印度洋与东太平洋海隆深海热液区底栖动物初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海热液活动和热液生物研究是目前国际海洋研究的热点之一,为了探索深海矿产以及生物资源,中国大洋矿产资源研究开发协会成功组织了多个深海热液调查航次。2009~2010年大洋科考第21航次的深海热液调查工作取得了丰硕成果,其中在西南印度洋洋脊发现一处非活动热液区以及一处推测热液活动区,在东太平洋海隆发现一处热液活动区。本文依托大洋科考第21航次在印度洋以及东太平洋海隆进行的热液调查工作中获得的15个站位的沉积物和生物样品,对其中的底栖动物群落进行了生态学和分类学方面的初步研究,主要结果如下:
     1.在印度洋调查区(4个工作站位)共检出6个小型底栖动物类群,其中线虫为最优势类群,占总个体数的88.93%,其次为桡足类,占8.28%;其他类群的个体数量都很少。小型底栖动物群落平均丰度、平均生物量(干重)和平均生产量(干重)分别为43.02±43.24ind/10cm2、35.76±25.22μg/10cm2和321.86±226.99μg/10cm2/a。站位21V-S25-TVMC1与其余三个站位在丰度、生物量和多样性上明显不同,推测采样区域可能受到热液活动的影响。
     2.在东太平洋海隆调查区(11个工作站位)总共检出17个底栖动物类群,其中小型底栖动物9个类群,大型底栖动物7个类群,巨型底栖动物11个类群。调查区的小型底栖动物群落多样性偏低(H'的平均值为0.3977),以线虫为个体数第一优势类群,桡足类为第二优势类群,其它类群个体数所占比例均不足1.00%。站位21III-S18-TVG14为我国发现的热液活动区,其小型底栖动物群落的多样性明显高于其它站位。
     3.从形态学角度描述和鉴定了东太平洋海隆新发现热液喷口区的部分巨型底栖生物样品,包括地区新纪录种嗜热深海偏顶蛤Bathymodiolus thermophilusKenk&Wilson1985,壮丽伴溢蛤Calyptogena magnific Boss&Turner1980以及Sericosura属的海蜘蛛,对各自属和种的分类情况进行了探讨,并初步认定海蜘蛛样品Sericosura sp. I和Sericosura sp. II为新种。
Studies on deep-sea hydrothermal activities and hydrothermal lives have been one of themost interesting topics in international marine researches, and in order to explore the deepsea mineral and biological resources, COMRA (China Ocean Mineral Resources R&DAssociation) successfully organized many deep-sea hydrothermal survey voyages. During2009~2010,many great achievements were obtained in the deep-sea hydrothermal survey ofChinese DY115-21expedition, finding an inactive hydrothermal vent and an inferred activehydrothermal vent in Southwest Indian Ridge, and a confirmed active hydrothermal vent fieldin East Pacific Rise. This paper analysed the sediment and fauna samples of15sites collectedfrom the hydrothermal fields both in Indian Ocean and East Pacific Rise (EPR) during theChinese DY115-21expedition to preliminarily study the ecology and taxonomy of thesebenthic communities. The main results are as followed:
     1. Six meiobenthos groups were distinguished for samples from sites of Indian Ocean(four stations). Nematode and copepoda were the dominant group in the communities, with88.93%and8.28%of the total benthos in individuals, respectively, but the other groups arefew. Average abundance, biomass (dry weight), and production of meiobenthos is43.02±43.24ind/10cm2、35.76±25.22μg/10cm2and321.86±226.99μg/10cm2/a,respectively. Our results showed that abundance, biomass and biodiversity of21V-S25-TVMC1station was significantly different from those of the other three sites,and we speculated that hydrothermal activites may be reponsible for it.
     2. Seventeen benthos groups were distinguished for samples from sites of EPR (elevenstations), in which meiobenthos had nine groups, macrobenthos seven groups, andmegabenthos eleven groups. The diversity of meiobenthos community was low (the mean ofH ' is0.3977) and the meiobenthos community was mainly dominated by nematode, andfollowed by copepoda. The abundance of the other groups was extremely low, accounting forbelow1%of of total benthos in terms of abudance. Site of21III-S18-TVG14was aconfirmed hydrothermal vent found by China and biodiversity index was higher thanthose in the other sites.
     3. We identified several megabenthic groups sampled from a new hydrothermal vent of EPR based on the morphological traits, including Bathymodiolus thermophilus Kenk&Wilson1985, Calyptogena magnific Boss&Turner1980and pycnogonids of genusSericosura, and discussed the taxonomy in the level of genus and species. On the basis, weprelimarily concluded that Sericosura sp. I and Sericosura sp. II are new species.
引文
[1] Van Dover C. The ecology of deep-sea hydrothermal vents[M]: Princeton University Press,2000.
    [2] German C R, Ramirez-Llodra E, Baker M C, et al. Deep-water chemosynthetic ecosystem researchduring the Census of Marine Life decade and beyond: a proposed deep-ocean road map[J]. PLoSOne,2011,6: e23259.
    [3] Ballard R D. Notes on a major oceanographic find(marine animals near hot-water vents at oceanbottom)[J]. Oceanus,1977,20:35-44.
    [4]阮灵伟.深海热液区管状蠕虫的分子特征及对虾microRNA的初探[D].厦门大学,2009.
    [5]杜同军,翟世奎.海底热液活动与海洋科学研究[J].青岛海洋大学学报:自然科学版,2002,32:597-602.
    [6]冯军,李江海,牛向龙.现代海底热液微生物群落及其地质意义[J].地球科学进展,2005,20:732-739.
    [7]黄丁勇,林荣澄,牛文涛, et al.深海热液活动及热液生物群落研究概述[J].中南大学学报(自然科学版),2011,42:2.
