陆壳深俯冲过程中的洋—陆转换与流体活动:以西大别和柴北缘高压—超高压变质带为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆深俯冲和折返的研究是发展和完善板块构造理论的前缘科学问题。对高压-超高压岩石折返与俯冲带深部流体过程等有关科学问题进行深入的研究,是建立大陆深俯冲和折返理论体系的重要方面。中国东部的西大别造山带和西部的柴北缘造山带中的高压-超高压变质岩,为大陆地壳深俯冲变质的产物,同时还残存有先期深俯冲的洋壳,是研究大陆深俯冲-折返机制和流体过程的重要对象。本学位论文以西大别造山带、柴北缘造山带中的高压-超高压岩石为研究内容,进行了系统的锆石原位U-Pb年龄、微量元素、Lu-Hf同位素、O同位素分析。研究主要获得以下认识:
     (1)西大别浒湾变质带存在两种类型的高压榴辉岩,其中一类榴辉岩中的残留岩浆锆石U-Pb年龄为411±4Ma,锆石具有正的εHf(t)值(可高达14.4),表明这些榴辉岩的原岩来源自亏损的地幔源区,很有可能对应晚志留纪古特提斯洋壳,另一类榴辉岩及花岗质片麻岩中岩浆锆石的U-Pb年龄分别为700±4Ma和738±6Ma,这些岩石的原岩主体应为中-新元古代扬子板块基底岩石,其中榴辉岩中锆石的εHf(t)值变化范围是-1.0至7.4,表明这类榴辉岩的原岩是新元古代新生地壳再造的产物。两类榴辉岩中变质锆石的U-Pb年龄分别为310±3Ma和306±7Ma,并且显示出低的Th/U比值和微量元素含量,平坦的HREEs配分模式、无明显的Eu异常及低的176Lu/177Hf,这些特征表明浒湾变质带的洋壳和陆壳两种类型榴辉岩共同经历了石炭纪约310Ma的榴辉岩相变质作用。浒湾变质带存在的洋-陆耦合俯冲作用表明,低密度的陆壳类型岩石可能对于高密度洋壳岩石的抬升和保存起到了重要的作用。
     (2)浒湾变质带中变沉积片岩有分散的岩浆锆石U-Pb年龄表明西大别浒湾变质带部分高压陆壳岩石具有不同的原岩形成时代。斜长角闪岩的锆石U-Pb年龄为1806±63Ma,εHf(t)值为-16.3,原岩可能来自古老地壳物质的再造,富石英浅色脉体及斜长角闪岩中的变质锆石U-Pb年龄分别为243±4Ma和241±1Ma,绿辉石和石榴子石等矿物包裹体和锆石微量元素特征表明这些锆石形成于榴辉岩相变质作用。浒湾变质带陆壳高压岩石经历了约243Ma的榴辉岩相高压变质作用。前人研究表明大别造山带洋壳俯冲的持续时间可能到约250Ma。因此大别造山带陆壳岩石高压-超高压变质作用的初始时间应早于243Ma,与原岩为洋壳的岩石的高压变质时间相吻合。西大别高压-超高压板片的俯冲和折返是在不同时间内完成的,而是在三叠纪经历了多板片的俯冲-折返过程。
     (3)首次在柴北缘造山锡锡铁山地体榴辉岩锆石中发现超高压矿物包裹体柯石英,柴北缘造山带的四个变质地体都应经历过超高压变质作用。利用SIMS和LA-ICPMS方法确定锡铁山地体超高压峰期时代为441±9Ma,整个柴北缘高压-超高压变质带4个地体在460-440Ma共同经历了俯冲、超高压变质、折返循环,并最终形成了统一的柴北缘巨型高压-超高压变质带。柴北缘洋壳类型的岩石与陆壳类型岩石经历超高压变质作用时间上是连续的,都兰超高压变质地体的蛇纹石化方辉橄榄岩中锆石U-Pb年龄为448±9Ma与蓝晶石榴辉岩的锆石U-Pb年龄455±5Ma一致。低密度的蛇纹石化橄榄岩和陆壳岩石可能对高密度镁铁质超高压岩石保存和折返起到了重要的浮力牵引作用。
     (4)西大别低温-超高压岩石中片麻岩和榴辉岩的石英脉锆石U-Pb年龄为214.5±3.1Ma和213.8±2.4Ma,反映了西大别超高压岩石中流体活动时间约为215Ma。石英脉中锆石与各寄主岩石中的锆石有一致的O同位素,但是Hf同位素出现差异,其中以片麻岩为围岩的石英脉样品09MC05中的锆石相对围岩片麻岩中的锆石有更低的εHf(t)值(-5.92),而以榴辉岩为围岩的石英脉样品09MC12中的锆石的εHf(t)值(-0.97)介于榴辉岩和片麻岩之间,表明这一阶段的流体活动中,流体的规模更为广泛。结合锆石中低的微量元素含梁特征,成脉流体应来自寄主岩石折返降压过程中经含水矿物脱水作用形成的富水流体。出现的该期流体导致了超高压岩石由高压榴辉岩相至角内岩相的退变质作用。
     (5)柴北缘锡铁山超高压变质地体的一套长英质浅色脉体、寄主榴辉岩和围岩片麻岩中锆石形态学、U-Pb年龄、微量元素、Hf-O同位素的研究揭示:石英脉中自形振荡环带的锆石具有高的U、Li、Th、Nb、Ta和REEs含量,其形成时间为442±6Ma,与超高压变质时间一致。锆石可能形成自近超高压变质峰期的超临界流体。这些振荡环带的锆有着与围岩片麻岩相似的Lu-Hf同位素组成,但是其O同位素介于片麻岩与寄主榴辉岩之间,这表明来自围岩片麻岩的流体为超临界流体,对Lu和Hf有较强的运移能力,而来自榴辉岩的流体为对微量元素运移能力弱的富水流体。长石石英脉中,锆石U-Pb年龄为420Ma,与锡铁山麻粒岩相变质时间一致,微量元素上强烈富集HREEs,锆石结晶自含水熔体。锆石的Hf-O同位素组成介于围岩片麻岩和寄主榴辉岩之间,但片麻岩占主体。因此,锡铁山超高压地体的片麻岩和榴辉岩在折返过程中的麻粒岩相阶段约420Ma都发生了部分熔融作用,发生部分熔融形成的含水熔体主体来自围岩片麻岩,含水熔体能迁移较远距离。
     (6)大陆深俯冲过程中的洋-陆耦合俯冲-折返过程表明,洋壳类型岩石与陆壳类型岩石经历超高压变质作用时间上是连续的,低密度的陆壳高压-超高压岩石及蛇纹石化橄榄岩可能对于同时期俯冲的高密度洋壳岩石的抬升和保存起到了重要的携带者的作用。大陆深俯冲形成的低温-超高压变质地体的流体以富水流体为主,发生在折返过程中的流体活动是多阶段的,富水流体的出现促进了超高压岩石的退变质作用。中温-超高压变质地体中可以出现超临界流体及含水熔体,超临界流体出现在近超高压变质作用峰期的初始折返阶段,含水熔体出现在麻粒岩相叠加阶段。超临界流体和含水熔体都能脱离寄主岩石,迁移较远的距离,能够运移俯冲板片中的元素和水进入地幔楔,导致了地幔楔发生部分熔融,最终导致具有典型地球化学特征的岛弧岩浆岩出现。
The study of deeply subducted continental is forefront subject to advance the plate tectonic theory. It has been realized recently that sufficient attention must be paid to processes of the subduction and exhumation of continental and oceanic crust, and intra-slab fluid flow and chemical changes. HP-UHP metamorphic rocks, including both continental and residual oceanic protolith, have been well recognized to occur in the Western Dabie orogen in the east of China and the North Qaidam orogen in the west of China, which is a wonderful target to investigate exhumation and fluid-rock interaction of subducted slab during the continental collision. By taking advantage of in situ zircon U-Pb age, trace element, Lu-Hf isotope and O isotope composition were carried out. Available results from this study can be summarized as follows:
     (1) There are two types of HP-eclogites in the Huwan shear zone. U-Pb age of residued magmatic zircon in an eclogite constrain its protolith formation at411±4Ma. The zircon in this sample displays εHf(t) values up to+14.4. The positive εHf(t) value suggests that the protolith was derived from a relatively depleted mantle source, most likely Late Silurian Paleotethyan oceanic crust. Whereas a granitic gneiss and the other eclogite yield protolith U-Pb ages of738±6and700±14Ma, respectively, which are both the Neoproterozoic basement rocks of the Yangtze Block. The zircon in the eclogite has εHf(t) values of-1.0to+7.4and TDMI ages of1294to966Ma, implying prompt reworking of juvenile crust during its protolith formation. Metamorphic zircon in both eclogite samples displays low Th/U ratios, trace element concentrations, relatively flat HREE patterns, weak negative Eu anomalies, and low176Lu/177Hf ratios. All these features suggest that both the oceanic and continental crustal rocks in the Huwan shear zone have experienced Carboniferous eclogite facies metamorphism at ca.310Ma. The HP continental rocks in the Huwan shear zone might have played a key role in the exhumation and preservation of the oceanic rocks through buoyancy-driven uplift.
