西南印度洋中脊热液成矿作用及其地质地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以西南印度洋中脊(SWIR)不同区域玄武岩和热液沉积样品为研究对象,通过高精度ICP-AES/MS、X射线衍射、电子显微镜等实验测试手段,对样品进行矿物学、岩石学、地球化学特征进行研究,以此探讨西南印度洋中脊热液成矿作用、物质来源等科学问题,为海底热液矿床的寻找提供理论依据。本次研究得出以下几个方面成果:
     研究区玄武岩微量元素比值显示出正常洋中脊玄武岩(N-MORB)的性质,但又不同于典型的N-MORB,同时包括"MORB"型岩浆和洋岛岩浆两种成分。玄武岩的蛛网图配分曲线反映了亏损地幔源区玄武岩的地球化学特性。大离子亲石元素K、Rb和Ba轻微富集,Ba有显著的正异常,Sr显示负异常,并存在Nb和部分Ti的亏损,指示本区玄武岩形成过程中可能遭受了陆源物质的混染。
     稀土元素表现出LREE相对富集、HREE亏损的REE配分模式,在La-La/Sm变异图上,La/Sm与La同步增加,表明SWIR玄武岩岩浆岩石主要受部分熔融作用控制。
     取自69.59°E附近热液喷溢区的硫化物(AIR1和AIR2)为坍塌的黑烟囱硫化物。AIR1主要由黄铁矿、白铁矿和黄铜矿组成,属中-高温矿物组合,相对富集Co和Ni,表明黄铜矿是在高温下(>300℃)沉淀形成的。AIR2主要由黄铁矿、白铁矿和石膏组成,反映了一种中-低温矿物组合。49.64°E附近的硫化物氧化物ISUl由纤铁矿、黄铜矿以及少量黄铁矿和白铁矿组成。ISU2取自50.46°E附近,为蚀变橄榄岩,由富水镁硼石、利蛇纹石、以及锰的氧化物和铁的矾类矿物组成。热液白烟囱ISU4和ISU5取自51°E附近,主要由方解石组成,其热液流体温度为中-低温。
     热液硫化物Cu和Fe之间显著的正相关性反映了矿物组合关系;As、Sr和Ag元素之间的相关系数均大于0.85,说明它们在热液成矿作用过程中经历了相似的地球化学过程;Pb和Zn各自决定着Au和Ag的含量;Ag、As和Pb,它们之间有较高的相关性,可能表明低温再活化作用。
     热液硫化物的稀土元素准化配分曲线显示出明显的正Eu异常和LREE富集,其配分模式主要继承了热液流体中稀土元素的特性。热液白烟囱稀土元素含量较高,LREE富集,明显的负Eu异常可能表明其相对还原的成矿环境。
The basalts and hydrothermal deposits samples we study are recovered from the different regions of the Southwest Indian Ridge (SWIR).We get the mineralogy、Petrology and geochemistry characteristics by high performance ICP -AES/MS、X-Ray Diffraction and Electronic Microscope, to discuss hydrothermal mineralization、material sources and other scientific problems and get the theory for exploring the submarine hydrothermal deposits. We get the results as following:
     Trace element ratios of basalts showing the similar characteristics to the Normal Mid-Ocean Ridge Basalt (N-MORB), but different from the typical N-MORB, while including two components:"MORB"-type magma and Ocean Island magma. The spider diagram shows the depleted-mantle magma source. Slight rich in LILE(K, Rb, and Ba), poor in Nb and parts of Ti, Ba significant positive anomalies, Sr shows negative anomalies, which might indicate the contamination of terrestrial. The REE shows the relative enrichment of LREE to HREE. La/Sm and La simultaneous increase, indicating that the basalt mainly control by partial melting.
     AIR1 and AIR2 are the collapsed black chimneys sulfide, near the 69.59°E. AIR1 is middle-high temperature mineral assemblages, dominated with pyrite, marcasite and chalcopyrite. Relative enrichment of Co and Ni, indicating that chalcopyrite precipitate at a high temperature (> 300℃). AIR2 is medium-low temperature mineral assemblages, dominated with pyrite, marcasite and gypsum. ISU1 is the sulfide oxides, mainly consist of lepidocrocite、chalcopyrite and pyrite, sampling from the 49.64°E. ISU2 is birbirite, near 50.46°E, mainly consist of kurnakovite、lizardite、manganese oxide and iron alum minerals. Hydrothermal white chimneies ISU4 and ISU5 from 51°E around, mainly composed of calcite, the temperature of hydrothermal fluids is middle-low temperature.