    [8]王丽玲,林景星,胡建芳.深海热液喷口生物群落研究进展[J].地球科学进展,2008,23:604-612.
    [9]杨作升,范德江,李云海, et al.热液羽状流研究进展[J].地球科学进展,2006,21:999-1007.
    [10] Mullineaux L, Wiebe P, Baker E. Larvae of benthic invertebrates in hydrothermal vent plumes overJuan de Fuca Ridge[J]. Marine Biology,1995,122:585-596.
    [11] Chevaldonne P, Jollivet D, Vangriesheim A, et al. Hydrothermal-vent alvinellid polychaetedispersal in the eastern Pacific.1. Influence of vent site distribution, bottom currents, andbiological patterns[J]. Limnology and oceanography,1997:67-80.
    [12] Boetius A. Lost city life[J]. Science,2005,307:1420-1422.
    [13] Corliss J B, Dymond J, Gordon L I, et al. Submarine Thermal Sprirngs on the Galápagos Rift[J].Science,1979,203:1073-1083.
    [14] Chase R. Hydrothermal vents on an axis seamount of the Juan de Fuca ridge[J]. Nature,1985,313:212-214.
    [15]黄丁勇.西南太平洋劳盆地与西南印度洋中脊深海热液区底栖动物初探[D].国家海洋局第三海洋研究所,2010.
    [16] Tunnicliffe V. The biology of hydrothermal vents: ecology and evolution[J]. Oceanography andMarine Biology an Annual Review,1991,29:319-407.
    [17] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near theMid-Atlantic Ridge at30N[J]. Nature,2001,412:145-149.
    [18]李江海,牛向龙,冯军.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,2004,19:17-25.
    [19]冯军,李江海,陈征, et al.“海底黑烟囱”与生命起源述评[J].北京大学学报:自然科学版,2004,40:318-325.
    [20]真允庆.海底热液成矿作用[J].矿产与地质,1991,5:157-162.
    [21]季敏.现代海底典型热液活动区环境特征分析[D].中国海洋大学,2004.
    [22] Scott M R, Scott R B, Rona P A, et al. Rapidly accumulating manganese deposit from the MedianValley of the Mid‐Atlantic Ridge[J]. Geophysical Research Letters,1974,1:355-358.
    [23] Jannasch H W, Wirsen C O. Chemosynthetic primary production at East Pacific sea floor spreadingcenters[J]. Bioscience,1979:592-598.
    [24]党宏月,李铁刚,曾志刚, et al.深海极端环境深部生物圈微生物学研究综述[J].海洋科学集刊,2006,47:41-60.
    [25]栾锡武.现代海底热液活动区的分布与构造环境分析[J].地球科学进展,2004,19:931-938.
    [26] Beaulieu S. Interridge global database of active submarine hydrothermal vent fields: Prepared forInterridge, version2.0[J]. World Wide Web electronic publication, http://www interridgeorg/irvents,2010.
    [27]栾锡武,翟世奎.冲绳海槽中热液活动区构造地球物理特征分析[J].沉积学报,2001,19:43-47.
    [28]李小虎,初凤友,雷吉江, et al.慢速—超慢速扩张西南印度洋中脊研究进展[J].地球科学进展,2008,23:595-603.
    [29]王春生.中国首次环球大洋科学考察[J].科学,2006,58:5-7.
    [30] Tao C, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center:Southwest Indian Ridge[J]. Geology,2012,40:47-50.
    [31]刘大正,郭强.“大洋一号”昨日凯旋[N].齐鲁晚报,2009-3-18.
    [32] Tao C W G, Su X, et al. Inactive Hydrothermal Vent Field Discovered at the Southwest IndianRidge50.5oE[EB]. http://www.interridge.org/en/node/5706,2010-06-01.
    [33]阮煜琳,中国第21航次大洋科考取得六大历史性突破[EB]. http://www.chinanews.com.cn/gn/news/2010/05-28/2311390.shtml,2010-05-28.
    [34]中华人民共和国中央人民政府门户网站.中国完成第21航次大洋科考在大西洋发现热液区
    [EB]. http://www.gov.cn/jrzg/2010-05/29/content_1616102.htm,2010-05-29.
    [35]王晶.中国第22航次大洋科考取得重大突破[EB]. http://www.soa.gov.cn/soa/management/oceaninvestigate/webinfo/2011/12/1324183847475190.htm,2011-12-16.
    [36] Ramirez-Llodra E, Shank T M, German C R. Biodiversity and biogeography of hydrothermal ventspecies: thirty years of discovery and investigations[J]. Oceanography,2007,20:30-41.
    [37] Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments assites for the origin and evolution of life[J]. Origins of Life and Evolution of Biospheres,1985,15:327-345.
    [38]王春生,杨俊毅,张东声, et al.深海热液生物群落研究综述[J].厦门大学学报(自然科学版),2006,45:141-149.
    [39]Gaill F, Hunt S. The biology of annelid worms from high temperature hydrothermal vent regions[J].Reviews in Aquatic Sciences,1991,4:107-137.
    [40] Cary S, Shank T, Stein J. Worms bask in extreme temperatures[J]. Nature,1998,391:545-546.
    [41] Mullineaux L S, Peterson C H, Micheli F, et al. Successional mechanism varies along a gradient inhydrothermal fluid flux at deep-sea vents[J]. Ecological Monographs,2003,73:523-542.
    [42]李日辉,侯贵卿.深海热液喷口生物群落的研究进展[J].海洋地质与第四纪地质,1999.
    [43] Childress J J, Fisher C R. The biology of hydrothermal vent animals: physiology, biochemistry,and autotrophic symbioses[J]. Oceanography and Marine Biology,1992,30:337-441.