     (2) Magmatic zircons in the amphibolite yielded protolith U-Pb age of1806±63Ma. Metamorphic zircons in a quartz-rich leucosome and the amphibolite gave weighted mean206Pb/238U ages of241±1Ma and243±4Ma, respectively. These metamorphic zircons contain mineral inclusions of garnet and omphacite, and are characterized by relatively flat HREE patterns with slight negative Eu anomalies. This indicates that they formed under eclogite facies conditions. The zircons in the amphibolite show a negative εHf(t) value of-16.3, suggesting that the protolith was derived from reworking of the ancient continental crust. The U-Pb age of ca.243Ma is consistent with eclogite-facies metamorphic ages of the juvenile oceanic crust in the western Dabie orogen, suggesting that the initiation of continental subduction for high-pressure metamorphism of the Dabie orogen can be traced back to ca.243Ma. The western Dabie HP-UHP slices might suffer from multi-slice or differential subduction and exhumation during the Triassic.
     (3) The first record of coesite is reported as an inclusion in a metamorphic zircon, which provides unambiguous evidence for the UHP metamorphism of the Xitieshan terrane. Combined with previous results, the HP-UHP metamorphism of the Xitieshan terrane may have lasted460-440Ma with the peak UHP metamorphism at441±9Ma. A compilation of the reported geochronological data reveals that all four terranes of the North Qaidam orogen might have experienced coeval UHP metamorphism during the early Paleozoic(420-450Ma), and thus may have suffered a coherent subduction, UHP metamorphism, and exhumation cycle. U-Pb age of zircon in an serpentinised harzburgite from Dulan terrane is448±9Ma. It consists with the metamorphic zircon U-Pb age of Ky-eclogite (455±5Ma). Both the oceanic-and continental-type rocks in the North Qaidam belt share the same episode HP-UHP metamorphism, suggesting a model of continuous processes from oceanic to continental subduction. Buoyancy of low density serpentinites and continental rocks likely contributed to the exhumation of higher density mafic oceanic rocks.
     (4) In situ zircon U-Pb age, trace element, and O-Hf isotope were carried out of difference quartz veins from the Xinxian UHP unit of the west Dabie orogen. The LT-UHP rocks of the west Dabie might experiment two episodes of fluid activity during exhumation stage. The zircons of quartz vein hosting by granitic gnesiss and eclogite have206Pb/238U ages for214.5±3.1Ma and213.8±2.4Ma, respectively. It suggests the second episode fluid flow occurred at ca.215Ma, responding to the stage from HP eclogite-facies to amphibolite-facies during exhumation. The zircons have consistent O isotope compositions with the zircons from their hosting rocks, but variable in Hf isotope. The zircon of quartz vein within gneiss display low εHf(t) value of-5.92. Whereas the zircon of quartz vein within eclogite have εHf(t) value of-0.97. The fluid might be aqueous fluid derived from the decomposition of hydrous minerals of hosting rocks. The pervasive fluid flow results in HP-eclogite-to amphibolite-facies retrogression.
     (5) Integrated study of in situ U-Pb age, trace element, and O-Hf isotope for zircons from a suite of metamorphic rocks including a quartz vein, a host eclogite, and a surrounding granitic gneiss in the Xitieshan UHP terrane of the North Qaidam orogen decipher: Oscillatory zoning zircons from the quartz vein show euhedral shape, relatively high contents of U, Li, Th, Nb, Ta and REEs, with a formation age of442±6Ma consistent with the timing of UHP metamorphism. This demonstrates that the zircons grew very probably from a channelized supercritical fluid close to the peak of UHP metamorphism. In particular, the oscillatory zoning zircons have similar Lu-Hf isotope compositions to zircons from the surrounding gneiss, but variable O isotope compositions between the host eclogite and the surrounding gneiss. Therefore, it is implied that the fluid from the surrounded gneisses was a supercritical fluid with high transport ability for Lu and Hf, while the fluid from the host eclogites was an aqueous fluid without significantly transport such elements. In contrast, both of them have a great ability to carry O. Both eclogite and gneiss from Xitieshan terrane suffered pervasive partial melting during exhumation to the HP granulite-facies regime. Most hydrous melt derived from country gneiss at this stage. The hydours melt can escape the surrounding granitic gneiss for a long distance.
     (6) Oceanic-and continental rocks (or serpentinised peridotite) can share coupled subduction-exhumation cycle. It suggests that the low density continental rocks and serpentinised peridotites might have played a key role in the exhumation and preservation of the higher density oceanic rocks through buoyancy-driven uplift. The fluids in the LT/UHP terrane mainly derived from multistage aqueous fluids pulse during deeply subductionof continental crust. Occurrence of aqueous fluids can enhance retrograde metamorphism of UHP rocks. Supercritical fluids and hydrous melts can be found in the MT/UHP terrane. The supercritical fluid formed at the initial exhumation stage of UHP rocks and hydours melt formed at HP granulite-facies regime. The supercritical fluid that incorporates these two types of fluid is fed to the overlying mantle wedge from the subducting slab. This process not only transport elements and water from the subducting slab to the mantle wedge, but also triggers the melting of the mantle wedge, which leads to the generation of island arc magmatism with the typical geochemical signatures.
引文
[I]Liou J G, Zhang R Y, Liu F L, et al. Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China[J]. American Mineralogist.2012,97(10):1533-1543.
    [2]Chopin C. Coesite and pure pyrope in high-grade blueschists of the Western Alps:a first record and some consequences[J]. Contributions to Mineralogy and Petrology.1984,86(2): 107-118.
    [3]Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics[J]. Nature.1984,310(5979):641-644.
    [4]Sobolev N V, Shatsky V S. Diamond inclusions in garnets from metamorphic rocks:a new environment for diamond formation[J]. Nature.1990,343(6260):742-746.
    [5]Xu S T, Su W, Liu Y C, et al. Diamond from the dabie shan metamorphic rocks and its implication for tectonic setting[J]. Science.1992,256(5053):80-82.
    [6]Dobrzhinetskaya L, Green H W, Wang S. Alpe Arami:A periodotite massif from depths of more than 300 kilometers[J]. Science.1996,271(5257):1841-1845.
