天水地区碎屑岩地球化学及其形成构造环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东、西秦岭的交接关系一直是地质学界研究的焦点之一。天水地区地处东、西秦岭以及祁连造山带交接转换部位,是探讨东、西秦岭以及祁连造山带对接关系的关键地区。该区以关子镇-武山蛇绿岩带为界,南北两侧前中生代具有不同岩石构造组合、变质变形历史,反映其各自具有不同的构造演化过程。北侧主要出露前寒武纪变质基底岩系,其上主要为下古生界李子园群(广义)绿片岩相变质的火山-沉积岩系。而南侧自北而南依次出露上泥盆统大草滩群和中上泥盆统舒家坝群。尽管已有的研究证明,关子镇-武山蛇绿岩带可与东秦岭商丹带相对比,但是关于关子镇-武山蛇绿岩带所揭示的板块构造及其演化意义,尚有许多疑义。两板块拼接过程中形成的碎屑岩系的深入研究,对于揭示商丹带的西延、关子-武山蛇绿岩的构造侵位时限,尤其是南北板块拼接时限、作用方式与过程都具有重要的科学意义。基于此,本文以大草滩碎屑岩系为重点,从其地质、地球化学入手,分析研究其形成环境及其构造意义,籍以限定商丹带的形成演化过程和时限。
     在广泛涉猎细粒碎屑岩地球化学在构造环境研究中的应用基础上,将细粒碎屑岩的形成环境分为四种:大洋岛弧、大陆岛弧、活动陆缘以及被动陆缘。在主量元素方面:大洋岛弧砂岩具有高的TFe_2O_3+MgO(8-14×10~(-2))、TiO_2(0.8-1.4×10~(-2))含量,低的Al_2O_3/SiO_2(0.24-0.33)、K_2O/Na_2O(0.2-0.4)比值。大陆岛弧砂岩与大洋岛弧相比,以较低的TFe_2O_3+MgO(5-8×10~(-2))、TiO_2(0.5-0.7×10~(-2))含量和较高的Al_2O_3/SiO_2(0.15-0.22)、K_2O/Na_2O(0.4-0.8)比值为特征。活动陆缘砂岩具有低的TFe_2O_3+MgO(2.5×10~(-2))、TiO_2(0.25-0.45×10~(-2))含量,K_2O/Na_2O≈1。被动陆缘砂岩一般富集SiO_2,贫Na_2O、CaO和TiO_2。在微量元素方面:大洋岛弧型砂岩以极低的La(8.72±2.5×10~(-6))、Th(2.27±0.7×10~(-6))、U(1.09±0.21×10~(-6))、Zr(96±20×10~(-6))、Nb(2.0±0.4×10~(-6))含量和Th/U(2.1±0.78×10~(-6))值,高的La/Sc(0.55±0.22)、La/Th(4.26±1.21、Ti/Zr(56.8±21.4)、Zr/Th(48.0±13.4)比值为特征。大陆岛弧砂岩的特征是La(24.4±2.3×10~(-6))、Th(11.1±1.1×10~(-6))、U(2.53±0.24×10~(-6))、Zr(229±27×10~(-6))和Nb(8.5±0.8×10~(-6))含量增加,用La-Th-Sc和La/Sc-Ti/Zr图解可以识别。活动陆缘砂岩与被动陆缘砂岩可用Th-Sc-Zr/10和Th-Co-Zr/10图解及相关参数Th/zr、Th/Sc等
The Tianshui area is located among the east Qinling, west Qinling and Qilian Mountains, which is a key to understand the tectonic regime and evolutionary history of the subduction and collision among three plates. The regional geology can be tectonicly divided into north and south tectonic belt with different rock associations, metamorphism and deformation by the Guanzizhen-Wushan ophiolitic melange belt. These differences show that the north and south tectonic belt has possessed different evolutionary history. The northern belt mainly consists of Precambrian metamorphic basement and Lower Paleozoic Liziyuan Group, which composed of metamorphic volcanic-sedimentary assemblage of greenschist facies. The southern tectonic belt mainly consists of Upper Devonian Dacaotan Group in north, and Middle-Upper Devonian Shuajiaba Group in south. Although many studies have documented the comparability of Guanzizhen-Wushan ophiolite zone and Shangdan zone, there are still much dispute on the plate tectonics and evolution history of the Guanzizhen-Wushan ophiolitic melange belt. The detailed study of the sedimentary rocks distributed along the suture zone, which was deposited during subduction-collision, is significant to reveal the westward extension of Shangdan zone, the process of the tectonic emplacement of Guanzizhen-Wushan ophiolite, especially the tectonic evolution of the south