    [44] Van Dover C L. Do'Eyeless' Shrimp See the Light of Glowing Deep-Sea Vents?[J]. Oceanus,1988,31:47-52.
    [45] Cavanaugh C M, Gardiner S L, Jones M L, et al. Prokaryotic cells in the hydrothermal vent tubeworm Riftia pachyptila Jones: possible chemoautotrophic symbionts[J]. Science,1981,213:340.
    [46]沈国英,施并章.海洋生态学[M]:北京:科学出版社,2002.
    [47] Cary S C, Cottrell M T, Stein J L, et al. Molecular identification and localization of filamentoussymbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana[J]. Appliedand environmental microbiology,1997,63:1124-1130.
    [48] Lutz R A, Shank T M, Fornari D J, et al. Rapid growth at deep-sea vents[J]. Nature,1994,371:663-664.
    [49] Scearce C. Hydrothermal Vent Communities[EB]. http://www.csa.com/discoveryguides/discoveryguides-main.php Date,2006-5
    [50]魏曼曼,王玉光,郑甲, et al.劳盆地深海热液喷口沉积物中细菌多样性研究[J].微生物学通报,2009,36:538-543.
    [51] Bachraty C, Legendre P, Desbruyères D. Biogeographic relationships among deep-seahydrothermal vent faunas at global scale[J]. Deep Sea Research Part I: Oceanographic ResearchPapers,2009,56:1371-1378.
    [52] Tunnicliffe V. The nature and origin of the modern hydrothermal vent fauna[J]. Palaios,1992:338-350.
    [53] Tunnicliffe V, Fowler C M R. Influence of sea-floor spreading on the global hydrothermal ventfauna[J]. Nature,1996,379:531-533.
    [54] Grassle J F, Maciolek N J. Deep-sea species richness: regional and local diversity estimates fromquantitative bottom samples[J]. American Naturalist,1992:313-341.
    [55] Shirayama Y. Studies of meiofauna collected from the Iheya Ridge during the dive541of the"SHINKAI2000"[J]. JAMSTEC Deep Sea Res,1992,8:287-291.
    [56] van Harten D. Hydrothermal vent Ostracoda and faunal association in the deep sea[J]. Deep SeaResearch Part A Oceanographic Research Papers,1992,39:1067-1070.
    [57] Vanreusel A, Van den Bossche I, Thiermann F. Free-living marine nematodes from hydrothermalsediments: similarities with communities from diverse reduced habitats[J]. Marine EcologyProgress Series,1997,157:207-219.
    [58] Zekely J, Van Dover C, Nemeschkal H, et al. Hydrothermal vent meiobenthos associated withmytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise[J]. Deep SeaResearch Part I: Oceanographic Research Papers,2006,53:1363-1378.
    [59] Desbruyères D, Segonzac M, Bright M. Handbook of deep-sea hydrothermal vent fauna[M]:Linz, Austria: Biologiecentrum der Oberosterreichische Landesmuseum,2006.
    [60] Copley J, Flint H, Ferrero T, et al. Diversity of meiofauna and free-living nematodes inhydrothermal vent mussel beds on the northern and southern East Pacific Rise[J]. Journal of theMarine Biological Association of the United Kingdom,2007,87:1141-1152.
    [61] Galkin S, Goroslavskaya E. Bottom fauna associated with Bathymodiolus azoricus (Mytilidae)mussel beds in the hydrothermal fields of the Mid-Atlantic Ridge[J]. Oceanology,2010,50:51-60.
    [62] Zekely J, Gollner S, Van Dover C, et al. Nematode communities associated with tubeworm andmussel aggregations on the East Pacific Rise[J]. Cahiers de biologie marine,2006,47:477-482.
    [63] Zeppilli D, Danovaro R. Meiofaunal diversity and assemblage structure in a shallow-waterhydrothermal vent in the Pacific Ocean[J]. Aquatic Biology,2009,5:75-84.
    [64] Vanreusel A, De Groote A, Gollner S, et al. Ecology and biogeography of free-living nematodesassociated with chemosynthetic environments in the deep sea: a review[J]. PLoS One,2010,5:e12449.
    [65] Tarasov V, Gebruk A, Mironov A, et al. Deep-sea and shallow-water hydrothermal ventcommunities: Two different phenomena?[J]. Chemical Geology,2005,224:5-39.
    [66] Tunnicliffe V, McArthur A G, McHugh D. A biogeographical perspective of the deep-seahydrothermal vent fauna[J]. Advances in Marine Biology,1998,34:353-442.
    [67] Van Dover C L, German C, Speer K G, et al. Evolution and biogeography of deep-sea vent andseep invertebrates[J]. Science,2002,295:1253.
    [68] Tunnicliffe V. Hydrothermal vents: a global system[J]. JAMSTEC Journal of Deep Sea Research1997, Special Volume:105-114.
    [69] Tyler P A, German C R, Ramirez-Llodra E, et al. Understanding the biogeography ofchemosynthetic ecosystems[J]. Oceanologica Acta,2002,25:227-241.
    [70] Ramírez Llodra E, Tyler P A, German C R. Biogeography of deep-water chemosyntheticecosystems (ChEss): exploring the southern oceans[J]. Gayana (Concepción),2002,67:168-176.
    [71] Van Dover C L. Mining seafloor massive sulphides and biodiversity: what is at risk?[J]. ICESJournal of Marine Science: Journal du Conseil,2010,68:341-348.
    [72] Vrijenhoek R C. Genetic diversity and connectivity of deep‐sea hydrothermal ventmetapopulations[J]. Molecular ecology,2010,19:4391-4411.
    [73] Juniper S, Tunnicliffe V, Desbruyeres D. Regional-scale features of northeast Pacific, East PacificRise, and Gulf of Aden vent communities[J]. Gorda Ridge: A Seafloor Spreading Center in theUnited States’ Exclusive Economic Zone GR McMurray (ed) Springer-Verlag, NY,1990:965-967.