    [7]Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km[J]. Nature.2000,407(6805):734-736.
    [8]Liu L, Zhang J F, Green H W, et al. Evidence of former stishovite in metamorphosed sediments, implying subduction to>350 km[J]. Earth and Planetary Science Letters.2007, 263(3):180-191.
    [9]Carswell D A, Compagnoni R. Ultrahigh pressure metamorphism[M]. Eotvos University Press,2003:508.
    [10]Coleman R G, Wang X. Ultrahigh pressure metamorphism[M]. Cambridge:Cambridge University Press,1995:528.
    [11]Hacker B R, Liou J G. When continents collide:geodynamics and geochemistry of ultrahigh-pressure rocks[M]. Dordrecht:Kluwer Academic Publishers,1998:323.
    [12]郑永飞.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报.2008,53(18):2129-2152.
    [13]Liou J G, Ernst W G, Song S G, et al. Tectonics and HP-UHP metamorphism of northern Tibet-Preface[J]. Journal of Asian Earth Sciences.2009,35(3):191-198.
    [14]Cong B L. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China[M]. Beijing:Science Press,1996:223.
    [15]Xu Z Q, Zeng L S, Liu F L, et al. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane[J]. Geological Society of America Special Papers.2006,403:93-113.
    [16]Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology.2011,29(9):1019-1031.
    [17]Yang J S, Zhang J X, Wu C L, et al. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model[J]. Terra Nova. 2002,14(5):397-404.
    [18]Song S G, Yang J S, Liou J G, et al. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China[J]. Lithos.2003,70(3): 195-211.
    [19]Liu L, Sun Y, Xiao P X, et al. Discovery of ultrahighpressure magnesite-bearing garnet lherzolite (> 3.8 GPa) in the Altyn Tagh, Northwest China[J]. Chinese Science Bulletin. 2002,47(11):881-886.
    [20]Zhang L F, Ellis D J, Jiang W B. Ultrahigh-pressure metamorphism in western Tianshan, China:Part Ⅰ. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites[J]. American Mineralogist.2002,87(7): 853-860.
    [21]Zheng Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology.2012.
    [22]Warren C J. Exhumation of (ultra-) high-pressure terranes:concepts and mechanisms[J]. Solid Earth.2013,4:75-92.
    [23]Liou J G, Tsujimori T, Zhang R Y, et al. Global UHP metamorphism and continental subduction/collision:The Himalayan model[J]. International Geology Review.2004,46(1): 1-27.
    [24]Rubatto D, Regis D, Hermann J, et al. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps[J]. Nature Geoscience.2011,4(5):338-342.
    [25]Herwartz D, Nagel T J, Munker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience.2011,4(3):178-183.
    [26]Kylander-Clark A R, Hacker B R, Mattinson C G. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage[J]. Earth and Planetary Science Letters. 2012,321:115-120.
    [27]Beltrando M, Hermann J, Lister G, et al. On the evolution of orogens:Pressure cycles and deformation mode switches[J]. Earth and Planetary Science Letters.2007,256(3):372-388.
    [28]郑永飞,叶凯,张立飞.发展板块构造:从洋壳俯冲到大陆碰撞[J].科学通报.2009(13):1799-1803.
    [29]Walsh E O, Hacker B R. The fate of subducted continental margins:Two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss Region, Norway[J]. Journal of Metamorphic Geology.2004,22(7):671-687.
    [30]Agard P, Yamato P, Jolivet L, et al. Exhumation of oceanic blueschists and eclogites in subduction zones:timing and mechanisms[J]. Earth-Science Reviews.2009,92(1):53-79.
    [31]Ernst W G. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices—implications for arcs and continental growth[J]. Physics of the Earth and Planetary Interiors.2001,127(1):253-275.
    [32]Ernst W G, Maruyama S, Wallis S. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust[J]. Proceedings of the National Academy of Sciences.1997,94(18):9532-9537.
    [33]Ringwood A E. Phase transformations and their bearing on the constitution and dynamics of the mantle[J]. Geochimica et Cosmochimica Acta.1991,55(8):2083-2110.
    [34]Wu Y, Fei Y W, Jin Z M, et al. The fate of subducted upper continental crust:an experimental study[J]. Earth and Planetary Science Letters.2009,282(1):275-284.
    [35]张立飞,吕增,张贵宾,等.大洋型超高压变质带的地质特征及其研究意义:以西南天山、柴北缘超高压变质带为例[J].科学通报.2008,53(18):2166-2175.
    [36]Lapen T J, Johnson C M, Baumgartner L P, et al. Coupling of oceanic and continental crust during Eocene eclogite-facies metamorphism:evidence from the Monte Rosa nappe, western Alps[J]. Contributions to Mineralogy and Petrology.2007,153(2):139-157.
    [37]Wu Y B, Hanchar J M, Gao S, et al. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China[J]. Earth and Planetary Science Letters.2009,277(3):345-354.
    [38]Zhang G B, Song S G, Zhang L F, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China:evidence from petrology, geochemistry and geochronology[J]. Lithos.2008,104(1):99-118.
    [39]Zheng Y F. Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks[J]. Journal of the Geological Society.2009,166(4): 763-782.
    [40]Bureau H, Keppler H. Complete miscibility between silicate melts and hydrous fluids in the upper mantle:experimental evidence and geochemical implications[J]. Earth and Planetary Science Letters.1999,165(2):187-196.
    [41]Hermann J, Spandler C, Hack A, et al. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones[J]. Lithos.2006,92(3):399-417.
    [42]Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters.2004,223(1):1-16.
    [43]Mibe K, Kawamoto T, Matsukage K N, et al. Slab melting versus slab dehydration in subduction-zone magmatism[J]. Proceedings of the National Academy of Sciences.2011, 108(20):8177-8182.
    [44]Shen A H, Keppler H. Direct observation of complete miscibility in the albite-H2O system[J]. Nature.1997,385(6618):710-712.
    [45]Stalder R, Ulmer P, Thompson A B, et al. Experimental approach to constrain second critical end points in fluid/silicate systems:Near-solidus fluids and melts in the system albite-H2O[J]. American Mineralogist.2000,85(1):68-77.
    [46]Hack A C, Thompson A B, Aerts M. Phase relations involving hydrous silicate melts, aqueous fluids, and minerals[J]. Reviews in Mineralogy and Geochemistry.2007,65(1): 129-185.
    [47]Xia Q X, Zheng Y F, Zhou L G. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen[J]. Chemical geology.2008,247(1-2):36-65.
    [48]Zhao Z F, Zheng Y F, Chen R X, et al. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision[J]. Geochimica et Cosmochimica Acta.2007,71(21):5244-5266.
    [49]Green D H. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions[J]. Earth and Planetary Science Letters.1973,19(1):37-53.
    [50]Nichols G T, Wyllie P J, Stern C R. Subduction zone melting of pelagic sediments constrained by melting experiments[J]. Nature.1994,371(6500):785-788.
    [51]Schmidt M W, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures:the key role of white mica[J]. Earth and Planetary Science Letters.2004, 228(1):65-84.
    [52]Holtz F, Becker A, Freise M, et al. The water-undersaturated and dry Qz-Ab-Or system revisited. Experimental results at very low water activities and geological implications[J]. Contributions to Mineralogy and Petrology.2001,141(3):347-357.
    [53]Huang W L, Wyllie P J. Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota[J]. Journal of Geophysical Research. 1981,86(B11):10515.
    [54]Zheng Y F, Xia Q X, Chen R X, et al. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision[J]. Earth-Science Reviews.2011,107(3):342-374.