     Cu and Fe of the sulfides showing significant positive correlation, reflects the relationship of mineral assemblages; The correlations between As、Sr and Ag were higher than 0.85, indicating that they have undergoing the similar geochemical processes in hydrothermal mineralization; Pb and Zn pespectively determines the content of Au and Ag; there are significant positive correlations between Ag、As and Pb, which might indicate remobilization under lower temperature conditions.
     The sulfide samples are characterized by significant positive Eu anomaliesand the enrichment of LREE relative to HREE, inheriting the characteristics of hydrothermal fluids. The REE contents are high in white chimneys rich in calcile, chondrite-normalized pattern shows LREE enrichment and negative Eu anomalies may indicate the relative reductive environment.
引文
1 Alt J C. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green Seamount, eastern Pacific[J]. Econ Geol,1988,83(5):1026-1033.
    2 Annette M O, Robert M O. The enropium anomaly of seawater:implication for fluvial versus hydrothermal REE imputs to the Oceans [J]. Chemical Geology,1991,92:317-32.
    3 ANNIE M. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta,1989,53:745-750.
    4 Arrhenius G O S, Bonatti E. Neptunism and Volcanism in the Ocean[A], In:Sears M, ed. Progress in Oceanography[C]. London:Pergamon Press,1965,7-22.
    5 Aumento F, Loubat H. The Mid-Atlantic ridge near 45°N:Serpentinized ultramafic intrusions[J]. Canadian Journal of Earth Sciences,1971,8:631-663.
    6 BachW, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian ridge 10-16°E[J]. Geochemistry Geophysics Geosystems.2002,3:1-21.
    7 Baines A G, Cheadle M J, Dick H J B, et al. Evolution of the southwest Indian Ridge from 55°45'E to 62°E:Changes in plate-boundary geometry since 26 Ma[J]. Geochemistry, Geophysics, and Geosytems,2007,8, Q06022, doi:0.1029/2006GCO 1559.
    8 Baneqee N R, Dick J B H, Wolfgang B. et al. Discovery of peridotite-hosted hydrothermal deposits along the ultraslow-spreading Southwest Indian Ridge[C]//Geological Society of America Annual Meeting, November 5-8,2001.
    9 Bazylev B A, Dmitriev L V. Mantle peridotites from Indian Ocean ridges:Initial diversity and subsolidus petrologic and geochemical evolution[C]. Moscow, Russia:Vernadsky Institute of Geochemistry and Analytical Chemistry,2005.
    10 Berndt E A, Allen D E, Seyfned W E J. Reduction of CO2 during serpentinization of olivine at 300℃[J]. Geology,1996,24:351.354.
    11 Bonatti E, Hamlyn P R. Oceanic ultramafic rocks[C]//EmilianiC, eds. New York:The Sea, 1981,7:241-283.
    12 Boynton W V. Cosmochemistry of the earth elements:Meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry. Amsterdam:Elsevier,1984,63-114.
    13 Brown D and Me Clay K R. Data report:sulfide textures in the active TAG massive sulfide deposit,26°N. Mid-Atlantic, ridge. In:Herzig P M. et al. eds. Proceedings of the Ocean Drilling program, Scientific Results,1998,158:193-200.
    14 Cannat M, Sauter D, Escartin J. et al. A-volcanic seafloor generation at a melt-poor ultraslow-spreading ridge:Southwest Indian Ridge 61-67°E[J]. Geophysical Research Abstracts,2005,7:09159.
    15 Cannat M, Sauter D, Escartin J, et al. A-volcanic seafloor generation at a melt-poor ultraslow-spreading ridge:Southwest Indian Ridge 61-67°E[J]. Geophysical Research Abstracts,2005,7:09159.
    16 Charlou J L, Fouquet Y, Bougauh H, et al. Intense CH4 plumes generated by serpentiniza:ion of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic ridge[J]. Geochimica et Cosmochimica. Ata,1998,62:2323-2333.
    17 Charlou J L, Donval J P. Hydrothermal methane venting between12°N and26°N along the Mid-Atlantic ridge[J]. Journal of Geophysical Research,1993,98:9625-9642.