    [74] Hashimoto J, Ohta S, Gamo T, et al. First hydrothermal vent communities from the Indian Oceandiscovered[J]. Zoological Science,2001,18:717-721.
    [75] German C, Baker E, Mevel C, et al. Hydrothermal activity along the southwest Indian ridge[J].Nature,1998,395:490-493.
    [76] Van Dover C L, Humphris S, Fornari D, et al. Biogeography and ecological setting of IndianOcean hydrothermal vents[J]. Science,2001,294:818.
    [77] Warén A, Bengtson S, Goffredi S K, et al. A hot-vent gastropod with iron sulfide dermalsclerites[J]. Science,2003,302:1007-1007.
    [78] Goffredi S K, Warén A, Orphan V J, et al. Novel forms of structural integration between microbesand a hydrothermal vent gastropod from the Indian Ocean[J]. Applied and environmentalmicrobiology,2004,70:3082-3090.
    [79] Lin J, Zhang C. The first collaborative China-international cruises to investigate mid-ocean ridgehydrothermal vents[J]. InterRidge News,2006,15:33-34.
    [80]徐汉卿,薛怀平,廖小韵, et al.中国首次环球大洋科考航线图[J].地理空间信息,2006,4:74-76.
    [81]李明春孙.执行中国大洋DY115-19航次科考任务——“大洋一号”青岛起航[N].中国海洋报,2007.
    [82] Tao C, Lin J, Guo S, et al. First Discovery and Investigation of a High-Temperature HydrothermalVent Field on the Ultra-Slow Spreading Southwest Indian Ridge[C]. American Geophysical Union,Fall Meeting2007.
    [83] Han X, Wu G, Cui R, et al. Discovery of a Hydrothermal Sulfide Deposit on the Southwest IndianRidge at49.2°E[C]. American Geophysical Union, Fall Meeting2010.
    [84] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents atoceanic spreading centers[J]. Deep Sea Research,1977,24:857-858, IN853-IN854,859-863.
    [85] Enright J, Newman W, Hessler R, et al. Deep-ocean hydrothermal vent communities[J]. Nature1981,289:219-221.
    [86] Lonsdale P. Deep-tow observations at the mounds abyssal hydrothermal field, Galapagos Rift[J].Earth and Planetary Science Letters,1977,36:92-110.
    [87] Weiss R F, Lonsdale P, Lupton J, et al. Hydrothermal plumes in the Galapagos Rift[J].1977.
    [88] Tyler P, Young C. Reproduction and dispersal at vents and cold seeps[J]. Journal of the MarineBiological Association of the UK,1999,79:193-208.
    [89] Young C M. Reproduction, development and life-history traits[J]. Ecosystems of the World,2003:381-426.
    [90] Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship betweensubmarine hot springs and the origin of life on Earth[J]. Oceanologica Acta,1980,4:59-69.
    [91] Hessler R R, Smithey Jr W M, Keller C H. Spatial and temporal variation of giant clams, tubeworms and mussels at deep-sea hydrothermal vents[J]. Bulletin of the Biological Society ofWashington,1985:411-428.
    [92] Desbruyères D, Crassous P, Grassle J, et al. Données écologiques sur un nouveau sited’hydrothermalisme actif de la ride du Pacifique oriental[J]. CR Acad Sci Paris Sér,1982,3:489-494.
    [93] Laubier L, Desbruyères D. Oases at the bottom of the ocean[J]. Endeavour,1985,9:67-76.
    [94] Desbruyeres D, Laubier L. Alvinella pompejana gen. sp. nov., Ampharetidae aberrant des sourceshydrothermales de la ride East-Pacifique[J]. Oceanologica Acta,1980,3:267-274.
    [95] Fustec A, Desbruyères D, Juniper S K. Deep-sea hydrothermal vent communities at13N on theEast Pacific Rise: microdistribution and temporal variations[J]. Biological Oceanography,1987,4:121-164.
    [96] de Saint Laurent M. Crustacés Décapodes d'un site hydrothermal actif de la dorsale du Pacifiqueoriental (13oNord), en provenance de la campagne fran aise Biocyatherm[J]. Comptes rendus desséances de l'Académie des sciences Série3, Sciences de la vie,1984,299:355-360.
    [97] Black M, Lutz R, Vrijenhoek R. Gene flow among vestimentiferan tube worm (Riftia pachyptila)populations from hydrothermal vents of the eastern Pacific[J]. Marine Biology,1994,120:33-39.
    [98] P. Geistdoerfer, JM Auzende, R. Batiza, et al. Hydrothermalisme et communautés animalesassociés sur la dorsale du Pacifique oriental entre17°S and19°S (Campagne NAUDUR,Décembre1993)[J]. C R Acad Sci,1995,320:47-54.
    [99] Einsele G, Gieskes J M, Curray J, et al. Intrusion of basaltic sills into highly porous sediments, andresulting hydrothermal activity[J]. Nature,1980,283:441-445.
    [100]Bazylinski D A, Wirsen C O, Jannasch H W. Microbial utilization of naturally occurringhydrocarbons at the Guaymas Basin hydrothermal vent site[J]. Applied and environmentalmicrobiology,1989,55:2832-2836.
    [101]Edgcomb V P, Kysela D T, Teske A, et al. Benthic eukaryotic diversity in the Guaymas Basinhydrothermal vent environment[J]. Proceedings of the National Academy of Sciences,2002,99:7658.
    [102]Vinogradova N G. The geographical distribution of the abyssal and hadal (ultra-abyssal) fauna inrelation to the vertical zonation of the ocean[J]. Sarsia,1979,64:41-50.
