements from Vaisala RS80-A and Meisei RS2-91radiosondes and fromGround-based GPS. J. Meteorol. Soc. Japan,82(1B):277–299.
    Ohtani R., I. Naito.2000. Comparison of GPS-derived precipitable water vapors with radiosondeobservations in Japan. J. Geophys. Res.,105:26917–26929.
    Penna N. T., T. J. Glowacki, W. P. Bourke.2003. Validation of GPS estimated atmospheric water vaporacross the Australian region, paper presented at IUGG2003conference, Sapporo, Japan,30June to11July.
    Peters O., J. D. Neelin.2006. Critical phenomena in atmospheric precipitation. Nat. Phys.,2:393–396
    Peixoto J. P., M. A. Kettani.1973. The control of the water cycle. Sci. Am.228:46–61.
    Peixoto J. P., A. H. Oort.1992. Physis of climate. American Institute of Physis,270–307.
    Philipona R., B. Durr, A. Ohmura, et al.2005. Anthropogenic greenhouse forcing and strong water vaporfeedback increase temperature in Europe. Geophys. Res. Lett.,32, L19809, doi:10.1029/2005GL023624.
    Pueschel R., C. J. Carcia, R. T. Hansen.1973. Solar radiation: effect of atmospheric water vapor andvolcanic aerosols. J. Appl. Meteorol.,13:397–401.
    Randhir S., P. K. Thapliyal, C. M. Kishtawal, et al.2007. A new technique for estimating outgoing longwaveradiation using infrared window and water vapor radiances from Kalpana very high resolution radiometer.Geophys. Res. Lett.,34, L23815, doi:10.1029/2007GL031715.
    Shukla J., Y. Mintz.1982. Influence of land-surface evaporationspiration on the earth's climate. Science,215:1498–1501.
    Sinha A., J. E. Harries.1997. The earth’s clear-sky radiation budget and water vapor absorption in the farinfrared. J. Climate,10:1601–1614.
    Smith T. L., S. G. Benjamin, B. E. Shwartz, et al.2000. Using GPS-IWV in a4-D data assimilation system.Earth Plants Space,52:921–926.
    Smith T. L., S. G. Benjanmin, S. I. Gutman, et al.2007. Short-range forecast impact from assimilation ofGPS-IPW observations into the rapid update cycle. Mon. Wea. Rev.,135:2914–2930.
    Solomon S., R. W. Portmann, R. W. Sanders, et al.1998. Absorption of solar radiation by water vapor,oxygen, and related collision pairs in the Earth’s atmosphere. J. Geophys. Res.,103(D4):3847–3858.
    Takagi T., F. Kimura, S. Kono.2000. Diurnal variation of GPS precipitable water at Lhasa in premonsoonand monsoon periods. J. Meteorol. Soc. Japan,78:175–180.
    Tatiana A. T., A. F. Boris.2000. Solar radiation absorption due to water vapor: advanced broadbandparameterizations. J. Appl. Meteorol.,39:1947–1950.
    Tomonori S. and Fujio K.2007. How dose the Tibetan Plateau affect the transition of Indian monsoonrainfall. Mon. Wea. Rev.,135:2006–2014.
    Tregoning P., R. Boers, D. O. Brien, et al.1998. Accuracy of absolute precipitable water vapor estimatesfrom GPS observations. J. Geophys. Res.,103:28701–28710.
    Trenberth K. E., A. G. Dai, R. M. Rasmussen, et al.2003. The changing character of precipitation. Bull.Meteorol. Soc.,84(9),1205–1217.
    Vey. S., R. Dietrich, A. Rülke, and et al.2010. Validation of precipitable water vapor within the NCEP/DOEreanalysis using global GPS observation from one decade. J. Climate,23, doi:10.1175/2009JCLI2787.1,1675–1694.
    Wang J., L. Zhang.2008. Systematic errors in global radiosonde precipitable water data from comparisonswith ground-based GPS measurements. J. Climate,21:2218–2238.
    Ware R., M. Exner, D. Feng et al.1996. GPS sounding of the atmosphere from low earth orbit: preliminaryresults. Bull. Am. Meteorol. Soc.,77(1):19–40.
    Wentz F. J., L. Ricciardulli, K. Hilburn, et al.2007. How much more rain will global warming bring. Science,317:233–235, doi:10.1126/science.1140746.
    Wu G. X., Y. M. Liu, W. M. Wang, et al.2007. The influence of mechanical and thermal forcing by theTibetan Plateau on Asian climate. J. Hydrometeorology (special section),8:770–778.
    Wu Y. H., H. L. Hu, S. X. Hu et al.2003. Tropospheric water vapor observations using a Raman lidar overHefei. Acta Meteorologica Sinica,17(4):440–447.
    Xu X., L. Chen, X. Wang, et al.2004. Moisture transport source/sink structure of the Meiyu rain belt alongthe Changjiang River valley. Chinese Science Bulletin,49(2):181–188.
    Xu X. D., C. G. Lu, X. H. Shi, et al.2008. World water tower: an atmosphere perspective. Geophys. Res.Lett.,35, L20815, doi:10.1029/2008GL035867.
    Yan X., V. Ducrocq, P. Poli, et al.2009. Impact of GPS zenith delay assimilation on convective-scaleprediction of Mediterranean heavy rainfall. J. Geophys. Res.,114, D03104, doi:10.1029/2008JD011036.
    Ye D. Z., G. X. Wu.1998. The role of the heat source of the Tibetan Plateau in the general circulation.Meteor. Atmos. Phys.,67,181–198.
    Yuan L., R. A. Anthes, R. H. Ware, et al.1993. Sensing climate change using the Global Positioning System.J. Geophys. Res.,98:14925–14937.
    Zhai P., R. E. Eskridge.1997. Atmospheric water vapor over China. J. Climate,10,2643–2652.
    Zhang R. H.2001. Relations of water vapor transport from Indian monsoon with that over east Asia andsummer rainfall in China. Adv. Atmos. Sci.,18(5):1005–1017.
    蔡海鸥,叶向,刘叶玲等.2010.概率论与数理统计.北京:北京大学出版社,26–27.
    丁金才.2009. GPS气象学及其应用.北京:气象出版社,265pp.
    丁裕国,江志红.2002.气象数据时间序列信号处理.北京:气象出版社,32–37.
    付淙斌,王强.1992.气候突变的定义和检测方法.大气科学,16(4):482–493.
    黄嘉佑.2004.气象统计分析与预报方法.北京:气象出版社,298pp.
    李云艳,孙治安,曾宪宁等.2007.晴天地表太阳辐射的参数化.南京气象学院学报,30(4):512–518.
    盛裴轩,毛节泰,李建国等.2003.大气物理学.北京:北京大学出版社,522pp.
    魏凤英.2007.现代气候统计诊断与预测技术.北京:气象出版社,296pp.
    Alexandersson H.1986. A homogeneity test applied to precipitation data. Journal of Climatology,6:
    661–675.
    Alexandersson H., A. Moberg.1997. Homogenization of Swedish temperature data. Part I: homogeneity testfor linear trends. International Journal of Climatology,17:25–34.
    Berk A., L. S. Bernstein, G. P. Anderson, et al.1998. MODTRAN cloud and multiple scattering upgradeswith application to AVIRIS. Remote Sens. Environ.,65:367–375.
    Bolton D.1980. The computation of equivalent potential temperature. Mon. Weath. Rev.,108:1046–1053.
    Collins W. D, V. Ramaswamy, M. D. Schwarzkopf, et al.2006. Radiative forcing by well-mixed greenhousegases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) FourthAssessment Report (AR4). J. Geophys. Res.,111, D14317, doi:10.1029/2005JD006713.