and north blocks. Based on the combined investigation of regional geology, sedimentary geology and structural geology, the geology and geochemistry of the Dacaotan Group were studied in this thesis. After all, the tectonic setting and implications of the clastic rocks as well as the restriction of evolution of Shangdan suture zone in the Tianshui area has been discussed.Based on the application of the study of how to discriminate the tectonic setting of fine grained clastic rocks by geochemistry, the tectonic setting of clastic rocks are classified into four types: oceanic island arc (OIA), continental island arc (CIA), active continental margin (ACM) and passive margin (PM). As for the major elements: OIA sandstones are characterized by the high abundances of TFe_2O_3+MgO(8-14×10~(-2)), TiO_2(0.8-1.4× 10~(-2)), and low Al_2O_3/SiO_2(0.24-0.33) and K_2O/Na_2O(0.2-0.4) ratios. The CIA sandstones can be distinguished from the OIA type by their lower TFe_2O_3+MgO(5-8×10~(-2)) and TiO_2(0.5-0.7
    × 10~(-2)), and higher Al2O3/SiO2(0.15-0.22) and K2O/Na2O(0.4-0.8). The ACM sandstones are characterized by low TFe2O3+MgO(2-5 × 10~(-2)), TiO2(0.25-0.45 × 10~(-2)) and K20/Na20 ration 1. PM sandstones are generally enriched in SiO2, and depleted in Na2O, CaO, and TiO2. As for the trace elements: OIA sandstones are characterized by extremely low abundances of La(8.72±2.5× 10~(-6)), Th(2.27±0.7 × 10~(-6)), U(1.09±0.21 X 10~6), Zr(96± 20× 10~(-6)), Nb(2.0±0.4× 10~(-6)), low Th/U(2.1 ± 0.78) and high La/Sc(0.55 ± 0.22), La/Th(4.26±1.2), Ti/Zr(56.8±21.4), Zr/Th(48.0±13.4) ratios. The CIA sandstones are characterized by high abundances of La(24.4±2.3× 10~(-6)), Th( 11.1 ±1.1 × 10~(-6)), U(2.53± 0.24× 10~(-6)), Zr(229±27× 10~(-6)) and Nb(8.5±0.8X 10'6), and can be easily identified by the La-Th-Sc and La/Sc-Ti/Zr diagrams. ACM and PM sandstones are discriminated by the Th-Sc-Zr/10 and Th-Co-Zr/10 diagrams and associated parameters of Th/Zr, Th/Sc et al. In general, with high abundance of Zr(298±80× 10~(-6)), Zr/Th(19.1 ±5.8) and lower Ba(253± 64× 10~(-6)), Rb(61 ±19 × 10-6), Sr(66±22× 10~(-6)) and Ti/Zr(6.74±0.9) ratios, the PM type sandstones are distinguished from the ACM sandstones. As for the rare earth elements: OIA sandstones are characterrized by lower E REE abundance(58 ± 10 × 10~(-6)), slight enrichment of LREE, and the absence of a negative Eu anomaly(1.04±0.11). CIA sandstones are discriminated by higher £ REE abundance(146 ± 20 × 10~(-6)) , La/Yb ratio(ll ±3.6) and a slight negative Eu negative(0.79±0.13). Both of the ACM and PM sandstones are all characterized by the high EREE abundance (186× 10~(-6) and 21 O× 10~(-6)) and enrichment of LREE, and distinguished negative Eu anomaly(0.60 