    [103]Hurtado L, Lutz R, Vrijenhoek R. Distinct patterns of genetic differentiation among annelids ofeastern Pacific hydrothermal vents[J]. Molecular ecology,2004,13:2603-2615.
    [104]Won Y, Young C, Lutz R, et al. Dispersal barriers and isolation among deep‐sea musselpopulations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents[J]. Molecularecology,2003,12:169-184.
    [105]Hurtado L A, Mateos M, Lutz R A, et al. Coupling of bacterial endosymbiont and hostmitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica[J]. Applied andenvironmental microbiology,2003,69:2058.
    [106]Shank T M, Fornari D J, Von Damm K L, et al. Temporal and spatial patterns of biologicalcommunity development at nascent deep-sea hydrothermal vents (9.50°N, East Pacific Rise)[J].Deep-Sea Research Part II,1998,45:465-515.
    [107]Jones M, Bright C. Bibliography of hydrothermal vents and related areas, their biotas, ecologicalparameters and ancillary data[J]. Bulletin of the Biological Society of Washington,1985:495-538.
    [108]Jones M L. Riftia pachyptila Jones: observations on the vestimentiferan worm from the GalapagosRift[J]. Science,1981,213:333-336.
    [109]Cavanaugh C M, Gardiner S L, Jones M L, et al. Prokaryotic cells in the hydrothermal vent tubeworm Riftia pachyptila Jones: possible chemoautotrophic symbionts[J]. Science,1981,213:340-342.
    [110]Gibson R, Atkinson R, Gordon J. The biology of vestimentiferan tubeworms[J]. Oceanographyand Marine Biology: an annual review,2010,48:213-266.
    [111]Arp A J, Childress J J. Sulfide binding by the blood of the hydrothermal vent tube worm Riftiapachyptila[J]. Science,1983,219:295-297.
    [112]Powell M A, Somero G N. Blood components prevent sulfide poisoning of respiration of thehydrothermal vent tube worm Riftia pachyptila[J]. Science,1983,219:297-299.
    [113]Arp A J, Childress J J, Fisher Jr C R. Metabolic and blood gas transport characteristics of thehydrothermal vent bivalve Calyptogena magnifica[J]. Physiological zoology,1984:648-662.
    [114]Powell M, Somero G. Adaptations to sulfide by hydrothermal vent animals: sites and mechanismsof detoxification and metabolism[J]. The Biological Bulletin,1986,171:274-290.
    [115]Tunnicliffe V. Biogeography and evolution of hydrothermal-vent fauna in the eastern PacificOcean[J]. Proceedings of the Royal society of London Series B Biological sciences,1988,233:347-366.
    [116]Tunnicliffe V, Botros M, De Burgh M E, et al. Hydrothermal vents of Explorer ridge, northeastPacific[J]. Deep Sea Research Part A Oceanographic Research Papers,1986,33:401-412.
    [117]Van Dover C, Grassle J, Boudrias M. Hydrothermal vent fauna of Escanaba Trough (GordaRidge)[J]. Gorda Ridge: a seafloor spreading center in the United States’ Exclusive EconomicZone New York: Springer-Verlag,1990:285-287.
    [118]Sarrazin J, Robigou V, Juniper S, et al. Biological and geological dynamics over four years on ahigh-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory[J]. MarineEcology Progress Series,1997,153:5-24.
    [119]Juniper S K, Tunnicliffe V, Southward E C. Hydrothermal vents in turbidite sediments on aNortheast Pacific spreading centre: organisms and substratum at an ocean drilling site[J]. CanadianJournal of Zoology,1992,70:1792-1809.
    [120]Tsurumi M, Tunnicliffe V. Characteristics of a hydrothermal vent assemblage on a volcanicallyactive segment of Juan de Fuca Ridge, northeast Pacific[J]. Canadian Journal of Fisheries andAquatic Sciences,2001,58:530-542.
    [121]Sarrazin J, Juniper S K. Biological characteristics of a hydrothermal edifice mosaic community[J].Marine Ecology Progress Series,1999,185:1-19.
    [122]Kelly N, Metaxas A, Butterfield D. Spatial and temporal patterns of colonization by deep-seahydrothermal vent invertebrates on the Juan de Fuca Ridge, NE Pacific[J]. Aquatic Biology,2007,1:1-16.
    [123]Lonsdale P. The rise flank trails left by migrating offsets of the equatorial East Pacific Rise axis[J].Journal of Geophysical Research,1989,94:713-743.
    [124]Shank T M, Daniel J F, Ben Wigham et al. Biology of Newly-Discovered "AHA" HydrothermalVent Fields Near144'N on the East Pacific Rise Axis[J]. EOS Trans Amer Geophys Union,2000,81(48) T51D-15.
    [125]Lutz R A, Desbruyères D, Shank T M, et al. A deep-sea hydrothermal vent community dominatedby Stauromedusae[J]. Deep-Sea Research Part II,1998,45:329-334.
    [126]Halanych K, Tieger M, O’Mullan G, et al. Brief description of biological communities at7°S onthe East Pacific Rise[J]. InterRidge News,1999,8:23-26.
    [127]Collins A G, Daly M. A new deepwater species of Stauromedusae, Lucernaria janetae (Cnidaria,Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based onnuclear and mitochondrial rDNA data[J]. The Biological Bulletin,2005,208:221-230.
    [128]Tao C, Lin J, Wu G, et al. First Discovery and Investigation of a High-Temperature HydrothermalVent Field on the Ultra-Slow Spreading Southwest Indian Ridge[C]. AGU Fall Meeting,2008,2081.
    [129]Giere O. Meiobenthology: The microscopic fauna in aquatic sediments[M]: Berlin: Springer-Verlag,1993.