    Durre I., C. N. Williams Jr., X Yin, et al.2009. Radiosonde-based trends in precipitable water vapor over theNorthern Hemisphere: An update. J. Geophys. Res.,114, D05112, doi:10.1029/2008JD010989.
    Edwards J. M., A. Slingo.1996. Studies with a flexible new radiation code. I: Choosing a configuration for alarge-scale model. Quart. J. Roy. Meteor. Soc.,122(531):689–719.
    Fu Q., K. N. Liou.1992. On the corrected k-distribution method for radiative transfer in nonhomogeneousatmospheres, J. Atmos. Sci.,49:2139–2156.
    Granato G. E.2006. Kendall-Theil Robust Line (KTRLine-version1.0)-A Visual Basic program forcalculating and graphing robust nonparametric estimates of linear-regression coefficients Between twocontinuous variables: techniques and methods of the U.S. Geological Survey, book4, chap.A7,31p.
    Guijarro J. A.2011. User's guide to climatol. http://webs.ono.com/climatol/climatol.html, version1.1,40pp
    Haan S. D.2006. Measuring atmospheric stability with GPS. J. Appl. Meteorol. Clim.,45:467–475.
    Helsel D. R., R. M. Hirsch.1995. Statistical methods in water resources. Elsevier, New York,522pp.
    Helsel D. R., R. M. Hirsch.2002. Statistical methods in water resources. http://water.usgs.gov/pubs/twri/twri4a3/,524pp.
    Houghton J.T., Y. Ding, D. J. Griggs, et al.2001. IPCC Third Assessment Report. Climate Changes2001:The Scientific Basis. Cambridge University Press, UK,36–44.
    Holton J. R.1992. An Introduction to Dynamic Meteorology. Academic Press,511pp.
    Khaliq M. N., T. B. M. J. Ouarda.2007. On the critical values of the standard normal homogeneity test(SNHT). International Journal of Climatology,27:681–687.
    Kneizys, F. X, E. P. Shettle, L. W. Abreu, et al.1988. Users guide to LOWTRAN7. Air Force GeophysicsLab HANSCOM AFB MA.
    Kokhanovsky A. A., B. Mayer, V. V. Rozanov.2005. A parameterization of the diffuse transmittance andreflectance for aerosol remote sensing problem. Atmospheric Research,73,37–43.
    Kopp G., J. L. Lean.2011. A new, lower value of total solar irradiance: evidence and climate significance.Geophys. Res. Letters,38, L01706, doi:10.1029/2010GL045777.
    Kuo Y. H., Y. R. Guo, and E. D. R. Westwater.1993. Assimilation of precipitable water measurements intoa mesoscale numerical model. Mon. Weath. Rev.,121:1215–1238.
    Lacis A. A., V. Oinas.1991. A description of the corrected k distributed method for modeling nongraygaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J.Geophys. Res.,96:9027–9063.
    Li J., C. L. CURRY, Z. SUN, et al.2010. Overlap of Solar and Infrared Spectra and the Shortwave RadiativeEffect of Methane. J. Atmos. Sci.,67:2372–2388.
    Macdonald A. E., Y. Xie.2002. Diagnosis of three-dimensional water vapor using a GPS network. Mon.Weath. Rev.,130(2):386–397.
    Mlawer E. J., S. J. Taubman,P. D. Brown.1997. Radiative transfer for inhomogeneous atmospheres: RRTM,a validated corrected-k model for the longwave. J. Geophys. Res.,102:16663–16682.
    Orphal J.2003. A critical review of the absorption cross-sections of O3and NO2in the ultraviolet and visible.Journal of Photochemistry and Photobiology A: Chemistry,157:185–209.
    R development core team.2012. A language and environment for statistical computing. R foundation forstatistical computing, Vienna, Austria. ISBN3-900051-07-0, URL http://www.R-project.org/
    Salby M. L.1996. Fundamentals of Atmospheric Physics. Academic Press,627pp.
    Stull R B.1995. Meteorology for sciences and engineers-a technical companion book. West, Minneapolis,Minn.
    Sun Z., Y. Li, X. Zeng, et al.,2007. Parametrisation of solar radiation at the surface under cloudlessconditions and its validation against observations. Aust. Met. Mag,56:81–89.
    Sun Z.2008. Development of the Sun-Edwards-Slingo radiation scheme (SES2). The Centre for AustralianWeather and Climate Research (CAWCR) Technical Report No.009,86pp.
    Sun Z.2011a. Improving transmission calculations for Edwards-Slingo radiation scheme using a correlatedk-distribution method. Quart. J. Roy. Meteor. Soc.,137:2138–2148.
    Sun Z., X. Zeng, J. Liu.2011b. Parameterization of instantaneous global and net solar irradiance at thesurface. Part Ⅰ: Clear-sky conditions, submitted to J Geophys. Res.
    Torrence C., G. P. Compo.1998. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc.,79(1):61–77
    Vey S., R. Dietrich, M. Fritsche, et al.2009. On the homogeneity and interpretation on precipitable watertime series derived from global GPS observations. J. Geophys. Res.,114, D10101, doi:10.1029/2008JD010415.
    Wang J., Zhang L.2008. Systematic errors in global radiosonde precipitable water data from comparisonswith ground-based GPS measurements. J. Climate,21:2218–2238
    毕研盟,毛节泰,刘晓阳等.2006.应用地基GPS遥感倾斜路径方向大气水汽总量.地球物理学报,49(2):335–342.
    曹云昌,方宗义,夏青.2005. GPS遥感的大气可降水量与局地降水关系的初步分析.应用气象学报,16(1):54–59.
    程宗颐,庄雪娟.2004.上海地区GPS综合应用网数据采集处理中心及其自动化处理软件简介.中国科学院上海天文台台刊,25:144–149.
    催淑珍,彭军还,谢邵峰.2006.未知点初始坐标精度对基线解算结果的影响.桂林工程学院学报,26(2):218–220.
    丁金才.2009. GPS气象学及其应用.北京:气象出版社,265pp.
    金慧华,白征东,过静等.2008.地基GPS反演水汽影响因素分析.测绘科学,33(4):65–67.
    李成才,毛节泰,李建国等.1999.全球定位系统遥感水汽总量.科学通报,44(3):333–336.
    李成才,毛节泰.2004.地基GPS遥感大气水汽总量中的“静力延迟”和“湿项延迟”.大气科学,28(5):795–800.
    李建国,毛节泰,李成才.1999.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析.气象学报,57(3):283–292.
    梁宏,刘晶淼,李世奎.2006.青藏高原大气水汽分布及其变化特征.自然资源学报.21(4):526–534.
    刘红燕,王迎春,王京丽等.2009.由地基微波辐射计测量得到的北京地区水汽特性的初步分析.大气科学,33(2):388–396.
    毛节泰.1993. GPS的气象应用.气象科技,4:45–49.
    宋淑丽,朱文耀,丁金才等.2004.上海GPS综合应用网对可降水汽量的实时监测及其改进数值预报初始场的试验.地球物理学报,47(4):631–648.
    陶诗言,陈联寿,徐祥德等.2000.第二次青藏高原大气科学试验理论研究进展(二).北京:气象出版社,396pp.
    徐祥德,陶诗言,王继志等.2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系.气象学报,60(3):257–266.
    颜宏,沈国权,毛耀顺等.2002.中华人民共和国气候图集.北京:气象出版社,6–7.
    章基嘉,朱抱真,朱福康等.1988.青藏高原气象学进展:青藏高原气象科学实验(1979)和研究.北
    京:科学出版社,268pp.