    [55]Kessel R, Ulmer P, Pettke T, et al. The water-basalt system at 4 to 6 GPa:Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400℃[J]. Earth and Planetary Science Letters.2005,237(3):873-892.
    [56]Grove T L, Chatterjee N, Parman S W, et al. The influence of H2O on mantle wedge melting[J]. Earth and Planetary Science Letters.2006,249:74-89.
    [57]Beinlich A, Klemd R, John T, et al. Trace-element mobilization during Ca-metasomatism along a major fluid conduit:Eclogitization of blueschist as a consequence of fluid-rock interaction[J]. Geochimica et Cosmochimica Acta.2010,74(6):1892-1922.
    [58]Gao J, John T, Klemd R, et al. Mobilization of Ti-Nb-Ta during subduction:evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China[J]. Geochimica et Cosmochimica Acta.2007,71(20):4974-4996.
    [59]Ishikawa T, Fujisawa S, Nagaishi K, et al. Trace element characteristics of the fluid liberated from amphibolite-facies slab:Inference from the metamorphic sole beneath the Oman ophiolite and implication for boninite genesis[J]. Earth and Planetary Science Letters. 2005,240(2):355-377.
    [60]John T, Klemd R, Gao J, et al. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China)[J]. Lithos.2008,103(1):1-24.
    [61]Wei C J, Li Y J, Yu Y, et al. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the Western Dabieshan Terrane, Central China[J]. Journal of Metamorphic Geology.2010,28(6):647-666.
    [62]Kessel R, Schmidt M W, Ulmer P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature.2005,437(7059):724-727.
    [63]Zhang C, Zhang L F, Roermund H V, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences.2011,42(4):752-767.
    [64]Zhang J X, Yang J S, Mattinson C G, et al. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotopic constraints[J]. Lithos.2005,84(1):51-76.
    [65]Wyllie P J, Ryabchikov I D. Volatile components, magmas, and critical fluids in upwelling mantle[J]. Journal of Petrology.2000,41(7):1195-1206.
    [66]Zhang Z M, Shen K, Sun W D, et al. Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China[J]. Geochimica et Cosmochimica Acta.2008,72(13):3200-3228.
    [67]Oliver N. Review and classification of structural controls on fluid flow during regional metamorphism[J]. Journal of Metamorphic Geology.2003,14(4):477-492.
    [68]Harley S L, Kelly N M, Moller A. Zircon behaviour and the thermal histories of mountain chains[J]. Elements.2007,3(1):25-30.
    [69]Hermann J, Rubatto D, Korsakov A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan)[J]. Contributions to Mineralogy and Petrology.2001,141(1):66-82.
    [70]Valley J W. Oxygen isotopes in zircon[J]. Reviews in mineralogy and geochemistry.2003, 53(1):343-385.
    [71]Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science.2005,308(5723):841-844.
    [72]Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology.2001,172(1): 5-24.
    [73]Lee J K, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature.1997, 390(6656):159-162.
    [74]Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry:applications and limitations[J]. Contributions to Mineralogy and Petrology.2008,156(2):197-215.
    [75]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology.2006,151(4):413-433.
    [76]Flowerdew M J, Millar I L, Vaughan A P, et al. The source of granitic gneisses and migmatites in the Antarctic Peninsula:a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons[J]. Contributions to Mineralogy and Petrology.2006, 151(6):751-768.
    [77]Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters.2005,240(2):378-400.
    [78]Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology.2007,153(2):177-190.
    [79]Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology.2006,231(1):135-158.
    [80]Hawkesworth C J, Kemp A. Evolution of the continental crust[J]. Nature.2006,443(7113): 811-817.
    [81]Cawood P A, Nemchin A A, Strachan R, et al. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia[J]. Journal of the Geological Society.2007,164(2):257-275.
    [82]Fraser G, Ellis D, Eggins S. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks[J]. Geology.1997,25(7): 607-610.
    [83]Baldwin J A, Brown M. Age and duration of ultrahigh-temperature metamorphism in the Anapolis-Itaucu Complex, Southern Brasilia Belt, central Brazil-constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry[J]. Journal of Metamorphic Geology.2008,26(2):213-233.
    [84]Hoskin P, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology.2000,18(4):423-439.
    [85]Liati A, Gebauer D. Constraining the prograde and retrograde PTt path of Eocene H P rocks by SHRIMP dating of different zircon domains:inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece[J]. Contributions to Mineralogy and Petrology.1999,135(4):340-354.
    [86]Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology.2002,184(1):123-138.
    [87]Whitehouse M J, Platt J P. Dating high-grade metamorphism--constraints from rare-earth elements in zircon and garnet[J]. Contributions to Mineralogy and Petrology.2003,145(1): 61-74.
    [88]Wu Y B, Zheng Y F, Zhao Z F, et al. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen[J]. Geochimica et Cosmochimica Acta.2006,70(14):3743-3761.
    [89]Gebauer D, Schertl H, Brix M, et al.35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps[J]. Lithos. 1997,41(1):5-24.
    [90]Bingen B, Austrheim H, Whitehouse M. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology[J]. Journal of Petrology.2001,42(2):355-375.
    [91]Martin L A, Duchene S, Deloule E, et al. Mobility of trace elements and oxygen in zircon during metamorphism:Consequences for geochemical tracing[J]. Earth and Planetary Science Letters.2008,267(1):161-174.
    [92]Rubatto D, Williams I S, Buick I S. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia[J]. Contributions to Mineralogy and Petrology.2001,140(4):458-468.
    [93]Slama J, Kosler J, Pedersen R B. Behaviour of zircon in high-grade metamorphic rocks: evidence from Hf isotopes, trace elements and textural studies[J]. Contributions to Mineralogy and Petrology.2007,154(3):335-356.
    [94]Moller A, O Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh-temperature granulites of Rogaland (SW Norway) [J]. Geological Society, London, Special Publications. 2003,220(1):65-81.
    [95]Xia Q X, Zheng Y F, Yuan H L, et al. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China[J]. Lithos.2009,112(3):477-496.
    [96]Cheng H, King R L, Nakamura E, et al. Transitional time of oceanic to continental subduction in the Dabie orogen:constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating[J]. Lithos.2009,110(1):327-342.
    [97]Fu B, Zheng Y F, Touret J L. Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China) [J]. Chemical Geology.2002,187(1):107-128.
    [98]Liu X C, Jahn B M, Liu D Y, et al. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an Block), China, and its tectonic implications[J]. Tectonophysics.2004,394(3):171-192.
    [99]高山,凌文黎,张本仁,等.大别山英山和熊店榴辉岩单颗粒锆石SHRIMP U—Pb年代学研究[J].地球科学:中国地质大学学报.2002,27(5):558-564.
    [100]Sun W D, Williams I S, Li S G. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China:Evidence for protracted convergence of the North and South China blocks[J]. Journal of Metamorphic Geology.2002,20(9):873-886.
    [101]Webb L E, Hacker B R, Ratschbacher L, et al. Theemochronologic constraints on deformation and cooling history of high-and ultrahigh-pressure rocks in the Qinling-Dabie orogen, eastern China[J]. Tectonics.1999,18(4):621-638.
    [102]Xu B.40Ar/39Ar thermochronology from the northwestern Dabie Shan:constraints on the evolution of Qinling Dabie orogenic belt, east-central China[J]. Tectonophysics.2000,322: 279-301.
    [103]Jahn B M, Liu X C, Yui T F, et al. High-pressure/ultrahigh-pressure eclogites from the Hong'an Block, East-Central China:geochemical characterization, isotope disequilibrium and geochronological controversy[J]. Contributions to Mineralogy and Petrology.2005, 149(5):499-526.