    [130]Juario J V. Nematode species composition and seasonal fluctuation of a sublittoral meiofaunacommunity in the German Bight[J]. Ver ff Inst Meeresforsch Bremerh,1975,15:283-337.
    [131]Widbom B. Determination of average individual dry weights and ash-free dry weights in differentsieve fractions of marine meiofauna[J]. Marine Biology,1984,84:101-108.
    [132]张志南,周红.胶州湾小型底栖生物的丰度和生物量[J].海洋与湖沼,2001,32:139-147.
    [133]McIntyre A. Ecology of marine meiobenthos[J]. Biological Reviews,1969,44:245-288.
    [134]Clarke K R, Warwick R M. Changes in marine communities: an approach to statistical analysisand interpretation[M]: Plymouth Marine Laboratory, Plymouth, UK,1994.
    [135]周红,张志南.大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用[J].青岛海洋大学学报(自然科学版),2003,1.
    [136]张玉红.台湾海峡及邻近海域小型底栖动物密度和生物量研究[D].厦门大学,2009.
    [137]R Hessler R, L Sanders H. Faunal diversity in the deep-sea[C].Elsevier,1967,65-70, IN25-IN28,71-78.
    [138]Van Dover C L, Trask J L. Diversity at deep-sea hydrothermal vent and intertidal mussel beds[J].Marine Ecology Progress Series,2000,195:169-178.
    [139]Van Dover C L. Community structure of mussel beds at deep-sea hydrothermal vents[J]. MarineEcology Progress Series,2002,230:137-158.
    [140]Van Dover C L. Variation in community structure within hydrothermal vent mussel beds of theEast Pacific Rise[J]. Marine Ecology Progress Series,2003,253:55-66.
    [141]Tsurumi M, Tunnicliffe V. Tubeworm-associated communities at hydrothermal vents on the Juande Fuca Ridge, northeast Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers,2003,50:611-629.
    [142]Turnipseed M, Knick K, Lipcius R, et al. Diversity in mussel beds at deep‐sea hydrothermalvents and cold seeps[J]. Ecology Letters,2003,6:518-523.
    [143]Turnipseed M, Jenkins C, Dover C. Community structure in Florida Escarpment seep and SnakePit (Mid-Atlantic Ridge) vent mussel beds[J]. Marine Biology,2004,145:121-132.
    [144]Dreyer J, Knick K, Flickinger W, et al. Development of macrofaunal community structure inmussel beds on the northern East Pacific Rise[J]. Marine Ecology Progress Series,2005,302:121-134.
    [145]Danovaro R, Croce N D, Eleftheriou A, et al. Meiofauna of the deep Eastern Mediterranean Sea:distribution and abundance in relation to bacterial biomass, organic matter composition and otherenvironmental factors[J]. Progress In Oceanography,1995,36:329-341.
    [146]Bussau C, Schriever G, Thiel H. Evaluation of abyssal metazoan meiofauna from a manganesenodule area of the eastern South Pacific[J]. Vie et milieu,1995,45:39-48.
    [147]Dinet A, Grassle F, Tunnicliffe V. Premières observations sur la meiofauna des siteshydrothermaux de la dorsale East-Pacifique (Guaymas,21N) et de l’Explorer Ridge[J].Oceanologica Acta,1988,85:7-14.
    [148]Olu K, Lance S, Sibuet M, et al. Cold seep communities as indicators of fluid expulsion patternsthrough mud volcanoes seaward of the Barbados accretionary prism[J]. Deep Sea Research Part I:Oceanographic Research Papers,1997,44:811-819.
    [149]Bright M, Plum C, Riavitz L A, et al. Epizooic metazoan meiobenthos associated with tubewormand mussel aggregations from cold seeps of the northern Gulf of Mexico[J]. Deep Sea ResearchPart II: Topical Studies in Oceanography,2010,57:1982-1989.
    [150]邹丽珍.中国合同区小型底栖动物及其深海沉积物中18S rDNA基因多样性研究.国家海洋局第三海洋研究所,2006.
    [151]杨俊毅,王春生,刘镇盛, et al.热带北太平洋深海小型底栖生物大尺度空间分布[J].海洋学研究,2005,23:23-29.
    [152]Bongiorni L, Mea M, Gambi C, et al. Deep-water scleractinian corals promote higher biodiversityin deep-sea meiofaunal assemblages along continental margins[J]. Biological Conservation,2010,143:1687-1700.
    [153]Vanhove S, Wittoeck J, Desmet G, et al. Deep-sea meiofauna communities in Antarctica:structural analysis and relation with the environment[J]. Marine Ecology Progress Series,1995,127.
    [154]张艳,张志南,黄勇, et al.南黄海冬季小型底栖生物丰度和生物量[J].应用生态学报,2007,18:411-419.
    [155]Soltwedel T. Metazoan meiobenthos along continental margins: a review[J]. Progress InOceanography,2000,46.
    [156]Field J G, Clarke K, Warwick R. A practical strategy for analysing multispecies distributionpatterns[J]. Marine Ecology Progress Series,1982,8.
    [157]马藏允,王惠卿.底栖生物群落结构变化多元变量统计分析[J].中国环境科学,1997,17:297-300.
    [158]Laubier L, Desbruyères D. Les oasis du fond des oceans[J]. La Recherche,1984,15:1506-1517.
    [159]Smith K. Deep-sea hydrothermal vent mussels: nutritional state and distribution at the GalapagosRift[J]. Ecology,1985:1067-1080.
    [160]Corliss J B, Ballard R D. Oases of life in the cold abyss[J]. National Geographic,1977,152:440-453.
    [161]Kenk V C, Wilson B. A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in theGalapagos Rift zone[J]. Malacologia,1985,26:253-271.
