西南印度洋超慢速扩张脊49.6°E热液区多金属硫化物成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择西南印度洋脊49.6oE热液区为研究区域,对该热液区产出的矿石样品开展了矿物学、地球化学等方面研究,以了解超慢速扩张脊热液多金属硫化物成矿过程及成矿机制。研究显示,区内矿石存在硫化物和氧化物两种矿石自然类型。根据矿物组合,硫化物矿石可进一步划分出两种类型:其一为富Zn硫化物矿石,其二为富Fe硫化物矿石。富Zn硫化物矿石矿物组合主要为闪锌矿-黄铁矿-黄铜矿,闪锌矿集合体内普遍发育溶蚀孔洞构造及同质增生边结构;富Fe硫化物矿石矿物组合主要为黄铁矿-白铁矿-等轴古巴矿,具典型的等轴古巴矿固溶体分解结构,指示高温沉淀特征。两种硫化物矿石的矿物组合与结构构造特征指示该热液区硫化物成矿至少经历了两个阶段。第一阶段为中-低温富Zn硫化物沉积成矿阶段,第二阶段为高温富Fe硫化物沉积成矿阶段,成矿温度由低到高的转化说明热液体系存在幕式排泄特征。富Zn硫化物中可见自然金矿物产出。根据自然金主要赋存于闪锌矿中相对高Fe区域的特点,推测Au在热液流体中主要以Au(HS)0形式迁移。Au-As、Au-Pb的关系进一步指示该区至少存在两幕热液活动叠加改造过程。硫化物矿石的铂族元素总量较其他典型热液区低,且其球粒陨石配分模式与玄武岩相似,均无明显Rh异常,可能指示铂族元素主要来自流体对基底岩石的淋滤,无明显岩浆热液物源的加入。S、Pb、Sr同位素研究显示,硫化物成矿物质主要来自热液流体对基底玄武岩的淋滤。结合区域地质背景资料,认为西南印度洋脊49.6oE热液区的热液活动可能受底部岩浆热源控制。
To understand the hydrothermal mineralization along ultra-slow spreadingridges, the first discovered acitive hydrothermal field, Southwest Indian Ridge (SWIR)49.6oE field, was selected to be investigated. Mineralogical, geochemical, and isotopicmethods were carried out to identify the characteristic and precipitate mechanism ofsulfides and oxides from this field. The results show that the sulfides in this field canbe classified into two distinct types according to the mineral assemblages, which areZn-rich ore and Fe-rich ore. The Zn-rich type ore is dominated bysphalerite-pyrite-chalcopyrie assemblages and the Fe-rich type is bypyrite-marcasite-isocubanite. Two mineralization stages were identified by thetextures and chemistry of the sulfide ores. Stage I is associated with relatively lowtemperature Zn-rich sulfide assemblages and stage II is to higher ore-formingtemperature Fe-rich sulfides. The transform of temperature from lower to higherreflects that episode emissions of hydrothermal fluids are there in this field. The firstoccurrence of native gold in sulfide from ultra-slow spreading ridge was reported inthis study. Based on the association of gold and sphalerite iron content, transportmechanism of gold in the fluid was qualified as Au(HS)0. The reworking process inSWIR49.6oE hydrothermal field was documented by the relationship between Au andAs, Pb. The low content of PGE and no Rh anomaly indicate that the magmatic fluidinput into the hydrothermal system was negligible. The sulfur isotope and Pb-Srisotope reveal that the metals in sulfide were derived mainly from substrate rock.Combined with the geological setting of Southwest Indian Ridge, it is can be inferredthat the hydrothermal activity in SWIR49.6oE field is controlled by magma supply asother fast spreading East Pacific Rise and slow spreading Mid-Atlantic Ridges.
引文
1.吴世迎.世界海底热液硫化物资源.北京:海洋出版社,2000.1-290
    2. Hannington, M.D., C.E.J. de Ronde, and S. Petersen.Sea-floor tectonics and submarinehydrothermal systems.100th Anniversary Volume of Economic Geology: Littleton, Colorado,Society of Economic Geologists,2005: p.111–141
    3.邓希光.大洋中脊热液硫化物矿床分布及矿物组成.南海地质研究,2007(001): p.54-64
    4. Rona, P.A.Hydrothermal mineralization at oceanic ridges.Canadian Mineralogist,1988.26(3): p.431
    5. Cherkashov, G.et al, Seafloor Massive Sulfides from the Northern Equatorial Mid-AtlanticRidge: new discoveries and perspectives (abtract), in The First China-Russia Symposium onMarine Science.2009.