    [104]Ratschbacher L, Franz L, Enkelmann E, et al. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains[J]. Geological Society of America Special Papers.2006,403:45-75.
    [105]Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:evidence from zircon U-Pb age, trace element and Hf isotope composition[J]. Contributions to Mineralogy and Petrology.2008,155(1):123-133.
    [106]Cheng H, Dufrane S A, Vervoort J D, et al. The Triassic age for oceanic eclogites in the Dabie orogen:Entrainment of oceanic fragments in the continental subduction. Lithos.2010, 117(1):82-98.
    [107]Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters. 1998,161(1):215-230.
    [108]Liu X C, Wei C J, Li S Z, et al. Thermobaric structure of a traverse across western Dabieshan:implications for collision tectonics between the Sino-Korean and Yangtze cratons. Journal of Metamorphic Geology [J].2004,22(4):361-379.
    [109]Hacker B R, Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research:Solid Earth.2000,105(B6):13339-13364.
    [110]Zhong Z Q, Suo S T, You Z D. Regional-scale extensional tectonic pattern of ultrahigh-pressure and high-pressure metamorphic belts from the Dabie massif, China[J]. International Geology Review.1999,41(11):1033-1041.
    [111]Zhong Z Q, Suo S T, You Z D, et al. Major constituents of the Dabie collisional orogenic belt and partial melting in the ultrahigh-pressure unit[J]. International Geology Review. 2001,43(3):226-236.
    [112]Li S G, Huang F, Nie Y H, et al. Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie Orogen, Central China[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy.2001,26(9): 655-672.
    [113]Zhang R Y, Liou J G. Coesite-bearing eclogite in Henan Province, central China:detailed petrography, glaucophane stability and PT-path[J]. European Journal of Mineralogy.1994, 6(2):217-233.
    [114]Liu J B, Ye K, Sun M. Exhumation PT path of UHP eclogites in the Hong'an area, western Dabie Mountains, China[J]. Lithos.2006,89:154-173.
    [115]张景森,魏春景,周喜文.大别山西段含蓝闪石-蓝晶石榴辉岩的相平衡研究[J].岩石学报.2006,22(12):2861-2874.
    [116]Fu B, Kita N, Wilde S, et al. Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China[J]. Contributions to Mineralogy and Petrology.2013, 165(4):641-662.
    [117]李一良,郑永飞.大别山榴辉岩中石英脉的氧同位素研究[J].中国科学:D辑.2001,31(4):305-314.
    [118]Zhou L G, Xia Q X, Zheng Y F, et al. Multistage growth of garnet in ultrahigh-pressure eclogite during continental collision in the Dabie orogen:Constrained by trace elements and U-Pb ages[J]. Lithos.2011,127(1):101-127.
    [119]Zhang J X, Mattinson C G, Meng F C, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: Evidence from zircon U-Pb geochronology[J]. Geological Society of America Bulletin. 2008,120(5-6):732-749.
    [120]Zhang J X, Mattinson C G, Meng F C, et al. U-Pb geochronology of paragneisses and metabasite in the Xitieshan area, north Qaidam Mountains, western China:Constraints on the exhumation of HP/UHP metamorphic rocks[J]. Journal of Asian Earth Sciences.2009, 35(3):245-258.
    [121]宋述光,张聪,李献华,等.柴北缘超高压带中锡铁山榴辉岩的变质时代[J].岩石学报.2011,27(4):1191-1197.
    [122]Zhang C, van Roermund H, Zhang L F, et al. A polyphase metamorphic evolution for the Xitieshan paragneiss of the north Qaidam UHP metamorphic belt, western China:In-situ EMP monazite-and U-Pb zircon SHRIMP dating[J]. Lithos.2012,136:27-45.
    [123]Yang J J, Deng J F. Garnet peridotites and eclogites in the northern Qaidam Mountains, Tibetan plateau:a first record[C].1994.
    [124]Song S G, Zhang L F, Niu Y L, et al. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau:a record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth and Planetary Science Letters.2005,234(1):99-118.
    [125]Song S G, Niu Y L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China[J]. American Mineralogist. 2004,89(8-9):1330-1336.
    [126]Zhang G B, Ellis D J, Christy A G, et al. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China[J]. European Journal of Mineralogy.2009,21(6):1287-1300.
    [127]Song S G, Su L, Niu Y L, et al. Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction:a review[J]. Journal of Asian Earth Sciences.2009,35(3):285-297.
    [128]Song S G, Su L, Li X H, et al. Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research.2010,183(4):805-816.
    [129]Song S G, Yang J S, Xu Z Q, et al. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China[J]. Journal of Metamorphic Geology.2003,21(6):631-644.
    [130]Zhang J X, Mattinson C G, Yu S Y, et al. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of Metamorphic Geology.2010,28(9):955-978.
    [131]Zhang J X, Meng F C, Li J P, et al. Coesite in eclogite from the North Qaidam Mountains and its implications[J]. Chinese Science Bulletin.2009,54(6):1105-1110.
    [132]张贵宾,宋述光,张立飞,等.柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义[J].岩石学报.2006,21(4):1049-1058.
    [133]张贵宾,张立飞.柴北缘沙柳河地区洋壳超高压变质单元中异剥钙榴岩的发现及其地质意义[J].地学前缘.2011,18(2):151-157.
    [134]陈丹玲,孙勇,刘良.柴北缘野马滩超高压榴辉岩中副片麻岩夹层的锆石U-Pb定年及其地质意义.岩石学报.2008,24(5):1059-1067.
    [135]Mattinson C G, Wooden J L, Liou J G, et al. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China[J]. American Journal of Science.2006,306(9):683-711.
    [136]孟繁聪,张建新,杨经绥.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据[J].岩石学报.2005,21(001):45-56.
    [137]Wan Y S, Zhang J X, Yang J S, et al. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance[J]. Journal of Asian Earth Sciences.2006,28(2-3):174-184.
    [138]张聪,张立飞,张贵宾,等.柴.北缘锡铁山一带榴辉岩的岩石学特征及其退变PT轨迹[J].岩石学报.2009,25(9):2247-2259.
    [139]Zhang G B, Ellis D J, Christy A G, et al. Zr-in-rutile thermometry in HP/UHP eclogites from Western China[J]. Contributions to Mineralogy and Petrology.2010,160(3):427-439.
    [140]Zhang C, Zhang L F, Bader T, et al. Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China[J]. Journal of Asian Earth Sciences.2012.
    [141]孟繁聪,张建新,杨经绥,等.柴北缘锡铁山榴辉岩的地球化学特征[J].岩石学报.2004,19(3):435-442.
    [142]Corfu F, Hanchar J M, Hoskin P W, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry.2003,53(1):469-500.
    [143]Xiong Q, Zheng J P, Griffin W L, et al. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-mantle coupling and early Paleozoic convergent plate-margin processes[J]. Precambrian Research.2011,187(1):33-57.
    [144]Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of analytical atomic spectrometry.2008, 23(8):1093-1101.
    [145]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology.2010,51(1-2): 537-571.
    [146]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology.2008, 257(1):34-43.
    [147]Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin.2010,55(15): 1535-1546.
    [148]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter.1995,19(1):1-23.
    [149]Ludwig K R. Isoplot/Ex Version 3.00:a geological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication,70pp.2003,4.
    [150]Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochemistry Geophysics Geosystems.2009,10(4):Q4010.
    [151]Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology.2004,205(1):115-140.
    [152]Slama J, Kosler J, Condon D J, et al. Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology.2008,249(1):1-35.
    [153]Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique[J]. Journal of Analytical Atomic Spectrometry.2010, 25(7):1107-1113.
    [154]Stacey J T, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters.1975,26(2):207-221.