    [162]Von Cosel R, Metivier B, Hashimoto J. Three new species of Bathymodiolus (Bivalvia: Mytilidae)from hydrothermal vents in the Lau basin and the North Fiji basin, Western pacific, and the Snakepit area, Mid-Atlantic Ridge[J]. VELIGER-BERKELEY-,1994,37:374-374.
    [163]Hashimoto J, Okutani T. Four new mytilid mussels associated with deep-sea chemosyntheticcommunities around Japan[J]. Venus1994,53:61-83.
    [164]Gustafson R, Turner R, Lutz R, et al. A new genus and five new species of mussels (Bivalvia,Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico[J]. Malacologia,1998,40:63-112.
    [165]Von Cosel R, Olu K. Gigantism in Mytilidae. A new Bathymodiolus from cold seep areas on theBarbados accretionary Prism[J]. Comptes Rendus de l'Académie des Sciences-Series III-Sciencesde la Vie,1998,321:655-663.
    [166]Von Cosel R, Comtet T, Krylova E. Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal ventson the Azores triple junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge[J]. TheVeliger,1999,42:218-248.
    [167]Hashimoto J. A new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal ventcommunities in the Indian Ocean[J]. Venus,2001,60:141-149.
    [168]Von Cosel R. A new species of bathymodioline mussel (Mollusca, Bivalvia, Mytilidae) fromMauritania (West Africa), with comments on the genus Bathymodiolus Kenk&Wilson,1985[J].ZOOSYSTEMA-PARIS-,2002,24:259-272.
    [169]Von Cosel R, Marshall B A. Two new species of large mussels (Bivalvia: Mytilidae) from activesubmarine volcanoes and a cold seep off the eastern North Island of New Zealand, with descriptionof a new genus[J]. The Nautilus,2003,117:31-46.
    [170]Okutani T, Fujikura K, Sasaki T. Two new species of Bathymodiolus (Bivalvia: Mytilidae) frommethane seeps on the Kuroshima Knoll off the Yaeyama Islands, southwestern Japan[J]. Venus,2004,63:97-110.
    [171]Hashimoto J, Furuta M. A new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermalvent communities in the Manus Basin, Papua New Guinea[J]. Venus,2007,66.
    [172]Von Cosel R, Janssen R. Bathymodioline mussels of the Bathymodiolus (s. l.) childressi cladefrom methane seeps near Edison Seamount, New Ireland, Papua New Guinea:(Bivalvia:Mytilidae)[J]. Archiv für Molluskenkunde: International Journal of Malacology,2008,137:195-224.
    [173]Von Cosel R. A new bathymodioline mussel (Bivalvia: Mytiloidea: Mytilidae: Bathymodiolinae)from vent sites near Kueishan Island, north east Taiwan[J]. Raffl Bull Zool,2008,19:105-114.
    [174]Saether K P, Little C T S, Campbell K A, et al. New fossil mussels (Bivalvia: Mytilidae) fromMiocene hydrocarbon seep deposits, North Island, New Zealand, with general remarks on vent andseep mussels[J]. Zootaxa,2010,2577:1-45.
    [175]Iwasaki H, Kyuno A, Shintaku M, et al. Evolutionary relationships of deep-sea mussels inferredby mitochondrial DNA sequences[J]. Marine Biology,2006,149:1111-1122.
    [176]Jones W J, Vrijenhoek R C. Evolutionary relationships within the" Bathymodiolus" childressigroup[J]. Cahiers de biologie marine,2006,47:403.
    [177]Miyazaki J I, Shintaku M, Kyuno A, et al. Phylogenetic relationships of deep-sea mussels of thegenus Bathymodiolus (Bivalvia: Mytilidae)[J]. Marine Biology,2004,144:527-535.
    [178]Jones W, Won Y, Maas P, et al. Evolution of habitat use by deep-sea mussels[J]. Marine Biology,2006,148:841-851.
    [179]Samadi S, Quéméré E, Lorion J, et al. Molecular phylogeny in mytilids supports the wooden stepsto deep-sea vents hypothesis[J]. Comptes rendus biologies,2007,330:446-456.
    [180]Génio L, Johnson S B, Vrijenhoek R C, et al. New record of “Bathymodiolus” mauritanicus Cosel2002from the Gulf of Cadiz (NE Atlantic) mud volcanoes[J]. Journal of Shellfish Research,2008,27:53-61.
    [181]Won Y J, Jones W J, Vrijenhoek R C. Absence of cospeciation between deep-sea mytilids andtheir thiotrophic endosymbionts[J]. Journal of Shellfish Research,2008,27:129-138.
    [182]Fujita Y, Matsumoto H, Fujiwara Y, et al. Phylogenetic relationships of deep-sea Bathymodiolusmussels to their mytilid relatives from sunken whale carcasses and wood[J]. Venus,2009,67.
    [183]Miyazaki J I, de Oliveira Martins L, Fujita Y, et al. Evolutionary process of deep-seaBathymodiolus mussels[J]. PLoS One,2010,5: e10363.
    [184]Ockelmann K. Descriptions of mytilid species and definition of the Dacrydiinae n.subfam.(Mytilacea-Bivalvia)[J]. Ophelia: International Journal of Marine Biology,1983,22.
    [185]Bottjer D J, Carter J G. Functional and phylogenetic significance of projecting periostracalstructures in the Bivalvia (Mollusca)[J]. Journal of Paleontology,1980:200-216.
    [186]Okutani T. Identity of Calyptogena and Akebiconcha (Bivalvia, Cyprinidae)[J]. Venus,1966,24:297-303.
    [187]Horikoshi M. Hinge structures, their variations and changes during growth, of some Japanesedeep-sea, giant white clams, Calyptogena, collected during the “KAIKO” Project[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1989,71:137-160.