    6.侯增谦等.现代与古代海底热水成矿作用.北京:地质出版社,2003
    7. Dick, H.J.B., J. Lin, and H. Schouten.An ultraslow-spreading class of ocean ridge.Nature,2003.426: p.405-412
    8. Rona, P.A.et al.Black smoker, massive sulfides and vent biota at the Mid-Atlantic Ridge: Nature,v.321.1986
    9. Baker, E.T., Y.J. Chen, and J. Phipps Morgan.The relationship between near-axis hydrothermalcooling and the spreading rate of mid-ocean ridges.Earth and Planetary Science Letters,1996.142(1-2): p.137-145
    10. Muench, U., P. Halbach, and H. Fujimoto.Sea-floor hydrothermal mineralization from the Mt.Jourdanne, Southwest Indian Ridge.JAMSTEC Journal of Deep Sea Research,2000: p.125-132
    11. Banerjee, N.R. Discovery of peridotite-hosted hydrothermal deposits along theultraslow-speading Southwest Indian Ridge.2001.
    12. Swallow, J.C. and J. Crease.Hot salty water at the bottom of the Red Sea.Nature,1965.205: p.165-166
    13. Miller, A.R.et al.Hot brines and recent iron deposits in deeps of the Red Sea.Geochimica etcosmochimica acta,1966.30: p.341-350
    14. Hunt, J.M.et al.Red Sea: Detailed Survey of Hot-Brine Areas.Science,1967.156(3774): p.514
    15. Scott, M.R.et al.Rapidly accumulating manganese deposit from the median valley of theMid-Atlantic Ridge.Geophysical Research Letters,1974.1: p.355-358
    16. Corliss, J.B.et al.Submarine thermal springs on the Galapagos Rift.Science,1979.203(4385): p.1073–1083
    17. Francheteau, H.N.et al.Massive deep-sea sulfide ore deposits discovered by submersible on theEast Pacific Rise: Project RITA,21°N.Nature,1979.277: p.523–528
    18.翟世奎,海底岩石圈内流体作用的研究[A].1994.
    19. Hekinian, R.et al.Intense hydrothermal activity at the axis of the east pacific rise near13°N:Sumbersible witnesses the growth of sulfide chimney.Marine Geophysical Researches,1983.6(1): p.1-14
    20. Tivey, M.K. and J.R. Delaney.Growth of large sulfide structures on the Endeavour Segment ofthe Juan de Fuca Ridge.Earth and Planetary Science Letters,1986.77: p.303-317
    21. McConachy, T.F.et al.Geologic form and setting of a hydrothermal vent field at lat10°56′N,East Pacific Rise: A detailed study using Angus and Alvin.Geology,1986.14(4): p.295
    22. Trocine, R.P. and J.H. Trefry.Distribution and chemistry of suspended particles from an activehydrothermal vent site on the Mid-Atlantic Ridge at26°N.Earth and Planetary Science Letters,1988.88: p.1-15
    23. Thompson, G.et al.Active vents and massive sulfides at26°N (TAG) and23°N (Snakepit) on theMid-Atlantic Ridge.Canadian Mineralogist,1988.26(3): p.697
    24. German, C.R.et al.Hydrothermal activity along the southwest Indian ridge.Nature,1998.395(6701): p.490-493
    25. Münch, U.et al.Relict hydrothermal events along the super-slow Southwest Indian spreadingridge near63°56′E—Mineralogy, chemistry and chronology of sulfide samples.Chem. Geol,2001.177: p.341–349
    26. Fujimoto, H.et al.First submersible investigations of mid-ocean ridges in the IndianOcean.InterRidge News,1999.8(1): p.22–24
    27. Baker, E.T.et al.Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel andSouthwest Indian Ridges.2004
    28. Bach, W.et al.Discovery of ancient and active hydrothermal systems along the ultra-slowspreading Southwest Indian Ridge10°–16°E.Geochem. Geophys. Geosyst,2002.3(7): p.1044
    29. De Carlo, E.H., G.M. McMurtry, and H.W. Yeh.Geochemistry of hydrothermal deposits fromLoihi submarine volcano, Hawaii.Earth and Planetary Science Letters,1983.66: p.438-449
    30. Nojiri, Y.et al.Hydrothermal plumes along the North Fiji Basin spreading axis.Nature,1989.342:p.667-670
    31. Fouquet, Y.et al.Hydrothermal activity and metallogenesis in the Lau back-arc basin.1991.349:p.778-781
    32. Fouquet, Y.et al.Hydrothermal activity in the Lau back-arc basin: Sulfides and waterchemistry.Geology,1991.19(4): p.303
    33. Gamo, T.et al.Hydrothermal plumes in the eastern Manus Basin, Bismarck Sea: CH4, Mn, Aland pH anomalies.Deep Sea Research Part I: Oceanographic Research Papers,1993.40(11-12):p.2335-2349