    Baelen J. V., J. P. Aubagnac, A. Dabas.2005. Comparison of Near–Real Time Estimates of Integrated WaterVapor Derived with GPS, Radiosondes, and Microwave Radiometer. J. Atmos. Oceanic Technol.,22(2):201–210.
    Bevis M., S. Businger, S. R. Chiswell, et al.1994. GPS Meteorology: Mapping Zenith Wet Delay ontoPrecipitable Water. J. Appl. Meteorol.,33:379–386.
    Bock O., F. Guichard, S. Janicot, et al.2007. Multiscale analysis of precipitable water vapor over Africafrom GPS data and ECMWF analyses. Geophys. Res. Lett.,34, L09705, doi:10.1029/2006GL028039.
    Bock O., M. Nuret.2009. Verification of NWP model analyses and radiosonde humidity data with GPSprecipitable water vapor estimates during AMMA. Weather Forecast.,24:1085–1101.
    Brunner F. K., M. Gu.1991. An improved model for the dual frequency ionospheric correction of GPSobservations. Manusc. Geod.,16,205–214.
    Byun S. H., Y. E. Bar-Sever.2009. A new type of troposphere zenith path delay product of the internationalGNSS service. J. Geod.,83, doi:10.1007/s00190-008-0288-8,367–373.
    Cady-Pereira K. E., M. W. Shephar,D. D. Turne,et al.2008. Improved daytime column integratedprecipitable water vapor from vaisala radiosonde humidity sensors. J. Atmos. and Oceanic Technol.,25(6):873–883.
    Dai A., J. Wang, R. H. Ware, et al.2002. Diurnal variation in water vapor over North America and itsimplications for sampling errors in radiosonde humidity. Journal of Geophysical Research,107,4090,doi:10.1029/2001JD000642.
    Davis J. L., Herring T. A., Shapiro II et al.1985. Geodesy by radio interferometry: Effects of atmosphericmodeling errors on estimates of baseline length. Radio Science,20:1593–1607.
    Duan J., Bevis M., Fang P., et al.1996. GPS Meteorology: Direct estimation of the absolute value ofprecipitable water. J. Appl. Meteorol.,35:830–838.
    Elgered G., J. L. Divis, T. A. Herring et al.1991. Geodesy by radio interferometry: water vapor radiometryfor estimation of the wet delay. J. Geophys. Res.,96:6541–6555.
    Elgered G.1993. Tropospheric radio-path delay from groundbased microwave radiometry. AtmosphericRemote Sensing by Microwave Radiometry,215–258.
    Foster J., M. Bevis, T. Schroeder, et al.2000. El Ni o, water vapor, and the Global Positioning System.Geophys. Res. Lett.,27(17):2697–2700, doi:10.1029/2000GL011429.
    Gardinarsky L. P., J. M. Johansson, H. R. Bouma, et al.2002. Climate monitoring using GPS. Phys. Chem.Earth,27(4-5):335–340, doi:10.1016/S1474-7065(02)0009-8.
    Guerova G., E. Brockmann, F. Schubiger, et al.2005. An Integrated Assessment of Measured and ModeledIntegrated Water Vapor in Switzerland for the Period2001–03. J. Appl. Meteorol.,44(7):1033–1044.
    Gutman S. I., S. R. Sahm, S. G. Benjamin, et al.2004. GPS water vapor observation errors. EighthSymposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface,AMS, USA
    Herring T. A., R. W. King, S. C. McClusky.2009. GAMIT reference manual(10.35). Department of earth,atmospheric, and planetary sciences, Massachussetts Institute of Technology,183pp.
    Hogg D. C., F. O. Guiraud, J. B. Snider, et al.1983. A steerable dual-channel microwave radiometer formeasurement of water vapor and liquid in the troposphere. J. Appl. Meteor.,22(5):789–806.
    Iwabuchi T., Y. Shoji, S. Shimada, et al.2004. Tsukuba GPS dense net campaign observations: Comparisonof the stacking maps of post-fit phase residuals estimated from three software packages. J. Meteor. Soc.Japan,82(1B):315-330.
    Leick A., GPS satellite surveying, John Wiley, New York,1990,353pp.
    Liou Y. A., and Y. T. Teng.2001. Comparison of precipitable water observations in the near tropics by GPS,microwave radiometer, and radiosondes. J. Appl. Meteorol.,40:5–15.
    Liu J., Z. Sun, H. Liang, et al.2005. Precipitable water vapor on the Tibetan Plateau estimated by GPS,water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on theradiation budget. J. Geophys. Res.,110(10), D17106,doi:10.1029/2004JD005715.
    Liu J., H. Liang, Z Sun, et al.2006. Validation of the MODIS Precipitable Water Vapor Product UsingMeasurements from GPS on the Tibetan Plateau. J. Geophys. Res.,111, D14103,doi:10.1029/2005JD007028.
    Luiz F. S., Luiz A. T., Machado, et al.2005. Analysis of relative humidity sensors at the WMO radiosondeintercomparison experiment in Brazil. J. Atmos. Oceanic Technol.,22(6):664–678.
    Nilsson T., G. Elgered.2008. Long-term trends in the atmospheric water vapor content estimated fromground-based GPS data. J. Geophys. Res.,113, D19101, doi:10.1029/2008JD10110.
    Ohtani R., I. Naito.2000. Comparison of GPS-derived precipitable water vapors with radiosondeobservations in Japan. J. Geophys. Res.,105:26917–26929.
    Pacione R., F. Vespe.2003. GPS zenith total delay estimation in the Mediterranean area for climatologicaland meteorological application. J. Atmos. Oceanic Technol.,20:1034–1042.
    Pacione R.,F. Vespe.2008. Comparative studies for the assessment of the quality of near-real-timeGPS-derived atmospheric parameters. J. Atmos. Oceanic Technol.,25(5):701–714.
    Prasad A K, R P Singh.2009. Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-Ⅱ Reanalysis-2, andAERONET Sun photometer derived integrated precipitable water vapor using ground-based GPSreceivers over India. J. Geophys. Res.,114, D05107, doi:10.1029/2008JD011230.
    Seko H.,H. Nakamura, S. Shimada.2004. An evaluation of atmospheric models for GPS data retriveal byoutput from a numerical weather model. J. Meteor. Soc. Japan,82(1B),339–350.
    Spilker J. J.1980. GPS signal structure and performance characterics, in Global Positioning System, vol.1,The Institute of Navigation, Washington, D. C.
    Tregoning P., R. Boers, D. O. Brien, et al.1998. Accuracy of absolute precipitable water vapor estimatesfrom GPS observations, J. Geophys. Res.,103:28701–28710.
    Takagi T., F. Kimura, S. Kono.2000. Diurnal variation of GPS precipitable water at Lhasa in premonsoonand monsoon periods. J. Meteor. Soc. Japan,78(1):175–180.
    Trimble.2003. Trimble NetRS GPS reference station. http://facility.unavco.org/project_support/polar/whatnew/NetRS.pdf.
    UNAVCO.2010. TEQC tutorial. http://facility.unavco.org/software/teqc/tutorial.html.
    Vey S., R. Dietrich, M. Fritsche, et al.2009. On the homogeneity and interpretation on precipitable watertime series derived from global GPS observations. J. Geophys. Res.,114, D10101, doi:10.1029/2008JD010415.
    Vey S., R. Dietrich, A R lke, et al.2010. Validation of precipitable water vapor within the NCEP/DOEreanalysis using global GPS observations from one decade. J. Climate,23:1675–1695.
    Wang J., L. Zhang, A. Dai, et al.2007. A near-global,8-year,2-hourly data set of atmospheric precipitablewater from ground-based GPS measurements. J. Geophys. Res.,112, D11107, doi:10.1029/2006JD007529.