    [188]Okutani T, Fujikura K, Kojima S. New taxa and review of vesicomyid bivalves collected from theNorthwest Pacific by deep sea research systems of Japan Marine Science&Technology Center[J].Venus,2000,59:83-101.
    [189]Von Cosel R, Salas C. Vesicomyidae (Mollusca: Bivalvia) of the genera Vesicomya, Waisiuconcha,Isorropodon and Callogonia in the eastern Atlantic and the Mediterranean[J]. Sarsia,2001,86:333–366.
    [190]Krylova E M, Sahling H. Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae)[J].Journal of Molluscan Studies,2006,72:359.
    [191]VON COSEL R, OLU K. A new genus and new species of Vesicomyidae (Mollusca, Bivalvia)from cold seeps on the Barbados accretionary prism, with comments on other species[J].Zoosystema,2008,30:929-944.
    [192]Krylova E M, Cosel R V. A new genus of large Vesicomyidae (Mollusca, Bivalvia, Vesicomyidae,Pliocardiinae) from the Congo margin, with the first record of the subfamily Pliocardiinae in theBay of Biscay (northeastern Atlantic)[J]. Zoosystema,2011,33:83-99.
    [193] Von Cosel R, Olu K. Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf ofGuinea off the coasts of Gabon, Congo and northern Angola[J]. Deep Sea Research Part II: TopicalStudies in Oceanography,2009,56:2350-2379.
    [194]Krylova E M, Sahling H, Janssen R. Abyssogena: a new genus of the family Vesicomyidae(Bivalvia) from deep-water vents and seeps[J]. Journal of Molluscan Studies,2010,76:107.
    [195]Keen A M. A deep-water paradox[J]. Annual Reports of the Western Society of Malacologists,1977,10:10.
    [196]Boss K J, Turner R D. The giant white calm from the Galapagos Rift, Calyptogena magnificaspecies novum[J]. Malacologia,1980,20:161-194.
    [197]Boss K J. A new species of Vesicomya from the Carribbean Sea (Mollusca: Bivalvia:Vesicomyidae)[J]. Breviora,1967,266:1-6.
    [198]Dall W H. Reports on the Results of Dredging, Under the Supervision of Alexander Agassiz, inthe Gulf of Mexico (1877-78) and in the Caribbean Sea (1879-80), by the US Coast SurveySteamer" Blake," Lieut.-Commander CD Sigsbee, USN, and Commander JR Bartlett, USN,Commanding: Report on the Mollusca[M]: Harvard College, Museum of Comparative Zoōlogy,1889.
    [199]Dall W H, Simpson C T. The Mollusca of Porto Rico.[J]. US Fisheries Commission Bulletin,1900,20:351-524.
    [200]Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seepcommunities at active and passive margins[J]. Deep-Sea Research Part II,1998,45:517-567.
    [201]Goffredi S, Hurtado L, Hallam S, et al. Evolutionary relationships of deep-sea vent and cold seepclams (Mollusca: Vesicomyidae) of the" pacifica/lepta" species complex[J]. Marine Biology,2003,142:311-320.
    [202]Fisher C. Chemoautotrophic and methanotrophic symbioses in marine invertebrates[J]. Rev AquatSci,1990,2:399-436.
    [203]Cavanaugh C M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-richhabitats[J].1983.
    [204]Fiala-Medioni A, Le Pennec M. Structural adaptations in the gill of the Japanese subduction zonebivalves (Vesicomyidae) Calyptogena phaseoliformis and Calyptogena laubieri[J]. OceanologicaActa,1988,11:185-192.
    [205]Peek A, Gustafson R, Lutz R, et al. Evolutionary relationships of deep-sea hydrothermal vent andcold-water seep clams (Bivalvia: Vesicomyidae): results from the mitochondrial cytochromeoxidase subunit I[J]. Marine Biology,1997,130:151-161.
    [206]Coan E V, Scott P V, Bernard F R. Bivalve seashells of western North America: marine bivalvemollusks from Arctic Alaska to Baja California[M]: Santa Barbara Museum of Natural History,2000.
    [207]Krylova E M, Sahling H. Vesicomyidae (Bivalvia): current taxonomy and distribution[J]. PLoSOne,2010,5: e9957.
    [208]Child C A, Child C. Shallow-water Pycnogonida of the Isthmus of Panama and the coasts ofMiddle America[M]: Smithsonian Institution Press,1979.
    [209]Child C, Segonzac M. Sericosura heteroscela and S. cyrtoma, new species, and otherPycnogonida from Atlantic and Pacific hydrothermal vents, with notes on habitat andenvironment[J]. PROCEEDINGS-BIOLOGICAL SOCIETY OF WASHINGTON,1996,109:664-676.
    [210]Lee Van Dover C, Desbruyères D, Segonzac M, et al. Biology of the Lucky Strike hydrothermalfield[J]. Deep Sea Research Part I: Oceanographic Research Papers,1996,43:1509-1529.
    [211]Child C A. Antarctic and Subantarctic Pycnogonida: I, Ammotheidae and II, Austrodecidae. In:Cairns, S. D.(ed.) Biology of the Antarctic Seas XXIII.[J]. Antarctic Research Series,1994,63:1-99.
    [212]BAMBER R N. Two new species of Sericosura Fry&Hedgpeth,1969(Arthropoda: Pycnogonida:Ammotheidae), and a reassessment of the genus[J]. Zootaxa,2009,2140:56-68.
    [213]Croker P F. Shallow gas accumulation and migration in the western Irish Sea[J]. GeologicalSociety, London, Special Publications,1995,93:41-58.
    [214]Child C A. Sericosura dissita, n. sp., a Third Hydrothermal Vent Pycnogonida Described from theNortheast Pacific, and Other Known Vent Species[J]. Species diversity: an international journal fortaxonomy, systematics, speciation, biogeography, and life history research of animals,2000,5:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700