and 0.56).The Upper Devonian Dacaotan Group in Tianshui area is terrestrial coarse clastic deposit, including unmetamorphic heavy bedded-lumpy conglomerate, glutenite, middle-fine grained quartzose sandstone, pelitic siltstone, graywacke and heterogeneous metamorphic greenschist, chlorite-quartz schist and phyllite, which are reconstructed as graywackes. Geochemistry of the meta-sandstones can be described as follows: the useful discriminating parameters such as the abundances of total Fe2O3(5.71-8.39 * 10'2), TiO2(0.6-0.82 * 10'2) and Al2O3/SiO2(0.15-0.24) ratio are similar to the sandstones depositing in a CIA setting. Most of samples from Tianshui area are plotted into the field of the island arc and/or ACM setting by using discrimination diagrams for major elements of sandstones. The abundances of Th(ll.68-17.36 × 10~(-6)), Zr( 174-295 × 10~(-6)), Hf(4.8-8.5 * 10"6), Sc(ll. 1-19.3 * 10"6),V(70 -146 × 10~(-6)), Zn(59.6-86.0 x 10'6) and the La/Th(l.85-2.80), La/Sc(l.95-3.20), Th/Sc(0.90-1.55), Ti/Zr( 12.88-20.71), and Zr/Hf(33.59-41.11) ratios suggest that the Tianshui sandstones were formed in a CIA setting and/or ACM setting. The useful discrimination diagrams show that most of samples of the sandstones are dropping into the field of the island arc area. In addition to, they are characterized by the higher E REE(116-233 * 10"6)
    abundance and enrichment of LREE, and higher negative Eu (Eu/Eu*=0.61-0.68) anomaly. Especially the chondrite-normalized REE patterns indicate that they are accordant with that of the CIA or the ACM sandstones. Although there are a lot of dispute on the interpretations and implications of the geochemistory of the sandstones, the geochemistry of the sandstones from Tianshui area were studied in details, especially combined with the studies of sedimentary geology and regional geology. It is reasonablly inferred that the Upper Devonian sandstones from the Tianshui area were formed in a foreland basin setting, which implies that the contact between North China block and Qinling block were not later than late Devonian.
引文
1.蔡立国,刘和甫,扬子周缘前陆盆地及类型[J],地球科学(中国地大),1996,21(4):433-440.
    2.曹宣铎,张瑞林,张汉文等,秦巴泥盆纪地层及重要含矿层位形成环境的研究,西安:陕西科学技术出版社,1990.
    3.陈刚,中生代鄂尔多斯盆地陆源碎屑成分及其构造属性[J],沉积学报,1999,17(3):409-413.
    4.董云鹏,周鼎武,张国伟,东秦岭松树沟超镁铁岩侵位机制及其构造演化[J],地质科学,1997,32(2):173-180.
    5.董云鹏,周鼎武,张国伟等,秦岭造山带南缘早古生代基性火山岩地球化学特征及其大地构造意义[J],地球化学,1998,27(5):432-441.
    6.董云鹏,张国伟,赖绍聪等,随州花山蛇绿构造混杂岩的厘定及其大地构造意义[J].中国科学(D辑),1999,29(3):222-231.
    7.董云鹏,张国伟,赵霞等,北秦岭元古代构造格架与演化[J],大地构造与成矿学,2003,27(2):115-124.
    8.董云鹏,张国伟,朱柄泉,北秦岭构造属性与元古代构造演化[J],地球学报,2003,24(1):3-10.
    9.丁仨平,裴先治,李勇等,西秦岭天水地区“李子园群”的解体及其构造环境浅析[J],地质通报,2004,23(12):1209-1214.
    10.杜远生,西秦岭北带泥盆纪前陆盆地的沉积特征及盆地格局[J],岩相古地理,1995,4:15-28.