    34. German, C.R. and K.L. Von Damm.Hydrothermal Processes.Treatise on Geochemistry,2003.6:p.181–222
    35. Tivey, M.K.Generation of Seafloor Hydrothermal Vent Fluids and Associated MineralDeposits.OCEANOGRAPHY-WASHINGTON DC-OCEANOGRAPHY SOCIETY-,2007.20(1): p.50
    36. Humphris, S.E.et al. Seafloor hydrothermal systems. American Geophysical Union,1995
    37. Bischoff, J.L. and W.E. Seyfried.Hydrothermal chemistry of seawater from25to350C.American Journal of Science,1978.278(6): p.838-860
    38. Shanks, W.C.Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermaldeposits, hydrothermal alteration, and microbial processes.Reviews in Mineralogy andGeochemistry,2001.43(1): p.469
    39. Butterfield, D.A., W.E. Seyfried Jr, and M.D. Lilley.Composition and evolution of hydrothermalfluids.Energy and Mass Transfer in Marine Hydrothermal Systems,2003: p.123-162
    40. Kelley, D.S., K.M. Gillis, and G. Thompson.Fluid evolution in submarine magma-hydrothermalsystems at the Mid-Atlantic Ridge.Journal of Geophysical Research-Solid Earth.98(B11)
    41. Bischoff, J.L. and R.J. Rosenbauer.Phase separation in seafloor geothermal systems; anexperimental study of the effects on metal transport.American Journal of Science,1987.287(10):p.953
    42. Oosting, S.E. and K.L. Von Damm.Bromide/chloride fractionation in seafloor hydrothermalfluids from9–10°N East Pacific Rise.Earth and Planetary Science Letters,1996.144(1-2): p.133-145
    43. Butterfield, D.A.et al.Seafloor eruptions and evolution of hydrothermal fluid chemistry [anddiscussion].Philosophical Transactions: Mathematical, Physical and Engineering Sciences,1997.355(1723): p.369-386
    44. Berndt, M.E. and W.E. Seyfried.Calibration of Br/Cl fractionation during subcritical phaseseparation of seawater: Possible halite at9to10°N East Pacific Rise.Geochimica etCosmochimica Acta,1997.61(14): p.2849-2854
    45. Von Damm, K.L.Chemistry of hydrothermal vent fluids from9°–10°N, East Pacific Rise:“Timezero,” the immediate posteruptive period.Journal of Geophysical Research-Solid Earth.105(B5)
    46. Bray, A.M. and K.L. Von Damm.The role of phase separation and water-rock reactions incontrolling the boron content of mid-ocean ridge hydrothermal vent fluids.Geochim.Cosmochim. Acta,2002
    47. Lupton, J.et al.Gas chemistry of hydrothermal fluids along the East Pacific Rise,5S to32S.EosTrans. AGU,1999.80: p.46
    48. Holland, M.E. and J.A. Baross.Limits of life in hydrothermal systems.Energy and Mass Transferin Marine Hydrothermal Systems,2003: p.235-50
    49.侯增谦,艾永德.岩浆流体对冲绳海槽海底成矿热水系统的可能贡献.地质学报,1999.73(001): p.57-65
    50. Ohmoto, H.Formation of volcanogenic massive sulfide deposits: The Kuroko perspective.OreGeology Reviews,1995.10(3): p.135-178
    51. Hedenquist, J.W. and J.B. Lowenstern.The role of magmas in the formation of hydrothermal oredeposits.Nature,1994.370(6490): p.519-527
    52. Sakai, H.et al.Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawatrough backarc basin.Science,1990.248(4959): p.1093
    53. Yang, K. and S.D. Scott.Possible contribution of a metal-rich magmatic fluid to a sea-floorhydrothermal system.1996
    54. Yang, K.Magmatic fluids and mineralization—Observations of subaerial volcanic-hydrothermalprocesses, black smokers on modern sea floor and melt inclusion studies.Earth Sci. Frontiers(China Univ. of Geosciences, Beijing),1998.5: p.7–38
    55. Yang, K. and S.D. Scott.Magmatic degassing of volatiles and ore metals into a hydrothermalsystem on the modern sea floor of the eastern Manus back-arc basin, western Pacific.EconomicGeology,2002.97(5): p.1079
    56. Lécuyer, C.et al.Phase separation and fluid mixing in subseafloor back arc hydrothermalsystems-A microthermometric and oxygen isotope study of fluid inclusions in the barite-sulfidechimneys of the Lau basin.Journal of Geophysical Research,1999.104: p.17
    57. Urabe, T.Aluminous granite as a source magma of hydrothermal ore deposits; an experimentalstudy.Economic Geology,1985.80(1): p.148
    58.侯增谦,韩发,夏林圻,现代与古代海底热水成矿作用.2003,北京:地质出版社.