    18 Charlou, J. L., Donval. J P., Konn, C, et al. Scientific Party of the SERPENTINE cruise, 2008. High hydrogen and abiotic hydr, carbons from new ultramafic hydrothermal sites between 12°N and 15°N on the Mid Atlantic Ridge-Results of the SERPENTINE cruise. EOS Trans.AGU,88, Fall Meet. Suppl, Abstract T51F-04.
    19 Charlou,, J.P. Donval, Y. Fouquet, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) [J]. Chem. Geol,2002,191:345-359.
    20 Corliss, J.B., John B.; Dymond, Jack,et al. Submarine thermal springs on the Galapagos Rift. Science,1979,203:1073-1083.
    21 D Weis, S Ingle, D Damasceno, Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137)[J]. Geology,2001, 29(2p):147-150.
    22 Daniel Sauter, Philippe Patriat, Celine Rommevaux-Jestin, et al. The Southwest Indian Ridge between 49°15'E and 57°E:focused accretion and magma redistribution[J]. Earth and Planetary Science Letters,2001,192:303-317.
    23 Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003,426:405-412.
    24 Dick, H.J.B., Abyssal peridotites, Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[J]. In:Saunders, A.D., Norry, M.J. Editors, Magmatism in the Ocean Basin,1989,42:71-105.
    25 Douville E, Charlou J.L, Oelkers E.H. et al. The rainbow vent fluids (36°14'N, MAR):the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology,2002,184:37-48.
    26 Elderfield H. The oceanic chemistry of the rare earth elements[J]. Phil Trans Roy Soc London,1988, A325:105-126.
    27 Eldholm O, Karasik A M, Reksnes P A. The North American plate Boundary[C]//Grantz A, et al. The Geology of North America. The Arctic Ocean Region,1990,171-182.
    28 Fomari D J, Haymon R M, Penqt M R. et al. Geological characteristics and evolution of the ax ial zone on fast spreading mid-ocean ridges:Formation of an axial summit trough along the East Pacific Rise,9°-10°N[J]. Journal of Geophysical Research,1998.103:9 827-9855.
    29 Fouquet Y, Von Stackelberg U, Charlou J L, et al. Metallogenesis in back-arc environments: The Lau basin example. Econmic Geology,1993,88:2150-2177.
    30 Fujimoto, H., Mevel, C., Fujioka, K., et al. First submersible Investigations of mid-ocean ridges in the Indian Ocean. Inter Ridge News[J].1999,8:22-24.
    31 R.M. Gallant and K.L. Von Damm, Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields,23°-25°S, Central Indian Ridge[J]. Geochem. Geophys. Geosys.2006,7:Q06018.
    32 Gamo T.E., Nakayarna K., Shitashima. et al. Hydrothermal Plumes at the Rodrigueztri Plejunetion, Indianridge.EPSL,1996,142:261-270.
    33 Gamo, H. Chiba, T. Yamanaka, et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge[J].Earth Planet. Sci. Lett.2001,193:371-379.
    34 Georgen J E, Kurz M D, Dick H J B, et al. Low He/He ratios in basalt glasses from the western Southwest Indian Ridge (10-24°E)[J]. Earth and Planetary Science Letters,2003, 206:509-528.
    35 German, C.R., Baker, E.T., Mevel, C., et al. Hydrothermal activity along the Southwest Indian Ridge[J]. Nature,1998.395:490-493.
    36 Gillis K M, Smith A D, Ludden J N. Trace element and Sr isotopic contents of hvdrothermal clays and sulfides from the Snakepit hydrothermal field:ODP site 649. Proc. ODP, Sci. Res.,1990,106/109:315-319.
    37 H. Kumagai, K. Nakamura, T. Morishita, et al. Geological background of the Kairei and Edmond hydrothermal vent fields along the Central Indian Ridge:Insights into the distinct chemistry between their vent fluids, Geofluids,2008,8:239-251.
    38 Halbach, P., Pracejus, B., Marten. A. Geology and mineralogy of massive sulfide ores from the Central Okinawa trough, Japan. Econ. Geol.1993,88:2210-2225.
    39 Hannington M D, deRonde, C E J. et al. Sea-floor tectonics and submarine hydrothermal systems-100th Anniversary Volume of Economic Geology:Littleton, Colorado, Society of Economic Geologists,2005:111-141.
    40 Haymon, R. M., Fornari, D. J., Lilley.M. D. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific rise crest at 9°45'-9°52'N:Direct submersible observation of seafloor phenomena associated with an eruption event in April,1991. Earth and Planetary Science Letters,1993,119:85-101.