    11.杜远生,秦岭造山带泥盆纪沉积地质学研究[M],武汉:中国地质大学出版社,1997.
    12.杜远生,殷鸿福,王治平,秦岭造山带晚加里东—早海西期的盆地格局与构造演化[J],地球科学,1997,22(4):401-405.
    13.方国庆,K_2O/(Na_2O+CaO)-SiO_2/Al_2O_3一个用于推断复理石形成时板块构造背景判别图[J],西北地质科学,1993,74(1):121-125.
    14.冯益民,曹宣铎,张二朋等,西秦岭造山带结构、造山过程及动力学[M],西安:西安地图出版社,2002.
    15.冯益民,曹宣铎,张二朋等,西秦岭造山带的演化、构造格局和性质[J],西北地质,2003,36(1):1-10.
    16.甘肃省区域地质志[M],北京:地质出版社,1989.
    17.高长林,吉让寿,秦德余等,陕南泥盆纪前陆盆地的地球化学特征[J],石油实验地质,1991,4:325-338.
    18.高山,张本仁等,华北与扬子板块志留—泥盆纪对接的沉积地球化学证据[J],中国科学(B辑),1991(6):645-651.
    19.霍福臣,李永军,西秦岭造山带的建造与地质演化[M],西安:西北大学出版社,1995.
    20.霍福臣,李永军.西秦岭造山带的演化[J],甘肃地质学报,1996,5(1):1-15.
    21.贾承造,施央申,郭令智,东秦岭板块构造[M],南京:南京大学出版社,1988.
    22.李继亮,碰撞造山带大地构造相,现代地质学论文集(上),南京:南京大学出版社,1992:9~21.
    23.李晋僧,曹宣铎,杨家碌等,秦岭显生宙海盆沉积和演化史[M],北京:地质出版社,1994.
    24.李锦轶,牛宝贵,刘志刚等,蔡岭西段天水一带李子园群变质变形时代的~(40)Ar-~(39)Ar年代学证据[J],中国区域地质,1997,16(1):21-25.
    25.李任伟,沉积地球化学[A].见:欧阳自远,倪集众,相仁杰,地球化学:历史,现状和发展趋势[C],北京:原子能出版社,1996:86-96.
    26.李曙光,秦岭—大别山带构造演化的同位素年代学及地球化学.见:中国同位素地球化学研究(于津生,李耀菘主编),北京:科学出版社,1997.
    27.李曙光,大陆俯冲化学地球动力学[J],地学前缘,1998,5(4):211-233.
    28.李曙光,Hart S.R.,郑双根等,中国华北、华南陆块碰撞时代的衫一铱同位素年龄证据[J],中国科学(B辑),1989,(3):312-319.
    29.李献华,赣东北蛇绿混杂岩带中硅质岩的地球化学特征及构造意义[J],中国科学,D辑,2000,30(3):284-290.
    30.李永军,西秦岭泥盆纪古生物分区及古地理演变初探[J],西安地质学院学报,1988,10(3):14-18.
    31.李志明,刘家军,胡瑞忠等,兰坪中新生代盆地沉积岩源区构造背景和物源属性研究—砂岩地球化学证据[J],沉积学报,2003,21(4):547-552.
    32.刘育燕、杨巍然等,华北陆块、秦岭陆块和扬子陆块构造演化的古地磁证据[J],地质科技情报,1993,12(4):17-21.
    33.宁晰春,李英,西秦岭显生宙构造演化与成矿旋回[J],西安地学院学报质,1994,16(2):1-10.
    34.裴先治,碧口地区复理石岩系特征及其构造环境[J],西安地质学院学报,1992,14(1):42-49.
    35.裴先治,丁仨平等,天水市幅1:250000区域地质调查(修测)成果报告,长安大学地质调查研究院/甘肃省地质调查院,2004.
    36.裴先治,丁仨平,胡波,李勇等,西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义[J],地质通报,2004,23(12):1202-1208.