    59.曾志刚and翟世奎.现代海底热液沉积物的硫同位素组成及其地质意义.海洋学报,2001.23(003): p.48-56
    60. Herzig, P.M., M.D. Hannington, and A. Arribas Jr.Sulfur isotopic composition of hydrothermalprecipitates from the Lau back-arc: implications for magmatic contributions to seafloorhydrothermal systems.Mineralium Deposita,1998.33(3): p.226-237
    61.曾志刚,秦蕴珊,翟世奎.现代海底热液多金属硫化物的成矿物源:同位素证据.矿物岩石地球化学通报,2000.19(004): p.428-430
    62. Large, R.R.Australian volcanic-hosted massive sulfide deposits; features, styles, and geneticmodels.Economic Geology,1992.87(3): p.471
    63. Snow, J.E. and H.N. Edmonds.Ultraslow-Spreading Ridges: Rapid ParadigmChanges.OCEANOGRAPHY-WASHINGTON DC-OCEANOGRAPHY SOCIETY-,2007.20(1): p.90
    64. Georgen, J.E.et al.Low3He/4He ratios in basalt glasses from the western Southwest IndianRidge (10°-24°E).Earth and Planetary Science Letters,2003.206(3-4): p.509-528
    65. Georgen, J.E., J. Lin, and H.J.B. Dick.Evidence from gravity anomalies for interactions of theMarion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets.Earthand Planetary Science Letters,2001.187(3-4): p.283-300
    66. Grindlay, N.R.et al.Southwest Indian Ridge15oE–35oE: A geophysical investigation of anultra-slow spreading mid-ocean ridge system.InterRidge News,1996.5(2): p.15–17
    67. Michael, P.J.et al.Magmatic and amagmatic seafloor generation at the ultraslow-spreadingGakkel ridge.Arctic Ocean. Nature,2003.423: p.956-961
    68. Standish, J., H. Dick, and A.P. le Roex. The influence of ridge geometry on mantle melting:Basalt geochemistry along the SWIR (9-25E).2002.
    69. Mahoney, J.et al.Southwestern limits of Indian Ocean Ridge mantle and the origin of low206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the Central Southwest Indian Ridge(17–50E).Journal of Geophysical Research,1992.97(B13): p.19771
    70. Roex, A.P., H.J.B. Dick, and R.T. Watkins.Petrogenesis of anomalous K-enriched MORB fromthe Southwest Indian Ridge:11°53′E to14°38′E.Contributions to Mineralogy and Petrology,
    1992.110(2): p.253-268
    71. Meyzen, C.M.et al.New insights into the origin and distribution of the DUPAL isotope anomalyin the Indian Ocean mantle from MORB of the Southwest Indian Ridge.GeochemistryGeophysics Geosystems,2005.6(11): p. Q11K11
    72. Font, L.et al.Variations in melt productivity and melting conditions along SWIR (70°E-49°E):evidence from olivine-hosted and plagioclase-hosted melt inclusions.Journal of Petrology,2007.48(8): p.1471-1494
    73. Robinson, C.J.et al.Restricted melting under the very slow-spreading Southwest IndianRidge.Geological Society London Special Publications,1996.118(1): p.131
    74. Nakamura, K.et al.Geochemistry of hydrothermally altered basaltic rocks from the SouthwestIndian Ridge near the Rodriguez Triple Junction.Marine Geology,2007.239(3-4): p.125-141
    75.李小虎等.慢速-超慢速扩张西南印度洋中脊研究进展.地球科学进展,2008.23(6): p.595-603
    76. Halbach Sr, P.E. INDIAN OCEAN HYDROTHERMAL MINERAL DEPOSITS: CU-RICHAND EPITHERMAL AU-/AG-ENRICHED OCCURRENCES. in Denver Annual Meeting2002.Colorado Convention Center: A112: The Geological Society of America
    77.彭晓彤,周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史.中国科学: D辑,2005.35(008): p.720-728
    78. Lafitte, M. and R. Maury.Variations de stoechiométrie de chalcopyrites naturelles.Bull. Mineral,
    1982.105: p.57–61
    79. Mozgova, N.N.et al.Mineral assemblages as indicators of the maturity of oceanic hydrothermalsulfide mounds.Lithology and Mineral Resources,2005.40(4): p.293-319
    80. Caye, R.et al.Isocubanite, a new definition of the cubic polymorph of cubaniteCuFe2S3.Mineralogical Magazine,1988.52(4): p.509-514