    [155]Williams I S. U-Th-Pb geochronology by ion microprobe[J]. Reviews in Economic Geology.1998,7(1):1-35.
    [156]De Bievre P, Taylor P. Table of the isotopic compositions of the elements[J]. International Journal of Mass Spectrometry and Ion Processes.1993,123:149-166.
    [157]Chu N, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry.2002,17(12):1567-1574.
    [158]Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research.2004,28(1):9-39.
    [159]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology.2008,247(1):100-118.
    [160]Scherer E, MUnker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science. 2001,293(5530):683-687.
    [161]Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters.2008,273(1): 48-57.
    [162]Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta.2000,64(1):133-147.
    [163]Nowell G M, Kempton P D, Noble S R, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry:insights into the depleted mantle[J]. Chemical Geology.1998,149(3):211-233.
    [164]Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos.2002, 61(3):237-269.
    [165]Li X H, Li W X, Li Q L, et al. Petrogenesis and tectonic significance of the-850 Ma Gangbian alkaline complex in South China:Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Lithos.2010,114(1):1-15.
    [166]Chopin C. Ultrahigh-pressure metamorphism:tracing continental crust into the mantle[J]. Earth and Planetary Science Letters.2003,212(1):1-14.
    [167]Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics.2003, 366(1):1-53.
    [168]简平,杨巍然.大别山西部熊店加里东期榴辉岩——同位纱地质年代学的证据[J].地质学报.1997,71(2):133-141.
    [169]简平,杨巍然.大别山西部河南罗山熊店加里东期榴辉岩锆石特征及SHRIMP分析结果[J].地质学报.2000,74(003):259-264.
    [170]Cherniak D J, Watson E B. Diffusion in zircon[J]. Reviews in mineralogy and geochemistry.2003,53(1):113-143.
    [171]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报.2004,49(16):1589-1604.
    [172]Rubatto D, Hermann J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):implications for Zr and Hf budget in subduction zones[J]. Geochimica et Cosmochimica Acta.2003,67(12):2173-2187.
    [173]Liu F L, Liou J G. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks[J]. Journal of Asian Earth Sciences.2011,40(1):1-39.
    [174]Liu F L, Gerdes A, Zeng L S, et al. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China[J]. Geochimica et Cosmochimica Acta.2008,72(12):2973-3000.
    [175]Liu F L, Liou J G, Xu Z Q. U-Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China:New interpretation[J]. American Mineralogist.2005,90(5-6):790-800.
    [176]Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology. 2007,154(4):429-437.
    [177]Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications.1989,42(1):313-345.
    [178]Chen R X, Zheng Y F, Xie L W. Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen[J]. Lithos.2010,114(1): 132-154.
    [179]Chen R X, Zheng Y F, Zhao Z F, et al. Zircon U-Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project[J]. Journal of Metamorphic Geology. 2007,25(8):873-894.
    [180]Andersson J, Moller C, Johansson L. Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden):a major Sveconorwegian terrane boundary in the Baltic Shield[J]. Precambrian Research.2002,114(1):121-147.
    [181]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime[J]. Earth-Science Reviews.2003,62(1):105-161.
    [182]Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta.2004,68(20):4145-4165.
    [183]Rubatto D, Gebauer D, Compagnoni R. Dating of eclogite-facies zircons:the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps) [J]. Earth and Planetary Science Letters.1999,167(3):141-158.
    [184]Hogdahl K, Gromet L P, Broman C. Low PT Caledonian resetting of U-rich Paleoproterozoic zircons, central Sweden[J]. American Mineralogist.2001,86(4):534-546.
    [185]Miller C, Konzett J, Tiepolo M, et al. Jadeite-gneiss from the Eclogite Zone, Tauern Window, Eastern Alps, Austria:Metamorphic, geochemical and zircon record of a sedimentary protolith[J]. Lithos.2007,93(1):68-88.
    [186]Wu Y B, Zheng Y F, Zhang S B, et al. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China:constraints on partial melting[J]. Journal of Metamorphic Geology.2007,25(9):991-1009.
    [187]Platt J P. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks[J]. Geological Society of America Bulletin.1986,97(9):1037-1053.
    [188]Hall P S, Kincaid C. Diapiric flow at subduction zones:A recipe for rapid transport. Science[J].2001,292(5526):2472-2475.
    [189]Cloos M. Thermal evolution of convergent plate margins:Thermal modeling and reevaluation of isotopic Ar-ages for blueschists in the Franciscan Complex of California[J]. Tectonics.1985,4(5):421-433.
    [190]Hermann J, Miintener O, Scambelluri M. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust[J]. Tectonophysics.2000,327(3):225-238.
    [191]Ernst W G. Preservation/exhumation of ultrahigh-pressure subduction complexes[J]. Lithos. 2006,92(3):321-335.
    [192]Schwartz S, Allemand P, Guillot S. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks:insights from the Monviso ophiolitic massif (Western Alps) [J]. Tectonophysics.2001,342(1):193-206.
    [193]Davies J H, von Blanckenburg F. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters.1995,129:85-102.
    [194]Beltrando M, Rubatto D, Manatschal G. From passive margins to orogens:The link between ocean-continent transition zones and (ultra) high-pressure metamorphism[J]. Geology.2010,38(6):559-562.
    [195]Brown M, Rushmer T. Evolution and differentiation of the continental crust[M]. Cambridge University Press,2006.
    [196]O'Brien P J. Subduction followed by collision:Alpine and Himalayan examples[J]. Physics of the Earth and Planetary Interiors.2001,127(1):277-291.
    [197]Song S G, Zhang L F, Niu Y L, et al. Evolution from oceanic subduction to continental collision:a case study from the Northern Tibetan Plateau based on geochemical and geochronological data[J]. Journal of Petrology.2006,47(3):435-455.
    [198]Ayers J C, Dunkle S, Gao S, et al. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite[J]. Chemical Geology.2002,186(3): 315-331.
    [199]Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites:Timing and processes[J]. Chemical Geology.1993, 109(1):89-111.
    [200]Li X P, Zheng Y F, Wu Y B, et al. Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating[J]. Contributions to Mineralogy and Petrology.2004,148(4):443-470.
    [201]Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology[J]. Earth and Planetary Science Letters.1997,151(3):191-203.
    [202]Cheng H, Dufrane S A, Vervoort J D, et al. Protracted oceanic subduction prior to continental subduction:New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen[J]. American Mineralogist.2010, 95(8-9):1214-1223.
    [203]Smith M, Gehrels G. Detrital zircon geochronology and the provenance of the Harmony and Valmy Formations, Roberts Mountains allochthon, Nevada[J]. Geological Society of America Bulletin.1994,106(7):968-979.
    [204]Liu X C, Jahn B M, Dong S W, et al. High-pressure metamorphic rocks from Tongbaishan, central China:U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism[J]. Lithos.2008,105(3):301-318.
    [205]Maruyama S, Tabata H, Nutman A P, et al. SHRIMP U-Pb geochronology of ultrahigh-pressure metamorphic rocks of the Dabie Mountains, Central China[J]. Continental Dynamics.1998,3(1-2):72-85.
    [206]Tang J, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J]. Precambrian Research. 2008,161(3):389-418.
    [207]Wu Y B, Zheng Y F, Gao S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen[J]. Lithos.2008,101(3):308-322.
    [208]Yang J S, Wooden J L, Wu C L, et al. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China[J]. Journal of Metamorphic Geology.2003,21(6):551-560.
    [209]Wu Y B, Gao S, Zhang H F, et al. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains:Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks[J]. American Mineralogist.2009, 94(2-3):303-312.
    [210]Zheng Y F, Gao T S, Wu Y B, et al. Fluid flow during exhumation of deeply subducted continental crust:zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite[J]. Journal of Metamorphic Geology.2007,25(2):267-283.