    41 Herzig P M, Hannington M D, Ambas A Jr. Sulfur isotopic composition of hydrothemal precipitates from the Lau back-arc:implication for magmatic contributions to seafloor hydrothermal systems[J]. Miner Deposits,1998,33:226-237.
    42 Hidenori Kumagai, Dic, H J, Tamura,. H, et al. Lower 3He/4He isotope signatures of ultramafic rocks from Oblique Supersegment of SWIR, Indian Ocean.2006 Fall Meeting
    43 Honsho C, Tamaki K, Fujimoto H. Three-dimensional magnetic and gravity studies of the Rodriguez Triple Junction in the Indian Ocean[J].Journal of Geophysical Research.1996, 101:15 837-15 848.
    44 Inter Ridge Office, Ocean Research Institute, University of Tokyo. A science and struc ure plan for ridge research(2004-2013)[R/OL]. Data from:http://www.intridge.ors/2003.
    45 J.L. Charlou, J.P. Donval, Y. Fouquet, P. et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR), Chem. Geol.2002,191:345-359.
    46 Jennifer E. Georgen, Mark D. Kurz, Henry J.B. Dick, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters,2003,206:509-528.
    47 Kentaro Nakamura, Tomoaki Morishita, Wolfgang Bach, et al. Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge:Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth and Planetary Science Letters,2009,280(1-4):128-136.
    48 Klinkhammer G P, Elderfield H, Mitra A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean Ridges[J]. Geochim. Cosmochim Acta, 1994,88:5105-5113.
    49 Klinkhammer G P, Elder field H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochim Cosmochim Acta,1994,58:5105-5113.
    50 Kurz M D, Le Roex A P, Dick H J B. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction[J]. Geochimiea et Cosmochimiea Aca,1998,62:841-852.
    51 Le Roex A P, Dick H J B, Watkins R T. Petro-genesis of anomalous K-enriched MORB from the Southwest Indian Ridge:11°53'E to 14°38'E[J]. Contribution Minerals Petrology, 1992,110:253-268.
    52 Lin J, Zhang C. The first collaborative China-International cruises to investigate Mid-Ocean ridge hydrothermal vents[J]. ridge Crest News,2006,15:33-34.
    53 McKenzie D P, Sclater J G. The Evolution of the Indian Ocean since the Late Cretaceous [J]. Geophysical Journal of the Royal Astronomical Society,1971,25:437-528.
    54 Melchert, C.W. Devey, C. R. German. et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat:the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge[J]. Earth Planet. Sci, Lett,2008,275:61-69.
    55 Mendel, V., Sauter, D. Seamount volcanism at the super slow-spreading Southwest Indian Ridge between 57°E and 70°E[J]. Geology,1997,25:99-102.
    56 Meschede M. A method of discriminating between different types of mid-ocean ridge basahs and continental tholeiites with the Nb-Zr-Y diagram. Chemi Geol,1986,56: 207-218.
    57 Michael P J, Langmuir C H, Dick H J B. et al. Magmatic and amagmatic seafloor spreading at the slowest mid-ocean ridge:Gakkel Ridge, Arctic Ocean[J]. Nature,2003, 423:956-961.
    58 Michard A, Albarede F, Michard G, et al. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field(13°N)[J]. Nature, 1983,303:795-797.
    59 Michard A, Albarede F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal field 13°N[J]. Nature,1983, 303:795-797.
    60 Michard A, Alharede F. The REE contents of some hydrothermal fluids[J].Chemical Geology,1986,53:31-60.
    61 Michard A. Rare earth element systematics in hydrothermal fluids[J]. Geochim. Cosmochim Acta,1989,53:45-759.
    62 Michard, A., Albarede, F., The REE content of some hydrothermal fluids[J]. Chem Geol. 1986,55:51-60.
    63 Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound.26°N Mid-Atlantic Ridge[J]. Geochim Cosmochim Acta,1995, 59(17):3511-3524.
    64 Mitra A, Elderfield H, Oreaves M J. Rare earth elements in submarine hydro thermal fluids and plumes from the Mid Atlantic Ridge[J]. Mar Chem,1994,47:217-236.
    65 Moreira M, Staudacher T, Sarda P. et al. A primitive plume neon component in MORB: The Shona Ridge anomaly, South Atlantic(51-52°S)[J]. Planetary Science Letters,199:5, 133:367-377.