    81. Sugaki, A.et al.Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditionsat350degrees C and300degrees C.Economic Geology,1975.70(4): p.806
    82. Mozgova, N.N.et al.Composition Field and Specific Features of IsocubaniteIsomorphism.Geochem. Int,1995.33: p.533–552
    83. Ramdohr, P.The ore minerals and their intergrowths.International Series in Earth Sciences,1980
    84. Wiggins, L.B. and J.R. Craig.Reconnaissance of the Cu-Fe-Zn-S system; sphalerite phaserelationships.Economic Geology,1980.75(5): p.742
    85. Kojima, S. and A. Sugaki.Phase relations in the Cu-Fe-Zn-S system between500and300Cunder hydrothermal conditions.Econ. Geol,1985.80: p.158–171
    86. Kojima, S. and A. Sugaki.An experimental study on chalcopyritization of sphalerite induced byhydrothermally metasomatic reactions.Mining Geology,1987.37: p.373-380
    87. Barton, P.B. and P.M. Bethke.Chalcopyrite disease in sphalerite; pathology andepidemiology.American Mineralogist,1987.72(5-6): p.451
    88. Yund, R.A. and G. Kullerud.Thermal Stability of Assemblages in the Cu--Fe--S System.Journalof Petrology,1966.7(3): p.454
    89.顾连兴,R. McClay.块状硫化物矿石中硫化物的压溶和增生及成矿意义——以加拿大西部矿床为例.矿床地质,2001.20(004): p.323-330
    90.顾连兴等.硫化物矿石若干结构及相关成矿理论研究进展.自然科学进展,2006.16(002): p.146-159
    91. Pantó, G. and G. Pantó.Electron-probe check of fe-distribution in sphalerite grains of the Nagybrzs ny hydrothermal ore deposits, Hungary.Mineralium Deposita,1972.7(2): p.126-140
    92. Scott, S.D.Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphicenvironments.Mineral. Mag,1983.47: p.427-435
    93.宋谢炎,张正阶.铁闪锌矿中铁占位的物化条件及机制.矿物学报,1999.19(002): p.166-174
    94.潘兆橹.结晶学及矿物学,下册.地质出版社,1994
    95. Hekinian, R.et al.Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplatevolcanoes and East Pacific Rise axial and off-axial regions.Economic Geology,1993.88(8): p.2099
    96. Kimura, M.et al.Active hydrothermal mounds in the Okinawa Trough backarc basin,Japan.Tectonophysics,1988.145(3-4): p.319-324
    97. Ellis, G.et al.Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the CoriolisTroughs, Vanuatu backarc, southwestern Pacific.Marine Geology,1998.145(1): p.1-21
    98.曾志刚等.东太平洋海隆13°N附近Fe-氧羟化物的形成:矿物和地球化学证据.中国科学:D辑,2007.37(010): p.1349-1357
    99. Hannington, M.et al.Comparative mineralogy and geochemistry of gold-bearing sulfide depositson the mid-ocean ridges.Marine geology,1991.101(1-4): p.217-248
    100. Pichler, T. and J. Veizer.Precipitation of Fe (III) oxyhydroxide deposits from shallow-waterhydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea.Chemical geology,1999.162(1): p.15-31
    101. Usui, A.et al.Structural stability of marine10manganates from the Ogasawara (Bonin) Arc:Implication for low-temperature hydrothermal activity.Marine Geology,1989.86(1): p.41-56
    102. Bostr m, K. and L. Widenfalk.The origin of iron-rich muds at the Kameni islands, Santorini,Greece.Chemical Geology,1984.42(1-4): p.203-218
    103. Varnavas, S.P. and D.S. Cronan.Arsenic, antimony and bismuth in sediments and waters fromthe Santorini hydrothermal field, Greece.Chemical geology,1988.67(3-4): p.295-305
    104. Boynton, W.V.Cosmochemistry of the rare earth elements: meteorite studies.Rare earth elementgeochemistry,1984.2: p.63–114
    105.丁振举,姚书振.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展,2000.15(003): p.307-312
    106.丁振举等.碧口地块古海底热水喷流沉积及其成矿作用地球化学示踪.北京:地质出版社,2003
    107. Michard, A.et al.Rare-earth elements and uranium in high-temperature solutions from EastPacific Rise hydrothermal vent field (13°N).1983
    108. Campbell, A.C.et al.Chemistry of hot springs on the Mid-Atlantic Ridge.1988
    109. Klinkhammer, G.P.et al.Geochemical implications of rare earth element patterns in hydrothermalfluids from mid-ocean ridges.Geochimica et Cosmochimica Acta,1994.58(23): p.5105-5113