    Wang J., L. Zhang.2008. Systematic errors in global radiosonde precipitable water data from comparisonswith ground-based GPS measurements. J. Climate,21:2218–2238.
    Ware R. H., D. W. Fulker, S. A. Stein, et al.2000. A real-time national GPS network for atmosphericresearch and education, Bull. Am. Meteorol. Soc.,81:677–694.
    Xu X., R. Zhang, T. Koike, et al.2008. A new integrated observational system over the Tibetan Plateau. Bull.Am. Meteorol. Soc., doi:10.1175/2008BAMS2557.1,1492–1496.
    Ye D. Z., G. X. Wu.1998. The role of the heat source of the Tibetan Plateau in the general circulation.Meteor. Atmos. Phys.,67,181–198.
    Zhang R. H., T. Koike, X. D. Xu, et al.2012. A China-Japan cooperative JICA atmospheric observingnetwork over the Tibetan Plateau (JICA/Tibet Project): An overview. J. Meteor. Soc. Japan,90c (inpress).
    李生辰,李栋梁,赵平等.2009.青藏高原“三江源地区”雨季水汽输送特征.气象学报,67(4):591–598
    李伟,李锋,赵志强等.2009. L波段气象探测系统建设技术评估报告.北京:气象出版社,95pp.
    梁宏,刘晶淼,李世奎.2006.青藏高原大气水汽分布及其变化特征.自然资源学报,21(4):526–534.
    施晓辉,徐祥德,程兴宏.2009.2008年雪灾过程高原上游关键区水汽输送机制及其前兆性“强信号”特征.气象学报,67(3):478–487.
    陶大文.1997.我国探空仪发展历程的回顾与前景展望.气象水文海洋仪器,2:42–46.
    魏凤英.2007.现代气候统计诊断与预测技术.北京:气象出版社,296pp.
    邢毅,张志萍,曹云昌等.2009. RS92型GPS探空仪的性能试验与分析.气象科技,37(3):336–340.
    姚雯,马颖,徐文静.2008. L波段电子探空仪相对湿度误差研究及其应用.应用气象学报,19(3):356–361.
    占瑞芬,李建平.2008.青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征.大气科学,32(2):242–260.
    中国气象局.2010.常规高空气象观测业务规范.北京:气象出版社,58pp.
    中国气象局监测网络司.2005.气象仪器和观测方法指南(第六版).489pp.
    Baelen J. V., J. P. Aubagnac, A. Dabas.2005.Comparison of near–real time estimates of integrated watervapor derived with GPS, radiosondes, and microwave Radiometer.J. Atmos. Oceanic Technol.,22(2):201–210.
    Bevis M., B. Businger, S. Chiswell, et al.1994.GPS meteorology: Mapping zenith wet delays ontoprecipitable water.J. Appl. Meteor.,33:379–386.
    Byun S. H., Y. E. Bar-Sever.2009. A new type of troposphere zenith path delay product of the internationalGNSS service. J. Geod., doi:10.1007/s00190-008-0288-8,83:367–373.
    Cady-Pereira K. E., M. W. Shephar,D. D. Turne,et al.2008. Improved daytime column integratedprecipitable water vapor from vaisala radiosonde humidity sensors. J. Atmos.Oceanic Technol.,25(6):873–883.
    Durre I., R. S. Vose, D. B. Wuertz.2006. Overview of the Integrated Global Radiosonde Archive. J. Climate,19:53–68.
    Guerova G., E. Brockmann, F. Schubiger, et al.2005. An integrated assessment of measured and modeledintegrated water vapor in Switzerland for the period2001–03. J. Appl. Meteor.,44(7):1033–1044.
    Herring T. A., R. W. King, S. C. McClusky.2006. GAMIT reference manual. Department of earth,atmospheric, and planetary sciences, Massachussetts Institute of Technology.183pp.
    Li F.2006. New developments with upper-air sounding in China. Instruments and Observing MethodsReport No.94, WMO/TD No.1354. Geneva: WMO.
    Liu J., Z. Sun, H. Liang, et al.2005. Precipitable water vapor on the Tibetan Plateau estimated by GPS,water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on theradiation budget. J. Geophys. Res.,110(10), D17106,doi:10,1029/2004JD005715.
    Liu J., H. Liang, Z. Sun, et al.2006. Validation of the MODIS precipitable water vapor product usingmeasurements from GPS on the Tibetan Plateau. J. Geophys. Res.,111, D14103,doi:10.1029/2005JD007028.
    Luiz F. S., A. T. Luiz, Machado, et al.2005. Analysis of relative humidity sensors at the WMO radiosondeintercomparison experiment in Brazil. J. Atmos. Oceanic Technol.,22(6):664–678.
    Takagi T., F. Kimura, S. Kono.2000. Diurnal variation of GPS precipitable water at Lhasa in premonsoonand monsoon periods. J. Meteorol. Soc. Jpn.,78:175–180.
    Vey S., R. Dietrich, A. R lke, et al.2010. Validation of precipitable water vapor within the NCEP/DOEreanalysis using global GPS observations from one decade. J. Climate,23:1675–1695.
    Wang J., L. Zhang.2008. Systematic errors in global radiosonde precipitable water data from comparisonswith ground-based GPS measurements. J. Climate,21:2218–2238.
    Webb F. H., J. F. Zumberge.1997. An introduction to GIPSY/OASIS-Ⅱ. JPL publication D-11088.
    WMO.2008. Guide to meteorological instruments and methods of observation. seventh edition, WMO-No.8,249–294.
    Xu X. D., C. G. Lu, X. H. Shi, et al.2008. World water tower: an atmosphere perspective. Geophys. Res.Lett.,35, L20815, doi:10.1029/2008GL035867.
    Ye D. Z., G. X. Wu.1998. The role of the heat source of the Tibetan Plateau in the general circulation.Meteor. Atmos. Phys.,67,181–198.
    陈添宇,李照荣,陈乾等.2005.用GMS5卫星反演水汽场分析中国西北地区大气水汽分布的气候特征.大气科学,29(6):864–871.
    陈添宇,陈乾,李宝梓.2006.用卫星资料反演中国西北地区东部蒸散量的遥感模型.水科学进展,17(6):834–840.
    蔡英,钱正安,吴统文等.2004.青藏高原及周边地区大气可降水量的分布变化与各地多变的降水气候.高原气象,23(1):1–10.
    高荣,钟海玲,董文杰等.2010.青藏高原积雪和季节冻融层的突变特征及其对中国降水的影响.冰川冻土,28(3):469–474.
    黄小燕,张明军,王圣杰等.2011.中国西北地区近50年夏季0℃层高度及气温时空变化特征.地理学报,66(9):1191–1199.
    黄玉霞,王宝鉴,王鹏祥.2006.青海高原夏季降水异常及其水汽输送特征分析.高原气象,32(1):18–23.
    李林,朱西德,秦宁生等.2003.青藏高原气温变化及其异常类型的研究.高原气象,5:524–530.
    李伟,李锋,赵志强等.2009. L波段气象探测系统建设技术评估报告.北京:气象出版社,95pp.
    梁宏,刘晶淼,李世奎.2006a.青藏高原大气水汽分布及其变化特征.自然资源学报,21(4):526–534.
    梁宏,刘晶淼,毕研盟等.2006b.青藏高原大气总水汽量的反演研究.高原气象,6(25):1055–1062.
    刘明光,韩渊丰,赵汝植等.1997.中国自然地理图集.北京:中国地图出版社,252pp.
    吕少宁,李栋梁,文军等.2010.全球变暖背景下青藏高原气温周期变化与突变法分析.高原气象,6:1378–1385.
    马晓波,李栋梁.2003.青藏高原近代气温变化趋势及突变特征.高原气象,5:507–512.