    66 Munch, U., Halbach, P. Fujimoto, H., Zinc-and lead-rich massive sulfides from the ultraslow Southwest Indian spreading ridge[J]. EOS. American Geophysical Union Transactions,1999,80(46):T11A-14.
    67 NAKAMURA Kentaro, KATO Yasuhiro, TAMAKI Kensaku. et al. Geochemistry of hydrothermally altered basaltic rocks from the southwest Indian ridge near the Rodriguez Triple Junction. Marine geology ISSN 0025-3227 CODEN MAGEA6,2007,239 (3-4):125-141.
    68 Okino K, Curewitz D, Asada M. et al. Preliminary analysis of the Knipovitch Ridge segmentation:Influence of focused magmatism and ridge obliquity on an ultraslow spreading system [J]. Earth and Planetary Science Letters,2002,202:275-288.
    69 Patriat Ph.. L'Ocean Indien Occidental:La dorsale oust indienne[J]. Memoires of Museum National History Natural,1979,43:49-52.
    70 Pearce JA, Norry MJ, Petro-genetie Implications of Ti-Zr-Y and Nb Variations in Volcanic Rocks Contrib Mineral. Petrol,1979,69:33-47.
    71 Phipps M J, Chen Y. Dependence of ridge axis morphology on magma supply and spreading rate[J]. Nature,1993,364:706-708.
    72 Rimstidt J D, Balog A, Webb J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochim Cosmochim Acta,1998,62:1851-1863.
    73 Robinson C J, White R S, Bickle M J, et al. Restricted mehing under the very slow-spreading Southwest Indian ridge[J]. Geological Society, London, Special Publication, 1996,118:131-141.
    74 Rona PA.1984. Hydrothermal mineralization at seafloor spreading centers. Earth-Science Rev.20:1-104.
    75 Rona PA.1988. Hydrothermal mineralization at oceanic ridges. Canadian Mineral.26: 431-465.
    76 Rona, P.A., Bogdanov, Y.A., Gurvich, E.G. et al. Relict hydrothermal zones in the TAG hydrothermal field, Mid-Atlantic Ridge 26°N,45°W. J. Geophys. Res.1993,98: 9715-9730.
    77 Rona, P.A., Hannington, M.D., Raman, C.V., et al. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Econ. Geol.1993,88: 1989-2017.
    78 Rona, P.A., Thompson, G., Mottl, M.J. et al. Hydrothermal activity at the Trans-Atlantic Geotraverse hydrothermal field, Mid-Atlantic ridge crest at 26°N. J. Geophys. Res.1984, 89:11365-11377.
    79 Rothe J P. La zone seismique mediane Indo-Atlantique[J]. Philosophical Transactions of the Royal Society,1954, A222:387-397.
    80 Sarda P, Moreira M, Staudacher T, et al. Rare gas systematic on the southern most Mid-Atlantic ridge:Constraints on the lower mantle and Dupal source[J].Journal of Geophysical Research,2000,105:5973-5996.
    81 Saunders A D, Tarney J. Geochemical characteristics of basaltic volcanism within back-arc basins[J]. Geological Society, London, Special Publications,1984,16:59-76.
    82 Searle R C, Bralee A V. Asymmetric generation of oceanic crust at the ultraslow spreading Southwest Indian Ridge,64°E[J].Geochemistry, Geophysics and Geo-systems,2007,8, Q05015,doi:10.1029/2006GCOO1529.
    83 Searle R C, Bralee A V. Volcanic and tectonic development of the very slow spreading Southwest Indian Ridge near 64°E[C]. Geophysical Research Abstracts,2005,7:04847.
    84 Shervais JW. T-V plots and the petro-genesis of modern and ophiolitic lavas. Earth Planet Sei Lett,1982,59:101-118.
    85 Takai, T. Gamo, U. Tsunogai, et al. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface litho-autotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field[J]. Extremophiles,2004,8: 269-282.
    86 Tao C, Lin J, Guo S, et al. Discover of the first active hydrothermal vent field at the ultraslow spreading Southwest Indian Ridge:The Chinese DYI 15-19 Cruise[J]. Ridge Crest News,2007,16:25-26.
    87 Teagle D A H, Alt J C. Hydrothermal Alteration of Basalts beneath the Bent Hil Massive Sulfide Deposit, Middie Valley, Juan de Fuca Ridge[J]. Econ Geol,2004,99(3):561-584.