    110. Douville, E.et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermalsystems.Geochimica et cosmochimica acta,1999.63(5): p.627-643
    111. Mills, R.A. and H. Elderfield.Rare earth element geochemistry of hydrothermal deposits fromthe active TAG mound,26°N Mid-Atlantic Ridge.Geochimica et cosmochimica acta,1995.59(17): p.3511-3524
    112. Cocherie, A., J.Y. Calvez, and E. Oudin-Dunlop.Hydrothermal activity as recorded by Red Seasediments: Sr-Nd isotopes and REE signatures.Marine Geology,1994.118(3-4): p.291-302
    113. Bau, M.Rare-earth element mobility during hydrothermal and metamorphic fluid-rockinteraction and the significance of the oxidation state of europium.Chemical Geology,1991.93(3-4): p.219-230
    114.Morgan, J.W. and G.A. Wandless.Rare earth element distribution in some hydrothermal minerals:evidence for crystallographic control.Geochimica et Cosmochimica Acta,1980.44(7): p.973-980
    115. Guichard, F.et al.Rare earths in barites: distribution and effects on aqueouspartitioning.Geochimica et Cosmochimica Acta,1979.43(7): p.983-997
    116. Alt, J.C.The chemistry and sulfur isotope composition of massive sulfide and associateddeposits on Green Seamount, Eastern Pacific.Economic Geology,1988.83(5): p.1026
    117. Barrett, T.J., I. Jarvis, and K.E. Jarvis.Rare earth element geochemistry of massivesulfides-sulfates and gossans on the Southern Explorer Ridge.Geology,1990.18(7): p.583
    118.安伟.现代海底热液活动成矿作用特征及控制因素.博士论文,2006
    119. Sverjensky, D.A.Europium redox equilibria in aqueous solution.Earth and Planetary ScienceLetters,1984.67(1): p.70-78
    120. Lisitsyn, A.P.et al.Metalliferous sediments and their genesis.Geological-Geophysical Researchesin the South-Eastern part of the Pacific Ocean. Oceanological Res,1976.29: p.289-379
    121. Mitra, A., H. Elderfield, and M.J. Greaves.Rare earth elements in submarine hydrothermal fluidsand plumes from the Mid-Atlantic Ridge.Marine Chemistry,1994.46(3): p.217-235
    122. Borisov, A., H. Palme, and B. Spettel.Solubility of palladium in silicate melts: Implications forcore formation in the Earth.Geochimica et Cosmochimica Acta,1994.58(2): p.705-716
    123. Borisov, A. and H. Palme.The solubility of iridium in silicate melts: new data from experimentswith Ir10Pt90alloys.Geochimica et Cosmochimica Acta,1995.59(3): p.481-485
    124.储雪蕾,孙敏.化学地球动力学中的铂族元素地球化学.岩石学报,2001.17(001): p.112-122
    125. Crocket, J.H.Noble metals in seafloor hydrothermal mineralization from the Juan de Fuca andmid-Atlantic ridges: a fractionation of gold from platinum metals in hydrothermalfluids.Canadian Mineralogist,1990.28(3): p.639
    126. Pasava, J.et al.PGE distribution in massive sulfides from the P ACMANUS hydrothermal field,eastern Manus basin, Papua New Guinea: implications for PGE enrichment in some ancientvolcanogenic massive sulfide deposits.Mineralium Deposita,2004.39(7): p.784-792
    127. Torokhov, M. and L. Lazareva.PGM AND PGE IN LOGATCHEV-2ORE FIELD, MARInterRidge News,2003.12(2): p.33
    128. Pasava, J., A. Vymazalová, and S. Petersen.PGE fractionation in seafloor hydrothermal systems:examples from mafic-and ultramafic-hosted hydrothermal fields at the slow-spreadingMid-Atlantic Ridge.Mineralium Deposita,2007.42(4): p.423-431
    129. Crocket, J.H.Platinum-group element geochemistry of mafic and ultramafic rocks.The Geology,Geochemistry and Mineral Beneficiation of Platinum-Group Elements. Special Volume,2002.54: p.177–210
    130. Nozaki, Y.A fresh look at element distribution in the North Pacific Ocean.EOS Transactions,1997.78: p.221