    王可丽,江灏,赵红岩.2005.西风带与季风对中国西北地区的水汽输送.水科学进展,16(3):432–438.
    王鹏祥,王宝鉴,黄玉霞等.2006.青藏高原近43年夏季水汽分布及演变特征.高原气象,25(1):60–65.
    王堰,李雄,缪启龙.2004.青藏高原近50年来气温变化特征的研究.干旱区地理,29(1):41–46.
    王毅荣,林纾,李耀辉等.2006.甘肃空中水汽含量对全球气候变化响应.干旱区地理,29(1):47–52.
    魏娜,巩远发,孙娴等.2010.西北地区近50a降水变化及水汽输送特征,30(6):1450–1457.
    吴绍洪,尹云鹤,郑度等.2003.青藏高原近30年气候变化趋势.地理学报,60(1):3–11.
    徐淑英,高由禧.1962.西藏高原的季风现象.地理学报,28(2):111–123.
    徐祥德,陶诗言,王继志等.2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系.气象学报,60(3):257–266.
    杨景梅,邱金桓.2002.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究.大气科学,26(1):9–21.
    尹志芳,欧阳华,徐兴良等.2009.拉萨河谷灌丛草原与农田水热平衡及植被水分利用特征.地理学报,64(3):303–314.
    张文纲,李述训,庞强强.2009.青藏高原40年来降水量时空变化趋势.水科学进展,2:168–176.
    赵双喜,张耀生,赵新全等.2008.祁连山北坡草地蒸散量及其与影响因子的关系.西北农林科技大学学报(自然科学版),36(1):109–115.
    邹进上,刘惠兰.1981.我国平均水汽含量分布的基本特点及其控制因子.地理学报,36(4):377–391.
    邹捍,周立波,马舒坡等.2007.珠穆朗玛峰北坡局地环流日变化的观测研究.高原气象,26(6):1123–1140.
    Arakawa A., W. H. Schubert.1974. Interaction of a cumulus cloud ensemble with the large-scaleenvironment, Part I. J. Atmos. Sci.,31,674–701.
    Bian J. C., H. B. Chen, V. Holger, et al.2011. Intercomparison of humidity and temperature sensors: GTS1,Vaisala RS80, and CFH. Advances in Atmospheric Sciences,28(1):139–146.
    Bock O., F. Guichard, S. Janicot, et al.2007. Multiscale analysis of precipitable water vapor over Africafrom GPS data and ECMWF analyses. Geophys. Res. Lett.,34, L09705, doi:10.1029/2006GL028039.
    Bretherton C. S., M. E. Peters, L. E. Back.2004. Relationships between water vapor path and precipitationover the tropical oceans. J. Climate,17,1517–1528.
    Dai A., J. Wang, R. H. Ware, et al.2002. Diurnal variation in water vapor over North America and itsimplications for sampling errors in radiosonde humidity. J. Geophys. Res.,107,4090, doi:10.1029/2001JD000642.
    Dai A., J. Wang, P. W. Thorne, D. E. Parker.2011. A new approach to homogenize daily radiosondehumidity data. J. Climate,24:965–991.
    Duchon C. E.1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology,18,1016–1022..
    Durre I., C. N. Williams Jr., X. Yin, et al.2009. Radiosonde-based trends in precipitable water vapor over theNorthern Hemisphere: An update. J. Geophys. Res.,114, D05112, doi:10.1029/2008JD010989.
    Fujinami H., T. Yansunari.2001. The seasonal and intraseasonal variability of diurnal cloud activity over theTibetan Plateau. J. Meteor. Soc. Japan,79,1207–1227.
    Fujinami H., T. Yansunari.2004. Submonthly variability of convection and circulation over and around theTibtan Plateau during the boreal summer. J. Meteor. Soc. Japan,87,1545–1564.
    Guijarro J. A.2011. User's guide to climatol. http://webs.ono.com/climatol/climatol.html, version1.1,40pp
    Held I. M., B. J. Soden,2000. Water vapor feedback and global warming. Annu. Rev. Energy Environ.,25.441–475, doi:10.1146/annurev. Energy.25.1.441.
    Held I. M., B. J. Soden.2006. Robust responses of the hydrological cycle to global warming. J. Climate,19:5686–5689.
    Holloway C. E., J. D. Neelin.2009. Moisture vertical structure, column water vapor, and tropical deepconvection. J. Atmos. Sci.,66:1665–1683.
    Holloway C. E., J. D. Neelin.2010. Temporal relations of column water vapor and tropical precipitation. J.Atmos. Sci.,67:1091–1105.
    Houghton J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A.Johnson, Eds.,2001: IPCC Third Assessment Report. Climate Changes2001: The Scientific Basis.Cambridge University Press, UK,36–44.
    Iwasaki H., Miki T.2001. Observational study on the diurnal variation in precipitable water associated withthe thermally induced local circulation over the "semi-basin" using GPS data. J. Meteorol. Soc. Japan,79:1077–1091.
    Jin S., Z. Li, J. Cho.2008. Integrated water vapor field and multiscale variations over China from GPSmeasurements. J. Appl. Meteorol. Climat.,47:3008–3015.
    Kurita N., H. Yamada.2008. The role of local moisture recycling evaluated using stable isotope data fromover the middle of the Tibetan Plateau during the monsoon season. J. Hydromet.,9:760–775.
    Luo H. B., M. Yanai.1983. The large-scale circulation and heat sources over the Tibetan Plateau andsurrounding areas during the early summer of1979. Part I: precipitation and kinematic analyses. Mon.Wea. Rev.,111:922–944.
    Luo H. B., M. Yanai.1984. The large-scale circulation and heat sources over the Tibetan Plateau andsurrounding areas during the early summer of1979. Part Ⅱ: heat and moisture budgets. Mon. Wea. Rev.,112:966–989.
    Luo Y. L., R. H. Zhang, W. M. Qian, et al.2011. Intercomparison of deep convection over the TibetanPlateau-Asian region and subtropical north American in boreal summer using Cloudsat/CALIPSO data. J.Climate,24:2164–2177.
    Kuwagata T., A. Numaguti, N. Endo.2001. Diurnal Variation of Water Vapor over the Central TibetanPlateau during Summer. J. Meteor. Soc. Japan,79(1):401–418.
    Mapes B. E., R. Milliff, J. Morzel.2009. Composite life cycle of maritime tropical mesoscale convectivesystems in scatterometer and microwave satellite observations. J. Atmos. Sci.,66:199–208.
    Menne M. J., C. N. Williams Jr.2009. Homogenization of temperature series via pairwise comparisons. J.Climate,22:1700–1717.
    Neelin J. D., K. Hales.2009. The transition to strong convection. J. Atmos. Sci.,66:2367–2384.
    Peters O., J. D. Neelin.2006. Critical phenomena in atmospheric precipitation. Nat. Phys.,2:393–396.
    Schlittgen R., B. H. J. Streitberg.1999. Zeitreihenanalyse. R. Oldenbourg Verlag, München, Wien.8.Auflage.
    Shiori S., U. Kenichi.2008. Transportation of water vapor into the Tibtetan Plateau in the case of a passingsynoptic-scale trough, J. Meteor. Soc. Japan,86(6):935–949.
    Stier W.2001. Methoden der Zeitreihenanalyse. Springer-Verlag, Berlin, Heidelberg.
    Torrence C., G. P. Compo.1998. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc.,79(1):61–77
    Ueno K.1998. Characteristics of Plateau-scale precipitation in Tibet estimated by satellite data during1993monsoon season. J. Meteor. Soc. Japan,76:533–548.