    37.裴先治,李勇,陆松年等,西秦岭天水地区关子镇中基性岩浆杂岩体锆石U—Pb年龄及其地质意义[J],地质通报,2005,24(1):23-29.
    38.裴先治,张国伟,赖绍聪,等,西秦岭南缘勉略构造带主要地质特征[J],地质通报,2002,21(8~9):486-494.
    39.任纪舜,中国东部及邻区大地构造演化的新见解[J],中国区域地质,1994,4:289-300.
    40.任纪舜,张正坤,牛宝贵等,论秦岭造山带—中朝与扬子陆块的拼合过程,见秦岭造山带学术讨论会论文选集,西安,西北大学出版社,1991:99-110.
    41.邵磊,K.Stattegger,李文厚,从砂岩地球化学探讨盆地构造背景[J],科学通报,1998,43(9):985-988.
    42.邵磊,李文厚,袁明生,吐鲁番-哈密盆地的砂岩特点及构造意义[J],沉积学报,1999,17(1):95-99.
    43.宋志高,贾群子,张治洮等,北秦岭—北祁连(天水—宝鸡间)早古生代火山岩系及其构造连接关系的研究[J],中国地质科学院西安地质矿产研究所所刊,1991,34:1-82.
    44.孙勇,于在平,张国伟,东秦岭蛇绿岩的地球化学,见秦岭造山带的形成及其演化.,西安,西北大学出版社,1988:65-74.
    45.天水幅1:200000地质图及说明书,陕西区测队,1968.
    46.王清晨,孙枢,李继亮等,秦岭的大地构造演化[J],地质科学,1989,(2):129-142.
    47.吴汉宁,常承法,刘椿等,依据古地磁资料探讨华北和华南板块运动及其对秦岭造山带构造演化的影响[J].地质科学,1990,(3):201-214.
    48.吴正文,柴育成,黄万夫等,秦岭造山带的推覆构造格局,见秦岭造山带学术讨论会论文选集,西安,西北大学出版社,1991:111-120.
    49.夏林圻.夏祖春,徐学义,南秦岭中—晚元古代火山岩性质与寒武纪大陆裂解[J],中国科学(D辑),1996,26(3):237-243.
    50.许靖华,孙枢,王清晨,中国大地构造相图,北京:科学出版社,1998.
    51.许志琴,汤跃庆,卢一伦,东秦岭造山带的变形特征及构造演化[J],地质学报,1986,3:327-347.
    52.许志琴,卢一伦,汤耀庆等,东秦岭复合山链的形成、变形、演化及板块动力学[M],北京:中国环境科学出版社,1988.
    53.许志琴,牛宝贵,刘志刚,秦岭—大别“碰撞—陆内”型复合山链的构造体制及陆内板块动力学机制,秦岭造山带学术讨论会论文选集,西安:西北大学出社,1991:139-147.
    54.杨巍然,杨森楠,造山带结构与演化的现代理论和研究方法—东秦岭造山带剖析,中国地质大学出版社,1991.
    55.叶红青,陆源碎屑成分与板块构造[J],国外地质(成都地质学院),1987(2):83-91.
    56.殷鸿福,彭元桥,秦岭显生宙古海洋演化[J],地球科学,1995,20(6):605-611.
    57.殷鸿福,黄定华,早古生代镇渐地块与秦岭多岛小洋盆的演化[J],地质学报,1995,69(3):193-204.
    58.原振雷,沉积地球化学在构造环境分析上的应用[J],河南地质情报,1992,75(2):14-23.
    59.于在平,柳小明,张成立,孟庆任,东秦岭毛坪变质沉积岩席基本特征及其大地构造意义[J],中国科学(D辑),1996,26(增刊):69-79.
    60.于在平,孙勇,张成立,秦岭商丹缝合带变质砂岩地球化学特征及构造环境探讨[J],地质论评,1991,37(6):492-507.