    131. Wood, S.A.The aqueous geochemistry of the platinum-group elements with applications to oredeposits.The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-GroupElements, LJ Cabri (ed.), Canadian Institute of Mining and Metallurgy, Special,2002.54: p.955–982
    132. Wood, S.A., B.W. Mountain, and P. Pan.The aqueous geochemistry of platinum, palladium andgold; recent experimental constraints and a re-evaluation of theoretical predictions.CanadianMineralogist,1992.30(4): p.955
    133. Pasava, J.et al.PGE distribution in massive sulfides from the P ACMANUS hydrothermal field,eastern Manus basin, Papua New Guinea: implications for PGE enrichment in some ancientvolcanogenic massive sulfide deposits.Mineralium Deposita,2004.39(7): p.784-792
    134. Pasava, J., A. Vymazalová, and S. Petersen.PGE fractionation in seafloor hydrothermal systems:examples from mafic-and ultramafic-hosted hydrothermal fields at the slow-spreadingMid-Atlantic Ridge.Mineralium Deposita,2007.42(4): p.423-431
    135. Woodruff, L.G. and W.C. Shanks Iii.Sulfur isotope study of chimney minerals and vent fluidsfrom21oN, East Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfatereduction.J. geophys. Res,1988.93(B5): p.4562-4572
    136. Styrt, M.M.et al.The mineralogy and the isotopic composition of sulfur in hydrothermalsulfide/sulfate deposits on the East Pacific Rise,21oN latitude.Earth and Planetary ScienceLetters,1981.53(3): p.382-390
    137. Shanks, W. and W.E. Seyfried.Stable isotope studies of vent fluids and chimney minerals,southern Juan de Fuca Ridge-Sodium metasomatism and seawater sulfate reduction.Journal ofGeophysical Research,1987.92(B11)
    138. Ohmoto, H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.EconomicGeology,1972.67(5): p.551
    139. Ohmoto, H. and R.O. Rye.Isotope of sulfur and carbon.Geochemestry of Hydrothermal deposits,John Wiley&Sons,1979: p.509-567
    140. Ohmoto, H. and M.B. Goldhaber.Sulfur and carbon isotopes.Geochemistry of hydrothermal oredeposits,1997.3(1): p.517-611
    141. Rees, C.E., W.J. Jenkins, and J. Monster.The sulphur isotopic composition of ocean watersulphate.Geochimica et Cosmochimica Acta,1978.42(4): p.377-381
    142. Arnold, M. and S.M.F. Sheppard.East Pacific Rise at latitude21oN: isotopic composition andorigin of the hydrothermal sulphur.Earth and Planetary Science Letters,1981.56: p.148-156
    143. Hofmann, A.W.Chemical differentiation of the Earth: the relationship between mantle,continental crust, and oceanic crust.Earth and Planetary Science Letters,1988.90(3): p.297-314
    144. Allègre, C.J., S.R. Hart, and J.F. Minster.Chemical structure and evolution of the mantle andcontinents determined by inversion of Nd and Sr isotopic data, I. Theoretical methods.Earth andPlanetary Science Letters,1983.66: p.177-190
    145. Fouquet, Y. and E. Marcoux.Lead isotope systematics in Pacific hydrothermal sulfide deposits.J.Geophys. Res,1995.100(B4): p.6025-6040
    146.曾志刚,翟世奎.冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及其地质意义.地球化学,2000.29(003): p.239-245
    147. Goodfellow, W.D. and J.M. Franklin.Geology, mineralogy, and chemistry of sediment-hostedclastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge.Economicgeology,1993.88: p.2037-2037
    148. Zierenberg, R.A.et al.Genesis of massive sulfide deposits on a sediment-covered spreadingcenter, Escanaba Trough, southern Gorda Ridge.Economic geology,1993.88(8): p.2069
    149. Elderfield, H.Strontium isotope stratigraphy.Palaeogeography, palaeoclimatology,palaeoecology,1986.57(1): p.71-90
    150. Hannington, M.D., J.M. Peter, and S.D. Scott.Gold in sea-floor polymetallic sulfidedeposits.Economic Geology,1986.81(8): p.1867-1883