    Vey S., R. Dietrich, M. Fritsche, et al.2009. On the homogeneity and interpretation on precipitable watertime series derived from global GPS observations. J. Geophys. Res.,114, D10101,doi:10.1029/2008JD010415.
    Vey S., R. Dietrich, A. Rülke, et al.2010. Validation of precipitable water vapor within the NCEP/DOEreanalysis using global GPS observations from one decade. J. Climate. Doi:10.1175/2009JCLI2787.1,1675–1694.
    Wang B., I. Oranski.1987. Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau.Mon. Wea. Rev.,115:1370–1393.
    Wang B.1987. The development mechanism for Tibetan Plateau warm vortices. Atmos. Sci.,44:2978–2994.
    Wentz F., L. Ricciardulli, K. Hilburn, et al.2007. How much more rain will global warming bring. Science,317,233, doi:10.1126/science.1140746.
    Willett K. M., N. P. Gillett, P. D. Jones, et al.2007. Attribution of observed surface humidity changes tohuman influence. Nature,449, doi:10.1038/nature06207.
    Wu P., Hamada J. I., Mori S., et al.2003. Diurnal variation of precipitable water over a mountainous area ofSumatra Island. J. Appl. Meteor.,42:1107–1115
    Xu K., K. A. Emanuel.1989. Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev.,117:1471–1479.
    Xu X. D., Lu C.G., Shi X.H., and et al.2008. World water tower: An atmospheric perspective. Geophys. Res.Lett.,35, L20815, doi:10.1029/2008GL035867.
    Yanai M., Li C.1994. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea.Rev.,122:305–323.
    Yasunari T., T. Miwa.2006. Convective cloud systems over the Tibetan Plateau and their impact onmeso-scale disturbances in the Meiyu/Baiu frontal zone—a case study in1998. J. Meteor. Soc. Japan,84(4):783–803.
    Zelinka M. D., D. L. Hartmann.2009. Response of humidity and clouds to tropical deep convection. J.Climate,22:2389–2404.
    Zhai P. M., R. E. Eskridge.1996. Analysis of inhomogeneities in radiosonde temperature and humidity timeseries. J. Climate,9:884–894.
    Zhai P. M. R. E. Eskridge.1997. Atmospheric water vapor over China. J. Climate,10:2643–2652.
    Zveryaev I. I., R. P. Allan.2005. Water vapor variability in the tropics and its links to dynamics andprecipitation. J. Geophys. Res.,110, D21112, doi:1029/2005JD006033.
    李建东,刘屹岷,孙治安等.2009.辐射和积云对流过程对大气辐射通量的影响.气象学报,67(3):355–369.
    王炳忠,莫月琴,杨云.2008.现代气象辐射测量技术.北京:气象出版社,177pp.
    赵平,蒋品平,周秀骥等.2009.春季东亚海—陆热力差异对我国东部西南季风降水影响数值试验.科学通报,54(16):2372–2378.
    徐祥德.2009.青藏高原“敏感区”对我国灾害天气气候的影响及其监测.中国工程科学,11(10):96–107.
    中国气象局.2003.地面气象观测规范.气象出版社,149pp.
    Bock O., F. Guichard, S. Janicot, et al.2007. Multiscale analysis of precipitable water vapor over Africafrom GPS data and ECMWF analyses. Geophys. Res. Lett.,34, L09705, doi:10.1029/2006GL028039
    Chen B., W. C. Chao, X. Liu.2003. Enhanced climate warming in the Tibtean Plateau due to doubling CO2:A model study. Clim. Dyn,20,401–413.
    Christian H., R. L. Jones.2000. Absorption of solar radiation by water vapor in clear and cloudy skies:Implications for anomalous absorption. J. Geophys. Res.,105(D7):9421–9428.
    Christian R., R. Philipona, J. Morland, et al.2007. Observed relationship between surface specific humidity,integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res.,112,D03302, doi:10.1029/2006JD007850.
    Jade S., M. S. M. Vijayyan.2008. GPS-based atmospheric precipitable water vapor estimation usingmeteorological parameters interpolated from NCEP global reanalysis data. J. Geophys. Res.,113, D03106,doi:10.1029/2007JD008758.
    Kroon M., E. J. Brinksma, G. Labow, et al.2006. OMI TOMS total ozone column validation status.RP-OMIE-KNMI-820, version1.1, May31,2006,24pp.
    Kou, Y. H., Y. R. Guo, E. R. Westwater.1993. Assimilation of precipitable water into mesoscalenumerical model. Mon. Wea. Rev.,121,1215–1238.
    Li L., R. H. Zhang, M. Wen.2011. Diagnostic analysis of the evolution mechanism for a vortex over theTibtean Plateau in June2008. Adv. Atmos. Sci., doi:10.1007/s00376-010-0027-y,28(4):797–808.
    Liu J., Z. Sun, H. Liang, et al.2005. Precipitable water vapor on the Tibetan Plateau estimated by GPS,water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on theradiation budget. J. Geophys. Res.,110, D17106, doi:10.1029/2004JD005715.
    McCarthy M. P., P. W. Thorne, H. A. Titchner.2009. An analysis of tropospheric humidity trends fromradiosondes. J. Climate,22:5820–5838.
    McPeters R. D., Labow G. J.1996. An assessment of the accuracy of14.5years of Nimbus7TOMS version7ozone data by comparison with the Dobson network. Geophys. Res. Lett.,23(25),3695–3698.
    Onogi K., J. Tsutsui, H. Koide, et al.2007. The JRA-25Reanalysis. J. Meteorol. Soc. Japan,85(3):369–432.
    Randhir S., P. K. Thapliyal, C. M. Kishtawal, et al.2007. A new technique for estimating outgoing longwaveradiation using infrared window and water vapor radiances from Kalpana very high resolution radiometer.Geophys. Res. Lett.,34, L23815, doi:10.1029/2007GL031715.
    Solomon S., R. W. Portmann, R. W. Sanders, et al.1998. Absorption of solar radiation by water vapor,oxygen, and related collision pairs in the Earth’s atmosphere. J. Geophys. Res.,103(D4):3847–3858.
    Sun Zhian.2008. Development of the Sun-Edwards-Slingo radiation scheme (SES2)[R]. The Centre forAustralian Weather and Climate Research (CAWCR) Technical Report No.009,86pp.
    Tomonori S. and K. Fujio.2007. How dose the Tibetan Plateau affect the transition of Indian monsoonrainfall. Mon. Wea. Rev.,135:2006–2014.
    Vey S., D. Reinhard, R. Axel, et al.2010. Validation of precipitable water vapor within the NCEP/DOEreanalysis using global GPS observations from one decade. J. Climate,23:1675–1695.
    Wang J., Zhang L., Dai A.2005. Global estimated of water-vapor-weighted mean temperature of theatmosphere for GPS application. J. Geophys. Res.,110, D21101, doi:10.1029/2005JD006215.
    Wang J., L. Zhang.2008. Systematic errors in global radiosonde precipitable water data from comparisonwith ground-based GPS measurements. J. Climate,21:2218–2238.
    Wang K., J. Liu, X. Zhou, et al.2004. Validation of the MODIS global land surface albedo product usingground measurements in a semidesert region on the Tibetan Plateau. J. Geophys. Res.,109, D05107,doi:10.1029/2003JD004229.
    Wu G. X., Y. M. Liu, W. M. Wang, et al.2007. The influence of mechanical and thermal forcing by theTibetan Plateau on Asian climate. Journal of Hydrometeorology (special section),8:770–778.
    Xu X. D., C. G. Lu, X. H. Shi, et al.2008. World water tower: An atmospheric perspective. Geophys. Res.Lett.,35, L20815, doi:10.1029/2008GL035867.