    [211]Cheng H, Zhang C, Vervoor J D, et al. New Lu-Hf and Sm-Nd geochronology constrains the subduction of oceanic crust during the Carboniferous-Permian in the Dabie orogen[J]. Journal of Asian Earth Sciences.2012.
    [212]Chemenda A I, Mattauer M, Bokun A N. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks:new modelling and field data from Oman[J]. Earth and Planetary Science Letters.1996,143(1):173-182.
    [213]Faure M, Lin W, Shu L S, et al. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks[J]. Terra Nova.2002,11(6):251-258.
    [214]Aegeansoftware. NoteExpress[DB/CD].2.0 ed.2005.
    [215]Liu Y C, Li S G, Xu S T. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust [J]. Lithos.2007,96(1):170-185.
    [216]Liu F L, Gerdes A, Xue H M. Differential subduction and exhumation of crustal slices in the Sulu HP-UHP metamorphic terrane:insights from mineral inclusions, trace elements, U-Pb and Lu-Hf isotope analyses of zircon in orthogneiss[J]. Journal of Metamorphic Geology.2009,27(9):805-825.
    [217]刘贻灿,李曙光.俯冲陆壳内部的拆离和超高压岩石的多板片差异折返:以大别-苏鲁造山带为例[J].科学通报.2009,53(18):2153-2165.
    [218]Wu Y B, Gao S, Liu X C, et al. Two-stage exhumation of ultrahigh-pressure metamorphic rocks from the western Dabie Orogen, central China[J]. The Journal of Geology.2011, 119(1):15-31.
    [219]陈丹玲,孙勇,刘良.柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J].地学前缘.2007,14(1):108-116.
    [220]Yang J S, Xu Z Q, Song S G, et al. Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China[J]. Comptes Rendus de l'Academie des Sciences-Series IIA-Earth and Planetary Science.2001,333(11):719-724.
    [221]Mattinson C G, Wooden J L, Zhang J X, et al. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China[J]. Journal of Asian Earth Sciences.2009,35(3):298-309.
    [222]Rubatto D, Hermann J. Zircon behaviour in deeply subducted rocks[J]. Elements.2007, 3(1):31-35.
    [223]Katayama I, Maruyama S, Parkinson C D, et al. Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan[J]. Earth and Planetary Science Letters.2001, 188(1):185-198.
    [224]Chopin C, Sobolev N V. Principal mineralogic indicators of UHP in crustal rocks[J]. Ultrahigh-pressure metamorphism.1995:96-133.
    [225]Hoskin P W, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in mineralogy and geochemistry.2003,53(1):27-62.
    [226]Song S G, Zhang L F, Chen J, et al. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China:Implications for ultradeep-origin and hydroxyl defects in mantle garnets[J]. American Mineralogist.2005,90(5-6):814-820.
    [227]Page F Z, Essene E J, Mukasa S B. Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures:Evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, USA[J]. American Mineralogist.2005,90(7):1092-1099.
    [228]Day H W, Mulcahy S R. Excess silica in omphacite and the formation of free silica in eclogite[J]. Journal of Metamorphic Geology.2007,25(1):37-50.
    [229]Xiong Q, Zheng J, Griffin W L, et al. Decoupling of U-Pb and Lu-Hf isotopes and trace elements in zircon from the UHP North Qaidam orogen, NE Tibet (China):Tracing the deep subduction of continental blocks[J]. Lithos.2012.
    [230]Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China[J]. Journal of Asian Earth Sciences.2009,35(3):259-272.
    [231]戚学祥,李海兵,吴才来,等.北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMP U-Pb定年及其地质意义[J].科学通报.2005,50(006):571-576.
    [232]Yang J, Liu F, Wu C, et al. Two ultrahigh-pressure metamorphic events recognized in the central orogenic belt of China:evidence from the U-Pb dating of Coesite-bearing zircons[J]. International Geology Review.2005,47(4):327-343.
    [233]Zhang G B, Zhang L F, Song S G, et al. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China[J]. Journal of Asian Earth Sciences.2009,35(3):310-322.
    [234]张建新,孟繁聪,于胜尧,等.柴北缘绿梁山高压基性麻粒岩的变质演化历史:岩石学及锆石SHRIMP年代学证据[J].地学前缘.2007,14(1):85-97.
    [235]Chen D L, Liu L, Sun Y, et al. Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China:Partial melting during exhumation[J]. Lithos.2011.
    [236]Leech M L, Singh S, Jain A K, et al. The onset of India-Asia continental collision:early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters.2005,234(1):83-97.
    [237]Parrish R R, Gough S J, Searle M P, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya[J]. Geology.2006,34(11):989-992.
    [238]Kylander-Clark A R, Hacker B R, Johnson C M, et al. Slow subduction of a thick ultrahigh-pressure terrane[J]. Tectonics.2009,28(2):C2003.
    [239]Kylander-Clark A, Hacker B R, Mattinson J M. Slow exhumation of UHP terranes:Titanite and rutile ages of the Western Gneiss Region, Norway[J]. Earth and Planetary Science Letters.2008,272(3):531-540.
    [240]Mcclelland W C, Power S E, Gilotti J A, et al. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides[J]. Geological Society of America Special Papers.2006,403:23-43.
    [241]Hacker B R, Wallis S R, Ratschbacher L, et al. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen[J]. Tectonics.2006,25(5):C5006.
    [242]Li S G, Jagoutz E, Chen Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta.2000,64(6): 1077-1093.
    [243]Guillot S, Hattori K H, de Sigoyer J. Mantle wedge serpentinization and exhumation of eclogites:insights from eastern Ladakh, northwest Himalaya[J]. Geology.2000,28(3): 199-202.
    [244]Yardley B, Gleeson S, Bruce S, et al. Origin of retrograde fluids in metamorphic rocks[J]. Journal of Geochemical Exploration.2000,69:281-285.
    [245]Miller J A, Cartwright I. Albite vein formation during exhumation of high-pressure terranes:a case study from alpine Corsica[J]. Journal of Metamorphic Geology.2006,24(5): 409-428.
    [246]Yardley B W. Earth science:Is there water in the deep continental crust? [J] Nature.1986, 323:111.
    [247]Eide E A, Liou J G. High-pressure blueschists and eclogites in Hong'an:a framework for addressing the evolution of high-and ultrahigh-pressure rocks in central China[J]. Lithos. 2000,52(1):1-22.
    [248]Sheng Y M, Zheng Y F, Li S N, et al. Element mobility during continental collision: insights from polymineralic metamorphic vein within UHP eclogite in the Dabie orogen[J]. Journal of Metamorphic Geology.2013,31(2):221-241.
    [249]Sheng Y M, Zheng Y F, Chen R X, et al. Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite:Insights from U-Pb ages, O-Hf isotopes and trace elements[J]. Lithos.2012,136:126-144.
    [250]张超,程昊.含榴花岗片麻岩Lu-Hf年代学初探[J].地球化学.2012,41(4):371-379.
    [251]Chen R X, Zheng Y F, Gong B, et al. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks:constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen[J]. Geochimica et Cosmochimica Acta. 2007,71(9):2299-2325.
    [252]Ferrando S, Frezzotti M L, Dallai L, et al. Multiphase solid inclusions in UHP rocks (Su-Lu, China):Remnants of supercritical silicate-rich aqueous fluids released during continental subduction[J]. Chemical Geology.2005,223(1):68-81.
    [253]Gao X Y, Zheng Y F, Chen Y X. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen:evidence from multiphase solid inclusions in garnet[J]. Journal of Metamorphic Geology.2012.