    61.于在平,孙勇,张国伟,商丹地区秦岭缝合带弧前沉积楔形体初探,见秦岭造山带的形成及其演化,西安:西北大学出版社,1988:48-64.
    62.于在平,孙勇,张国伟,秦岭商丹沉积岩系基本地质特征,见秦岭造山带学术讨论会论文选集,西安:西北大学出社,1991:78-88.
    63.张本仁、骆庭川、高山等,秦巴岩石圈、构造及成矿规律地球化学研究[M],武汉:中国地质大学出版社,1994.
    64.张本仁,张宏飞,赵志丹,凌文黎,东秦岭及邻区壳幔地球化学分区和演化及其大地构造意义[J],中国科学(D辑),1996,26(3):201-208.
    65.张传林,董永观,郭坤一等,西秦岭东段构造演化及成矿作用的讨论[J],火山地质与矿产,2001,22(1):21-30.
    66.张传林,朱立华,杨志华,西秦岭北带大草滩群的解体及其地质意义[J],地层学杂志,2000,24(3):220-223.
    67.张二朋等,秦岭及邻区地质—构造特征概论[M],北京:地质出版社,1993.
    68.张国伟,陈家义主编,秦岭造山带大地构造图,北京:科学出版社,1996.
    69.张国伟,孟庆任,于在平等,秦岭造山带的造山过程及其动力学特征[J],中国科学(D辑),1996,26(3):193-200.
    70.张国伟,孙勇,于在平等,北秦岭古活动大陆边缘,见秦岭造山带的形成及其演化,西安:西北大学出版社,1988:48-64.
    71.张国伟,于在平,孙勇等,秦岭商丹断裂边界地质体基本特征及其演化,见秦岭造山带的形成及其演化,西安:西北大学出版社,1988:22-47.
    72.张国伟,张本仁,袁学诚等,秦岭造山带与大陆动力学[M],北京:科学出版社,2001.
    73.张国伟,张宗清,董云鹏,秦岭造山带主要构造岩石地层单位的构造性质及其大地构造意义[J],岩石学报,1995,11(2):101-114.
    74.张维吉,孟宪恂,胡建民等,祁连—北秦岭造山带结合部位构造特征与造山过程[M],西安:西北大学出版社,1994.
    75.周鼎武,张成立,韩松等,东秦岭早古生代两条不同构造岩浆-杂岩带的形成构造环境[J],岩石学报,1995,11(2):115-126.
    76.左国朝,西秦岭泥盆纪构造—建造带及其地壳演化[J],甘肃地质,1984,2:99-109.
    77.Bhatia M R等,澳大利亚古生代杂砂岩和泥岩的稀土元素地球化学:源区和构造控制(陈世益译)[J].地质地球化学,1987,第5期:50-55.
    78.Bhatia M R等,澳大利亚古生代杂砂岩的微量元素地球化学特征[J],地质科技论从,1987,第3期
    79. Bhatia M. R. Plate tectonics and geochemical composition of sandstones [J], J Geol, 1983, (91): 611-627.
    80. Bhatia M. R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provinance and tectonic control [J]. Sedimentary Geology, 1985, (45): 97-113.
    81. Bhatia M. R, Crook K A W. Trace element characteristics of graywaekes and tectonic setting discrimination of sedimentary basins [J] . Contrib Minerral Petro, 1986, (92): 181-193.
    82. Bhatia M. R. and Taylor S. R. Trace-element geochemistry and sedimentary Provinces: a study from the Tasman Geosyhcline [J]. Australia. Chem. Geol., 1981, 33: 115-125.
    83. Blatt H., Middleton G. V, Murry. R. Origin of sedimentary rock: Englewood cliffs, N J, Pretice-Hall, 1980, P: 782.
    84. Crook, K.A.W. Lithogenesis and geotectonics: the significance of compositional variations in flysch arenites(graywackes). In: R.h.Dott and R.H.Shaver(Editors), Modern and Ancient Geosynclinal Sedimentation. Soc. Econ. Paleontol. Mineral.,Spec. Publ., 1974, 19: 304-310.