    88 Ute Munch, Claude Lalou, Peter Halbach et al., Relict hydrothermal events along; the super-slow Southwest Indian spreading ridge near 63°56'E-mineralogy, chemistry and chronology of sulfide samples[J].Chemical Geology,2001,177(3-4):341-349.
    89 Van Dover, S.E. Humphris, D. Fornari, et al. Biogeography and Ecological setting of Indian Ocean hydrothermal vents[J]. Science,2001,294:818-823.
    90 Vine F J. Spreading of the ocean floor:New evidence[J]. Science,1966,154:1405-1415.
    91 Wetzel L R, Shock E L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions[J]. Journal of Geophysical Research,2000,105:8319-8340.
    92 Wood D A. A variably veined sub-oceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence[J]. Geology,1979,7(10):499-503.
    93 Wood S A. The aqueous geochemistry of the rare-earth elements and yttrium 1 Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chem Geol,1990a,82:159-186.
    94 Zhong S, Mueei A. Partitioning of rare earth elements(REEs)between calcite and seawater solutions at 25℃and latm, and high dissolved REE concentration[J]. Geochim Cosmochim Acta,1995,59:443-453.
    95安伟.现代海底热液活动成矿作用特征及控制因素研究:[博士学位论文].青岛:中国海洋大学海洋地质系,2006.
    96包申旭,周怀阳,彭晓彤,等Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征.地球化学,2007,36(3):303-310.
    97陈弘,朱本铎,崔兆国.海底热液矿床地质和地球化学特点研究[J].热带海洋学报,2006,25(2):79-84.
    98丁振举,刘丛强,姚书振,等.海底热液系统高温流体的稀土元素组成及其控制因素[J].地球科学进展,2000,15(3):307-312.
    99高永军,穆治国,吴世迎.马里亚纳海槽玄武岩K-Ar地质年代玄武岩年代学及地球化学研究[J].海洋地质与第四纪地质,2000,20(3),53-57.
    100侯增谦,莫宣学.现代海底热液成矿作用研究现状及发展方向[J].地学前缘,1996,3(3-4):263-271.
    101侯增谦,韩发,夏林圻,等.现代与古代海底热水成矿作用[M].北京:地质出版社,2003,423.
    102雷吉江,初凤友,李小虎,等.西南印度洋中脊热液羽状流中微生物化石的发现及意义.微体古生物学报,2009,26(1):39-47.
    103李小虎,初凤友,雷吉江,等.慢速-超慢速扩张西南印度洋中脊研究进展.地球科学进展,2008,23(6):595-603.
    104梁婷,王登红,屈文俊,等.广西大厂锡多金属矿床方解石的REE地球化学特征[J].岩石学报,2007,23(10):2493-2503.
    105刘焱光,孟宪伟,付云霞.冲绳海槽Jade热液场烟囱物稀土元素和锶、钕同位素地球化学特征[J].海洋学报,2005,27(5):67-72.
    106栾锡武.现代海底热液活动区的分布与构造环境分析[J].地球科学进展.2004,19(6):931-938.
    107钱江初,于刚,刘春秋,等Lost City低温热液场-一种新的海底热液活动类型[J].海洋学研究,2006,1:43-49.
    108邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991.
    109双燕,毕献武,胡瑞忠,等.芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J].矿物岩石,2006,26(2):57-65.
    110宋学春,历时300多天,累计航行4.6万多海里-“大洋一号”满载归来.人民日报,2009-03-18(5).
    111吴世迎.世界海底热液硫化物资源[M].北京:洋出版社.2000.326.
    112稀有元素地球化学,下册,地质部,稀有矿产地质训练班,广东省地质局印.1981:343-393.
    113叶俊,石学法, 杨耀民.西南印度洋超慢速扩张脊49.5°E热液区热液硫化物成矿作用研究[J].矿物学报,2009,S1:382-383.
    114曾志刚,陈代庚,殷学博,等.东太平洋海隆13°N附近热液硫化物中的元素、同位素组成及其变化[J].中国科学D辑:地球科学,2009,12:1780-1794.
    115翟世奎,陈丽蓉,张海启.冲绳海槽的岩浆作用与海底热液活动[M].北京:海洋出版社.2001,240.
    116张振国,方念乔,高莲凤,等.超慢速扩张洋脊:海洋地学研究新领域.海洋地质动态,2007,23(4):17-20.
    117赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿 学,2007,31(1):92-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700