    Yanai M., Li C.1994. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea.Rev.,122,305–323.
    卞建春,严仁嫦,陈洪滨.2011.亚洲夏季风是低层污染物进入平流层的重要途径.大气科学,35(5):897–902.
    程兴宏,张小玲,郑向东等.2009. PSP总日射表热偏移特征及其测量总辐射误差分析.太阳能学报,30(1):19-26.
    陈斌,徐祥德,卞建春等.2010.夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究.大气科学,34:495–505.
    韩霄,张美根,韩志伟等.2010.东亚地区气溶胶光学厚度时空分布模拟与分析.中国科学:地球科学,40(10):1446–1458.
    鞠晓慧,屠其璞,李庆祥.2005.我国太阳总辐射气候学计算方法的再讨论.南京气象学院报,28(4):516-521.
    李国平.2002.青藏高原动力气象学.北京:气象出版社,271pp.
    刘晓冉,李国平.2006.青藏高原低涡研究的回顾与展望.干旱气象,24(1):60-66.
    王炳忠,莫月琴,杨云.2008.现代气象辐射测量技术.北京:气象出版社,177pp.
    王跃思,辛金元,李占清等.2006.中国地区大气气溶胶光学厚度与Angstrom参数联网观测(2004-08~2004-12).环境科学,27(9):1703-1711.
    翁笃鸣.1997.中国辐射气候.北京:气象出版社,363pp.
    徐祥德,周明煜,陈家宜等.2001.青藏高原地-气过程动力、热力结构综合物理图像.中国科学(D辑),31(5):428–440.
    颜宏,沈国权,毛耀顺等.2002.中华人民共和国气候图集.气象出版社,6–7.
    杨云,丁蕾,王冬.2010.总辐射表夜间零点偏移试验与分析.气象,36(1):100–103.
    叶笃正,高由禧.1979.青藏高原气象学.北京:科学出版社,89–101.
    张军华,斯召俊,毛节泰等.2003. GMS卫星遥感中国地区气溶胶光学厚度.大气科学,27(1):24–35.
    中国气象局.2003.地面气象观测规范.气象出版社,149pp.
    中国气象局.2007.中华人民共和国气象行业标准,地面气象观测规范第11部分:辐射观测,8–9.
    周秀骥,李维亮,陈隆勋等.2004.青藏高原地区大气臭氧变化的研究.气象学报,62(5):513–527.
    Angstrom A.1964. The parameters of atmospheric turbidity. Tellus,16:64–75.
    Antón M., M. López, A. Serrano, et al.2010. Diurnal variability of total ozone column over Madrid (Spain).Atmospheric environment,2010,44:2793–2798.
    Ba B. M., R. Frouin, S. E. Nicholson, et al.2001. Satellite-derived surface radiation budget over the Africancontinent. Part Ⅰ: estimation of downward solar irradiance and albedo. J. Climate,14,45-58.
    Batlles F. J., F. J. Olmo, J. Tovar et al.2000. Comparision of cloudless sky parameterization of solarirradiance at various Spanish midlatitude locations. Theor. Appl. Climatol.,66,81–93.
    Bauman J. J., P. B. Russell, M. A. Geller et al.2003. A stratospheric aerosol climatology from SAGE Ⅱ andCLAES measurements:2. Results and comparisons,1984-1999. J. Geophys. Res.,108, D13,4383,doi:10.1029/2002JD02993.
    Chou M. D., Zhao W. Z.1997. Estimation and model validation of surface solar radiation and cloud radiativeforcing using TOGA COARE measurements. J. Climate,10:610–620
    Dutton E. G., J. J. Michalsky, T. Stoffel et al.2001. Measurement of broadband diffuse solar irradiance usingcurrent commerical instrumental with a correction for thermal offset errors. J. Atmos. Oceanic Technol.,18:297–313.
    Forster P., V. Ramaswamy, P. Artaxo, et al.2007. Changes in atmospheric constituents and in radiativeforcing. in: Climate Change2007: The Physical Science Basis. Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge UniversityPress, Cambridge, United Kingdom and New York, NY, USA.
    Gao B. C., P. Yang, G. Guo, et al.2003. Measurements of water vapor and high clouds over the TibetanPlateau with the Terra MODIS Instrument. IEEE Transactions on Geoscience and Remote Sensing,41(4):895-900.
    Gautier C., M. Landsfeld.1997. Surface solar radiation flux and cloud radiative forcing for the atmosphericradiation measurement (ARM) Southern Great Plains (SGP): a satellite, surface observations, andradiative transfer model study. J. Atmos. Sci.,54(10):1289-1307.
    Haeffelin M. P., B. C. Dominguez, Rutledge K, et al.2001. Improved measurement of the diffuse and globalsolar irradiances at the surface of the earth. Eleventh ARM science term meeting proceedings, Atlana,Georgia,19–23.
    Houghton J. T., Y. Ding., D. J. Griggs, et al.2001. IPCC Third Assessment Report: Climate Changes2001(Eds.) Cambridge University Press, UK,94pp.
    Lester A., D. R. Myers.2006. A method for improving global pyranometer measurements by modelingresponsivity functions. Solar Energy,80:322–331.
    Li L., R. H. Zhang, M. Wen.2011. Diagnostic analysis of the evolution mechanism for a vortex over theTibtean Plateau in June2008. Adv. Atmos. Sci., doi:10.1007/s00376-010-0027-y,28(4):797–808.
    Li Z., Leighton H. G.1993. Global climatologies of solar radiation budgets at the surface and in theatmosphere from5years of ERBE data. J. Geophys. Res.,98,4919-4930.
    Li Z., Charlock T., Whitlock C.1995. Assessment of the global monthly mean surface insolation estimatedfrom satellite measurements using global energy balance archive data. J. Climate,8,315-328.
    Li Z., K. H. Lee, Y. Wang, et al.2010. First observation-based estimates of cloud-free aerosol radiativeforcing across China. J. Geophys. Res.,115,D00K18, doi:10.1029/2009JD013306.
    Liu Y., W. L. Li, X. J. Zhou, et al.2003. Mechanism of formation of the ozone valley over the TibetanPlateau in summer—transport and chemical process of ozone. Adv. Atmos. Sci.,20(1),103-109.
    Liu J., Z. Sun, H. Liang, et al.2005. Precipitable water vapor on the Tibetan Plateau estimated by GPS,water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on theradiation budget. J. Geophys. Res,110(10), D17106,doi:10,1029/2004JD005715.
    Liu J., H. Liang, Z. Sun, et al.2006. Validation of the MODIS precipitable water vapor product usingmeasurements from GPS on the Tibetan Plateau. J. Geophys. Res.,111,D14103, doi:10.1029/2005JD007028.
    Luo S. W., He M. L., Liu X. D.1994. Study on the vortex of the Qinghai-Xizang (Tibet) Plateau in summer.Science in China (Series B),37(5):601–612.
    Manners J., J. C. Thelen, J. Petch, P. Hill, et al.2009. Two fast radiative transfer methods to improve thetemporal sampling of clouds in numerical weather prediction and climate models. Q. J. R. Meteorol. Soc.135,457–468.
    Masuda K., H. G. Leighton, Z. Li.1995. A new parameterization for the determination of solar flux absorbedat the surface from satellite measurements. J. Climate,8,1615–1629.
    Matsueda H., T. Machida, Y. Sawa, et al.2008. Evaluation of atmospheric CO2measurements from new airsampling of JAL airliner observations. Papers in Meteorology and Geophysics,59,1–17.
    Mcarthur L. J. B.2005. Operations manual (Version2.1), WCRP/BSRN,121,9–12.