    [254]Xia Q X, Zheng Y F, Hu Z C. Trace elements in zircon and coexisting minerals from Iow-T/UHP metagranite in the Dabie orogen:Implications for action of supercritical fluid during continental subduction-zone metamorphism[J]. Lithos.2010,114(3):385-412.
    [255]魏春景,王式洗,张立飞,等.对中国中部超高压榴辉岩的PT轨迹及回返机制的新认识[J].岩石学报.1996,12(1):70-78.
    [256]娄玉行,魏春景,初航,等.西大别造山带红安高压榴辉岩的变质演化:岩相学与Na2O-CaO-K2O-FeO-MgO-AI2O3-SiO2-H2O-O (Fe2O3)体系中相平衡关系[J].岩石学报.2009,25(1):124-138.
    [257]Amelin Y, Lee D, Halliday A N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta.2000,64(24):4205-4225.
    [258]Hawkesworth C J, Hergt J M, Ellam R M, et al. Element fluxes associated with subduction related magmatism[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.1991,335(1638):393-405.
    [259]Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology.1998,145(3):325-394.
    [260]Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones[J]. Nature.1993,362(6422):739-743.
    [261]Chen Y X, Zheng Y F, Hu Z. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen[J]. Journal of Metamorphic Geology.2013.
    [262]Spandler C, Pettke T, Rubatto D. Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps:Implications for fluid flow in subduction zones[J]. Journal of Petrology.2011,52(6):1207-1236.
    [263]Spandler C, Hermann J. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones[J]. Lithos.2006,89(1):135-153.
    [264]Herms P, John T, Bakker R J, et al. Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex, Ecuador) [J]. Chemical Geology. 2012.
    [265]Hermann J, Green D H. Experimental constraints on high pressure melting in subducted crust[J]. Earth and Planetary Science Letters.2001,188(1):149-168.
    [266]Hermann J, Spandler C J. Sediment melts at sub-arc depths:an experimental study[J]. Journal of Petrology.2008,49(4):717-740.
    [267]Kawamoto T, Kanzaki M, Mibe K, et al. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism[J]. Proceedings of the National Academy of Sciences.2012,109(46):18695-18700.
    [268]Labrousse L, Prouteau G, Ganzhorn A. Continental exhumation triggered by partial melting at ultrahigh pressure[J]. Geology.2011,39(12):1171-1174.
    [269]Lang H M, Gilotti J A. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides[J]. Journal of Metamorphic Geology.2007,25(2):129-147.
    [270]Valley J W, Kinny P D, Schulze D J, et al. Zircon megacrysts from kimberlite:oxygen isotope variability among mantle melts[J]. Contributions to Mineralogy and Petrology.1998, 133(1):1-11.
    [271]Booth A L, Kolodny Y, Chamberlain C P, et al. Oxygen isotopic composition and U-Pb discordance in zircon[J]. Geochimica et cosmochimica acta.2005,69(20):4895-4905.
    [272]Gerdes A, Zeh A. Zircon formation versus zircon alteration—new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt[J]. Chemical Geology.2009, 261(3):230-243.
    [273]Chen Y X, Zheng Y F, Chen R X, et al. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism:Evidence from U-Pb ages, trace elements, and O-Hf isotopes[J]. Geochimica et Cosmochimica Acta. 2011,75(17):4877-4898.
    [274]Valley J W, Chiarenzelli J R, Mclelland J M. Oxygen isotope geochemistry of zircon[J]. Earth and Planetary Science Letters.1994,126(4):187-206.
    [275]Appleby S K, Gillespie M R, Graham C M, et al. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon[J]. Contributions to Mineralogy and Petrology.2010,160(1):115-132.
    [276]Mibe K, Kanzaki M, Kawamoto T, et al. Determination of the second critical end point in silicate-H2O systems using high-pressure and high-temperature X-ray radiography [J]. Geochimica et cosmochimica acta.2004,68(24):5189-5195.
    [277]Hoskin P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta.2005, 69(3):637-648.
    [278]Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology.1996,122(4):337-358.
    [279]Bebout G E, Barton M D. Metasomatism during subduction:products and possible paths in the Catalina Schist, California[J]. Chemical Geology.1993,108(1):61-92.
    [280]Scambelluri M, Pennacchioni G, Philippot P. Salt-rich aqueous fluids formed during eclogitization of metabasites in the Alpine continental crust (Austroalpine Mt. Emilius unit, Italian western Alps) [J]. Lithos.1998,43(3):151-167.
    [281]Jamtveit B, Austrheim H, Malthe-Sorenssen A. Accelerated hydration of the Earth's deep crust induced by stress perturbations[J]. Nature.2000,408(6808):75-78.
    [282]Yardley B, Bottrell S H. Silica mobility and fluid movement during metamorphism of the Connemara schists, lreland[J]. Journal of Metamorphic Geology.1992,10(3):453-464.
    [283]Cartwright I, Barnicoat A C. Stable isotope geochemistry of Alpine ophiolites:a window to ocean-floor hydrothermal alteration and constraints on fluid-rock interaction during high-pressure metamorphism[J]. International Journal of Earth Sciences.1999,88(2): 219-235.
    [284]Gao J, Klemd R. Primary fluids entrapped at blueschist to eclogite transition:evidence from the Tianshan meta-subduction complex in northwestern China[J]. Contributions to Mineralogy and Petrology.2001,142(1):1-14.
    [285]Scambelluri M, Philippot P. Deep fluids in subduction zones[J]. Lithos.2001,55(1): 213-227.
    [286]Auzanneau E, Vielzeuf D, Schmidt M W. Experimental evidence of decompression melting during exhumation of subducted continental crust[J]. Contributions to Mineralogy and Petrology.2006,152(2):125-148.
    [287]Liu F L, Robinson P T, Gerdes A, et al. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China:Constraints on the timing and nature of partial melting[J]. Lithos.2010,117(1): 247-268.
    [288]Hermann J. Experimental evidence for diamond-facies metamorphism in the Dora-Maira massif[J]. Lithos.2003,70(3):163-182.
    [289]Hermann J. Experimental constraints on phase relations in subducted continental crust[J]. Contributions to Mineralogy and Petrology.2002,143(2):219-235.
    [290]Zong K Q, Liu Y S, Hu Z C, et al. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane[J]. Lithos.2010,120(3):490-510.
    [291]Harris N, Ayres M, Massey J. Geochemistry of granitic melts produced during the incongruent melting of muscovite:implications for the extraction of Himalayan leucogranite magmas[J]. Journal of Geophysical Research:Solid Earth (1978 2012).1995, 100(B8):15767-15777.
    [292]Gao X Y, Zheng Y F, Chen Y X. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen:evidence from multiphase solid inclusions in garnet[J]. Journal of Metamorphic Geology.2012,30(2):193-212.
    [293]Stern R J. Subduction zones[J]. Reviews of Geophysics.2002,40(4):1012.
    [294]Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters.1998, 163(1):361-379.
    [295]Poli S, Schmidt M W. H2O transport and release in subduction zones:Experimental constraints on basaltic and andesitic systems[J]. Journal of Geophysical Research.1995, 100(B11):22222-22299,314.
    [296]Elliott T. Tracers of the slab[J]. Geophysical Monograph Series.2003,138:23-45.
    [297]Eiler J M, Carr M J, Reagan M, et al. Oxygen isotope constraints on the sources of Central American arc lavas[J]. Geochemistry Geophysics Geosystems.2005,6(7):Q7007.
    [298]Stockhert B, Duyster J, Trepmann C, et al. Microdiamond daughter crystals precipitated from supercritical COH+ silicate fluids included in garnet, Erzgebirge, Germany[J]. Geology.2001,29(5):391-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700