    151. Bischoff, J.L.et al.Sea-floor massive sulfide deposits from21oN East Pacific Rise, Juan de FucaRidge, and Galapagos Rift; bulk chemical composition and economic implications.EconomicGeology,1983.78(8): p.1711
    152. Zierenberg, R.A., W.C. Shanks Iii, and J.L. Bischoff.Massive sulfide deposits at21oN, EastPacific Rise: Chemical composition, stable isotopes, and phase equilibria.Bulletin of theGeological Society of America,1984.95(8): p.922
    153.Hannington, M.D.et al.The occurrence of gold in sulfide deposits of the TAG hydrothermal field,Mid-Atlantic Ridge.Canadian Mineralogist,1995.33: p.1285-1310
    154. Herzig, P.M.et al.Gold-rich polymetallic sulfides from the Lau back arc and implications for thegeochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific.EconomicGeology,1993.88(8): p.2182
    155. Murphy, P.J. and G. Meyer.A gold-copper association in ultramafic-hosted hydrothermal sulfidesfrom the Mid-Atlantic Ridge.Economic Geology,1998.93(7): p.1076-1083
    156.黄蕴慧,岳树勤,秦淑英.中国矿物志.笫一卷:自然元素单质及其互化物矿物.北京:地质出版社,2000: p.197—223
    157. Hannington, M.D. and S.D. Scott.Gold mineralization in volcanogenic massive sulfides:implications of data from active hydrothermal vents on the modern seafloor.Economic GeologyMonograph,1989.6: p.491-507
    158. Seward, T.M.The hydrothermal chemistry of gold.Gold metallogeny and exploration: Glasgow,Blackie and Son,1991: p.37–62
    159. Gammons, C.H. and A.E. Williams-Jones.Chemical mobility of gold in the porphyry-epithermalenvironment.Economic Geology,1997.92(1): p.45
    160. Seward, T.M. and H.L. Barnes.Metal transport by hydrothermal ore fluids.Geochemistry ofhydrothermal ore deposits,1997.3: p.435–486
    161. Benning, L.G. and T.M. Seward.Hydrosulphide complexing of Au (I) in hydrothermal solutionsfrom150–400°C and500–1500bar.Geochimica et Cosmochimica Acta,1996.60(11): p.1849-1871
    162. Gibert, F., M.L. Pascal, and M. Pichavant.Gold solubility and speciation in hydrothermalsolutions: Experimental study of the stability of hydrosulphide complex of gold (AuHS) at350to450°C and500bars.Geochimica et cosmochimica acta,1998.62(17): p.2931-2947
    163. Barton, P.B. and P. Toulmin.Phase relations involving sphalerite in the Fe-Zn-Ssystem.Economic Geology,1966.61(5): p.815
    164. Scott, S.D. and H.L. Barnes.Sphalerite geothermometry and geobarometry.Economic Geology,1971.66(4): p.653
    165. Moss, R. and S.D. Scott.Geochemistry and mineralogy of gold-rich hydrothermal precipitatesfrom the eastern Manus Basin, Papua New Guinea.Canadian Mineralogist,2001.39(4): p.957
    166. Ihle, T.et al. Sitting of gold and characteristics of gold-bearing massive sulfides from the interiorof the felsic-hosted PACMANUS massive sulfide deposit, eastern Manus basin (PNG).2005:Springer.
    167. Hannington, M.D. and S.D. Scott.Sulfidation equilibria as guides to gold mineralization involcanogenic massive sulfides; evidence from sulfide mineralogy and the composition ofsphalerite.Economic Geology,1989.84(7): p.1978-1995
    168. Schmidt, K.et al.Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchevhydrothermal field,15°N on the Mid-Atlantic Ridge: temporal and spatialinvestigation.Chemical geology,2007.242(1-2): p.1-21
    169. Fouquet, Y.et al.Tectonic setting and mineralogical and geochemical zonation in the Snake Pitsulfide deposit (Mid-Atlantic Ridge at23°N).Economic Geology,1993.88(8): p.2018
    170. Mozgova, N.N.et al.Mineralogy of massive sulfides from the Ashadze hydrothermal field,13oN,Mid-Atlanditc Ridge.Canadian Mineralogist,2008.46(3): p.545
    171.赵伦山,张本仁.地球化学.北京:地质出版杜,1988: p.302-303
    172. Barnes, H.L. Geochemistry of hydrothermal ore deposits. John Wiley&Sons Inc,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700