    85. Didckinson, W.R. and Suczek, C.A. Plate tectonics and sandstone compositions [J]. Bull. Am. Assoc. Pet. Geol. 1979. 63: 2164-2182.
    86. Haslam H W, Plant J A. Rock geochemistry[M]. Keyworth, Nottinghan. British Geological survey, 1990.
    87. Holland G V. The chemistry of the Atmosphere and Oceans. Wiley, New York, 1978, 351.
    88. Hsu K J, Wang Q, et al. Tectonic evolution of Qinling mountains, China[J]. Eclogae Geol, Helv, 1987(80): 735-752.
    89. Mattauer M. Matte P, Malavieille J, et al,. Tectonics of the Qinling belt: build up and evolution of eastern Asia [J]. Nature. 1985, 317: 496-500.
    90. Maynard J. B, Vallcni R. and Yu. H.S., 1982, Composition of modern deep-sea sands from arc-related basins. In: Leggett. J. K(ed), Trench-forearc geology: sedimentation and tectonics on modern and ancient ancient plate margins. (jeol. Soc. London Spec. Pub. 10, pp: 551-561.
    91. Mclennan S M. Rare earth elements in sedimentary rock: influence of provenance and sedimentary processes [J] . Reviews in Mineralogy. 1989,21: 169-200.
    92. Mclennan S M, Taylor S R. Geochemical evolution of Archean shales from South Africa 1.The Swaziland and ponggola supergroups [J] . precambrian Research, 1983, (22): 93-124.
    93. Middleton G. V., Chemical composition of sandstonds [J] . Geol. Soc. America Bull.. I960, Vol. 71. pp. 1011-1026.
    94. Murray, R.W. 确定燧石沉积环境华学标志的一般原理及应用, 国外地质与勘测 (潭健译). 1995, 36 (4): 6-13, 7.
    95. Murray R W. Chemical criteria to identify the dipositional environment of chert: general principles and applications [J] .Sediment Geol, 1994,90: 213-232.
    96. Murray R W., Buchholtz Ten Brink M R, Geriach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group: Assessing REE sources to fine-grained marine sediments [J] . Geochim Cosmochim Acta, 1991,55: 1875-1895.
    97. Murray R W.. Jones D L, Buchholtz Ten Brink M R. Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couplet [J] .Geology, 1992,20:271-274.
    98. Rollinson H R. Using geochemical data: evaluation,presentation,interpretation. London: Longman Scientific Technical Press, 1993.
    99. Roser B. P. and Korsch R. J. Determination of tectonic setting of sandstone-mudstone suites using SiO_2 content and K_2O/Na_2O ratio [J] .J Geol, 1986, (94): 635-650.
    100. Roser B P. Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data [J] . Chemical Geology, 1988,67: 119-139.
    101. Shao L, Stattergger K,Garbe-Schoenberg C D. Sandstone petrology and Geochemistry of the Turpan Basin(N W China): implications for the tectonic evolution of a continental basin [J] . Journal of Sedimentary Research, 2001,71 (1) : 37-49.
    102. Schwab, F. L. Framework mineralogy and chemical composition of continental margin-type sandstone[J]. Geology, 1975, 3:487-490.
    103. Taylor S R, Mclennan S E. The continenial crust: its composition and evolution [M].Oxford: Blackwell, 1985.
    104. Vallcni R, Maynard J B. Detrial modes of recent deep-sea sands and their relation to tectonic setting, a first approximation [J] . Sedimentology, 1981,28: 75-83.
    105. Wildeman,T. R. and Haskin, L. A. Rare earths in Precambrian sediments [J] . Geochim. Cosmochim. Acta. 1973, 37: 419-438.
    106. Winchester J A and Max M.D. Tectonic Setting Discrimination in Clastic Sequences: an Example from the Late Proterozotic Erris Group, NW Ireland [J] . Precambrian Research, 1989, Vol, 45, pp: 191-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700