    Morcrette J. J., G. Mozdzynski, M. Leutbecher.2008. Reduced radiation grid for the ECMWF integratedforecasting system. Mon. Weather Rev.136:4760–4772, DOI:10.1175/2008MWR2590.1.
    Oliphant A. J., R. A.Spronken-Smith, A. P. Sturman, et al.2003. Spatial variability of surface radiationfluxes in mountainous region. J. Appl. Meteorol.,42:113-128.
    Philipona R.2002. Underestimation of solar global and diffuse radiation measured at Earth’s surface. J.Geophys. Res.,107, D22, doi:10.1029/2002JD002396.
    Poulsen C. A., R. Siddans, G. E. Thomas, et al.2009. ESA GlobAerosol: Final validation andintercomparison report, Version3.2,87pp. http://www.globaerosol.info/project_description/publica-tions.html.
    Randel W. J., M. Park, L. Emmons, et al.2010. Asian monsoon transport of pollution to the stratosphere.Science,328:611–613.
    Reda I., J. Hickey, C. Long, et al.2005. Using a blackbody to calculate net longwave responsivity ofshortwave solar pyranometers to correct for their thermal offset error during outdoor calibration using thecomponent sum method. J. Atmos. Oceanic Technol.,22,1531–1540.
    Ramanathan V., R. E. Dickinson.1979. The role of stratospheric ozone in the zonal and seasonal radiativeenergy balance of the earth-troposphere system. J. Atmos. Sci.,36:1084–1104.
    Shazly S. M. E.,1996. Estimation of hourly and daily global solar radiation at clear days using an approachbased on modified version of Gaussian distribution. Adv. atmos. sci.,13(3),349–358.
    Sun Z., Y. Li, X. Zeng, et al.2007. Parametrisation of solar radiation at the surface under cloudlessconditions and its validation against observations. Aust. Met. Mag.,56:8-89.
    Sun Z.2011a. Improving transmission calculations for Edwards-Slingo radiation scheme using a correlatedk-distribution method. Q. J. R. Meteorol. Soc.,137,2138–2148, DOI:10.1002/qj.880.
    Sun Z., X. Zeng, J. Liu.2011b. Parameterization of instantaneous global and net solar irradiance at thesurface. Part Ⅰ: Clear-sky conditions, submitted to J. Geophys. Res.
    Takagi T., F. Kimura, S. Kono.2000. Diurnal variation of GPS precipitable water at Lhasa in premonsoonand monsoon periods. J. Meteorol. Soc. Jpn.,78:175-180.
    Tarasova T. A., B. A. Fomin,2000. Solar radiation absorption due to water vapor advanced broadbandparameterizations. J. Appl. Meteorol.,39,1947–1951.
    Veefkind J. P., J. F. de Haan, E. J. Brinksma, et al.2006. Total ozone from the Ozone Monitoring Instrument(OMI) using the DOAS technique, IEEE Trans. Geosci. Remote Sens.,44(5),1239–1244, doi:10.1109/TGRS.2006.871204.
    Wang B., I. Oranski.1987. Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau.Mon. Wea. Rev.,115:1370–1393.
    Wang B.1987. The development mechanism for Tibetan Plateau warm vortices. Atmos. Sci.,44:2978–2994.
    Wang K., J. Liu, X. Zhou, et al.2004. Validation of the MODIS global land surface albedo product usingground measurements in a semidesert region on the Tibetan Plateau. J. Geophys. Res.,109, D05107,doi:10.1029/2003JD004229.
    Wang K., R. E. Dickinson and S. Liang,2009. Clear sky visibility has decreased over land globally from1973to2007. Science,323,1468-1470.
    WMO.1996. Guide to meteorological instruments and methods of observation, sixth edition, Geneva,Switzerland.
    Xu X. D., C. G. Lu, X. H. Shi, et al.2008. World water tower: an atmosphere perspective. Geophys. Res.Lett.,35, L20815, doi:10.1029/2008GL035867.
    Ye D. Z., G. X. Wu.1998. The role of the heat source of the Tibetan Plateau in the general circulation.Meteor. Atmos. Phys.,67,181–198.
    Zhang R. H., S. W. Zhou.2009. Air temperature changes over the Tibetan Plateau and other regions in thesame latitudes and the role of ozone depletion. Acta Meteorologica Sinca,23(3),290–299
    Zhang Y., Z. Li, A. Macke.2002. Retrieval of surface solar radiation budget under ice cloud sky: uncertaintyanalysis and parametrization. J. Atmos. Sci.,59,2951–2965.
    Zhao P., L. X. Chen.2000. Calculation of solar albedo and radiation equilibrium over the Qinghai-XizangPlateau and analysis of their climate features. Adv. Atmos. Sci.,17(1),140–156.
    程兴宏,张小玲,郑向东等.2009. PSP总日射表热偏移特征及其测量总辐射误差分析.太阳能学报,
    30(1):19–26.
    李伟,李锋,赵志强等.2009. L波段气象探测系统建设技术评估报告.北京:气象出版社,95pp.
    吴绍洪,尹云鹤,郑度等.2003.青藏高原近30年气候变化趋势.地理学报,60(1):3–11.
    Bian J. C., H. B. Chen, V. Holger, et al.2011. Intercomparison of humidity and temperature sensors: GTS1,Vaisala RS80, and CFH. Advances in Atmospheric Sciences,28(1):139–146.
    Haan S. D.2006. Measuring atmospheric stability with GPS. J. Appl. Meteorol. Clim.,45:467–475.
    Held I. M., B. J. Soden.2006. Robust responses of the hydrological cycle to global warming. J. Climate,19:
    5686–5689.
    Holton J. R.1992. An Introduction to Dynamic Meteorology. Academic Press,511pp.
    Lester A., D. R. Myers.2006. A method for improving global pyranometer measurements by modelingresponsivity functions. Solar Energy,80:322–331.
    Li F.2006. New developments with upper-air sounding in China. Instruments and Observing MethodsReport No.94, WMO/TD No.1354. Geneva: WMO.
    Li L., R. H. Zhang, M. Wen.2011. Diagnostic analysis of the evolution mechanism for a vortex over theTibtean Plateau in June2008. Adv. Atmos. Sci., doi:10.1007/s00376-010-0027-y,28(4):797–808.
    Liu J., Sun Z., Liang H., et al.2005. Precipitable water vapor on the Tibetan Plateau estimated by GPS,water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on theradiation budget. J. Geophys. Res,110(10), D17106,doi:10,1029/2004JD005715.
    Liu G., P. Zhao, R. Wu, et al.2012. Potential flaws of interdecadal changes over eastern China around theearly1990s in the NCEP-NCAR reanalysis. J. Geophys. Res, doi:10.1029/2011JD016327.
    Luo S. W., He M. L., Liu X. D.1994. Study on the vortex of the Qinghai-Xizang (Tibet) Plateau in summer.Science in China (Series B),37(5):601–612.
    Mcarthur L. J. B.2005. Operations manual (Version2.1), WCRP/BSRN,121,9–12.
    Peters O., J. D. Neelin.2006. Critical phenomena in atmospheric precipitation. Nat. Phys.,2,393–396.
    Reda I., J. Hickey, C. Long, et al.2005. Using a blackbody to calculate net longwave responsivity ofshortwave solar pyranometers to correct for their thermal offset error during outdoor calibration using thecomponent sum method. J. Atmos. Oceanic Technol.,22,1531–1540.
    Salby M. L.1996. Fundamentals of Atmospheric Physics. Academic Press,627pp.
    Stickler A., S. Br nnimann.2011. Significant bias of the NCEP/NCAR and twentieth-century reanalysisrelative to pilot balloon observations over the West African Monsoon region (1940–1957). Q. J. R.Meteorol.,137:1400–1416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700